Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği

Yıl 2022, Cilt: 37 Sayı: 4, 2241 - 2258, 28.02.2022
https://doi.org/10.17341/gazimmfd.868527

Öz

Bu çalışmada, Ultra Yüksek Performanