BibTex RIS Kaynak Göster

NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ

Yıl 2015, Cilt: 30 Sayı: 1, 0 - , 31.03.2015
https://doi.org/10.17341/gummfd.50725

Öz

Rijit poliüretan köpük malzemelere, bu malzemelerin özeliklerini iyileştirmek ve maliyetleri düşürmek için farklı inorganik maddeler ilave edilmektedir. Bu inorganik maddeler içinde, kilin toplam kütlenin en fazla % 6 oranına kadar poliüretan köpük malzemeye ilave edildiği belirlenmiştir. Bu çalışmada ise, yazarların bilgisi dahilinde, ilk defa % 15'e varan oranda nanokil ve amonyum polifosfat/pentaeritritolden oluşan kabaran alev geciktiricinin ilavesi yapılmıştır. Nanokil ve kabaran alev geciktirici ilavesinin, köpük malzemelerin hücre boyutuna, ısı iletim katsayısına, ısıl bozunma ve yanmaya karşı direncine etkileri incelenmiştir. Bunlara ek olarak, köpük malzemelerin zamanla ısı iletim katsayılarındaki değişim ve dolgu/alev geciktiricilerin bu değişime etkileri üzerine literatürde yeterli bilgi bulunmadığı dikkate alınarak üretimden sonra iki aylık bir süre içerisinde, köpük malzemelerin ısı iletim katsayılarının değişimi de takip edilmiştir. Deneysel sonuçlar, nanokilin % 15 oranında ilavesi ile köpük malzemenin ısıl kararlılığının ve yanma direncinin iyileştirilebileceğini göstermektedir. Bununla birlikte, nanokil ve kabaran alev geciktiricinin birlikte ilavesinin köpük malzemenin ısıl bozunma ve yanmaya karşı direncini daha da iyileştirdiği belirlenmiştir. Aynı zamanda nanokil/kabaran alev geciktirici ilavesinin köpük malzemenin ısı iletim katsayısında az bir miktar artışa sebep olduğu da tespit edilmiştir. 

Kaynakça

  • Wang, J.Q. ve Chow, W.K., “A Brief Review on Fire Retardants for Polymeric Foams”, Journal of Applied Polymer Science, Cilt 97, No 1, 366-376, 2005.
  • Modesti, M., Zanella, L., Lorenzetti, A., Bertani, R. ve Gleria, M., “Thermally Stable Hybrid Foams Based on Cyclophosphazenes and Polyurethanes”, Polymer Degradation and Stability, Cilt 87, No 2, 287-292, 2005.
  • Kulesza, K., Pielichowski, K. ve German, K., “Thermal Decomposition of Bisphenol A-Based Polyetherurethanes Blown with Pentane - Part I - Thermal and Pyrolytical Studies”, Journal of Analytical and Applied Pyrolysis, Cilt 76, No 1-2, 243-248, 2006.
  • Singh, B., Gupta, M. ve Tarannum, H., “Jute Sandwich Composite Panels for Building Applications”, Journal of Biobased Materials and Bioenergy, Cilt 4, No 4, 397-407, 2010.
  • Paciorek-Sadowska, J., Czuprynski, B., Liszkowska, J. ve Jaskolowski, W., “New Polyol for the Production of Rigid Polyurethane-Polyisocyanurate Foams. Part II. Preparation of Rigid Polyurethane-Polyisocyanurate Foams with Use of New Boroorganic Polyol”, Polimery, Cilt 55, No 2, 99-105, 2010.
  • Tuen, B. S., Hassan, A. ve Abu Bakar, A., “Thermal Properties and Processability of Talc- and Calcium Carbonate-Filled Poly(vinyl chloride) Hybrid Composites”, Journal of Vinyl & Additive Technology, Cilt 18, No 2, 87-94, 2012.
  • Donate-Robles, J. ve Martin-Martinez, J.M., “Comparative Properties of Thermoplastic Polyurethane Adhesive Filled with Natural or Precipitated Calcium Carbonate”, Macromolecular Symposia, Cilt 301, No 1, 63-72, 2011.
  • Leong, Y.W., Abu Bakar, M. B., Mohd. Ihsak, Z.A. ve Ariffin, A., “Effects of Filler Treatments on the Mechanical, Flow, Thermal, and Morphological Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites”, Journal of Applied Polymer Science, Cilt 98, No 1, 413-426, 2005.
  • Romero-Ibarra, I.C., Bonilla-Blancas, E., Sanchez-Solis, A. ve Manero, O., “Influence of the Morphology of Barium Sulfate Nanofibers and Nanospheres on the Physical Properties of Polyurethane Nanocomposites”, European Polymer Journal, Cilt 48, No 4, 670-676, 2012.
  • Ali, V., Neelkamal, Haque, F.Z., Zulfequar, M. ve Husain, M., “Preparation and Characterization of Polyether-Based Polyurethane Dolomite Composite”, Journal of Applied Polymer Science, Cilt 103, No 4, 2337-2342, 2007.
  • Chen-Yang, Y.W., Yang, H.C., Li, G.J. ve Li, Y.K., “Thermal and Anticorrosive Properties of Polyurethane Clay Nanocomposites”, Journal of Polymer Research, Cilt 11, No 4, 275-283, 2005.
  • Fereidoonnia, M., Barmar, M. ve Barikani, M.,“Influence of a Reactive Organoclay on Polymerization and Properties of Polyurethane Nanocomposites”, Polymer-Plastics Technology and Engineering, Cilt 48, No 1, 90-96, 2008.
  • Saha, M.C., Kabir, M.E. ve Jeelani, S., “Enhancement in Thermal and Mechanical Properties of Polyurethane Foam Infused with Nanoparticles”, Materials Science and Engineering: A, Cilt 479, No 1-2, 213-222, 2008.
  • Bastin, B., Paleja, R. ve Lefebvre, J., “Fire Behavior of Polyurethane Foams”, Journal of Cellular Plastics, Cilt 39, No 4, 323-340, 2003.
  • Zatorski, W., Brzozowski, Z. K. ve Kolbrecki, A., “New Developments in Chemical Modification of Fire-safe Rigid Polyurethane Foams”, Polymer Degradation and Stability, Cilt 93, No 11, 2071-2076, 2008.
  • Usta, N., “Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter”, Journal of Applied Polymer Science, Cilt 124, No 4, 3372-3382, 2012.
  • Tarakcılar, A.R., “The Effects of Intumescent Flame Retardant Including Ammonium Polyphosphate/Pentaerythritol and Fly Ash Fillers on the Physicomechanical Properties of Rigid Polyurethane Foams”, Journal of Applied Polymer Science, Cilt 120, No 4, 2095-2102, 2011.
  • Saint-Michel, F., Chazeau, L. ve Cavaille, J.Y., “Mechanical Properties of High Density Polyurethane Foams: II Effect of the Filler Size”, Composites Science and Technology, Cilt 66, No 15, 2709-2718, 2006.
  • Corcione, C. E., Maffezzoli, A. ve Cannoletta, D., “Effect of a Nanodispersed Clay Fillers on Glass Transition of Thermosetting Polyurethane”, Macromolecular Symposia, Cilt 286, No 1, 180-186, 2009.
  • Pashaei, S., Siddaramaiah and Syed, A.A., “Thermal Degradation Kinetics of Polyurethane/Organically Modified Montmorillonite Clay Nanocomposites by TGA”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Cilt 47, No 8, 777-783, 2010.
  • Kim, S.H., Lee, M.C., Kim, H.D., Park, H.C., Jeong, H.M., Yoon, K.S. ve Kim, B.K., “Nanoclay Reinforced Rigid Polyurethane Foams”, Journal of Applied Polymer Science, Cilt 117, No 4, 1992-1997, 2010.
  • Widya, T. ve Macosko, C.W., “Nanoclay-Modified Rigid Polyurethane Foam”, Journal of Macromolecular Science, Part B: Physics, Cilt 44, No 6, 897-908, 2005.
  • Thirumal, M., Khastgir, D., Singha, N.K., Manjunath, B.S. ve Naik, Y.P., “Effect of a Nanoclay on The Mechanical, Thermal and Flame Retardant Properties of Rigid Polyurethane Foam”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Cilt 46, No 7, 704-712, 2009.
  • Demir, H., Arkis, E., Balköse, D. ve Ülkü, S. “Synergistic Effect of Natural Zeolites on Flame Retardant Additives”, Polymer Degradation and Stability, Cilt 89, No 3, 478-483, 2005.
  • ASTM C1113, Standard Test Method for Thermal Conductivity of Refractories by Hot Wire, ASTM International, West Conshohocken, PA, U.S.A., 2013.
  • UL 94, Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratories Inc., Northbrook, IL, U.S.A., 1996.
  • ASTM D3576-04, Standard Test Method for Cell Size of Rigid Cellular Plastics, ASTM International, West Conshohocken, PA, U.S.A., 2004.
  • Zivica, V. ve Palou, M.T., “Physico-Chemical Characterization of Thermally Treated Bentonite”, Composites Part B: Engineering, Cilt 68, 436-445, 2015.
  • Samyn, F., Bourbigot, S., Duquesne, S. ve Delobel, R., “Effect of zinc borate on the thermal degradation of ammonium polyphosphate”, Thermochimica Acta, Cilt 456, No 2, 134-144, 2007.
  • Zheng, X., Wang, G. ve Xu, W., “Roles of Organically-Modified Montmorillonite and Phosphorous Flame Retardant During the Combustion of Rigid Polyurethane Foam”, Polymer Degradation and Stability, Cilt 101, 32-39, 2014.
  • Tien, Y.I. ve Wei, K.H., “Thermal Transitions of Montmorillonite / Polyurethane Nanocomposites, Journal of Polymer Research, Cilt 7, No 245-250, 2000.
  • Xiong, J., Zheng, Z., Jiang, H., Ye, S. ve Wang, X., “Reinforcement of Polyurethane Composites with an Organically Montmorillonite”, Composites Part A: Applied Science and Manufacturing, Cilt 38, No 1, 132-137, 2007.
  • Cervantes-Uc, J. M., Moo Espinosa, J. I., Cauich-Rodriguez, J. V., Avila-Ortega, A., Vasquez-Torres, H., Marco-Fernandez, A. ve San Roman del Barrio, J., “TGA/FTIR Studies of Segmented Aliphatic Polyurethanes and Their Nanocomposites Prepared with Commercial Montmorillonites”, Polymer Degradation and Stability, Cilt 94, No 10, 1666-1677, 2009.
  • Pauzi, N. N. P. N., Majid R. A., Dzulkifli M. H. ve Yahya, M.Y., “Development of Rigid Bio-based Polyurethane Foam Reinforced with Nanoclay”, Composites Part B: Engineering, Cilt 67, 521-526, 2014.
  • Modesti, M., Lorenzetti, A., Besco, S., Hrelja, D., Semenzato, S., Bertani, R. ve Michelin, R.A., “Synergism Between Flame Retardant and Modified Layered Silicate on Thermal Stability and Fire Behaviour of Polyurethane Nanocomposite Foams”, Polymer Degradation and Stability, Cilt 93, No 12, 2166-2171, 2008.
  • Piszczyk, Ł., Strankowski, M., Danowska, M., Haponiuk, J.T. ve Gazda, M., “Preparation and Characterization of Rigid Polyurethane–Polyglycerol Nanocomposite Foams”, European Polymer Journal, Cilt 48, No 10, 1726-1733, 2012.
  • Fan, H., Tekeei, A., Suppes, G. J. ve Hsieh, F., “Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay”, International Journal of Polymer Science, Cilt 2012, Article ID 474803, DOI:10.1155/2012/474803, 2012.
  • Marrucho, I.M., Santos, F. ve Oliveira, N.S., “Aging of Rigid Polyurethane Foams: Thermal Conductivity of N-2 and Cyclopentane Gas Mixtures”, Journal of Cellular Plastics, Cilt 41, No 3, 207-224, 2005.
  • Modesti, M., Lorenzetti, A. ve Besco, S., “Influence of Nanofillers on Thermal Insulating Properties of Polyurethane Nanocomposites Foams”, Polymer Engineering and Science, Cilt 47, No 9, 1351-1358, 2007.
  • Amiri, R.S.N., Tirri, T. ve Wilen, C.E., “Flame Retardant Polyurethane Nanocomposite: Study of Clay Dispersion and Its Synergistic Effect with Dolomite”, Journal of Applied Polymer Science, Cilt 129, No 4, 1678-1685, 2013.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Bilal Aydoğan Bu kişi benim

Nazım Usta

Yayımlanma Tarihi 31 Mart 2015
Gönderilme Tarihi 31 Mart 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 1

Kaynak Göster

APA Aydoğan, B., & Usta, N. (2015). NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(1). https://doi.org/10.17341/gummfd.50725
AMA Aydoğan B, Usta N. NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ. GUMMFD. Mart 2015;30(1). doi:10.17341/gummfd.50725
Chicago Aydoğan, Bilal, ve Nazım Usta. “NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30, sy. 1 (Mart 2015). https://doi.org/10.17341/gummfd.50725.
EndNote Aydoğan B, Usta N (01 Mart 2015) NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30 1
IEEE B. Aydoğan ve N. Usta, “NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ”, GUMMFD, c. 30, sy. 1, 2015, doi: 10.17341/gummfd.50725.
ISNAD Aydoğan, Bilal - Usta, Nazım. “NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30/1 (Mart 2015). https://doi.org/10.17341/gummfd.50725.
JAMA Aydoğan B, Usta N. NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ. GUMMFD. 2015;30. doi:10.17341/gummfd.50725.
MLA Aydoğan, Bilal ve Nazım Usta. “NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 30, sy. 1, 2015, doi:10.17341/gummfd.50725.
Vancouver Aydoğan B, Usta N. NANOKİL VE KABARAN ALEV GECİKTİRİCİ İLAVESİNİN RİJİT POLİÜRETAN KÖPÜK MALZEMELERİN ISIL BOZUNMA VE YANMA DAVRANIŞLARINA ETKİLERİNİN İNCELENMESİ. GUMMFD. 2015;30(1).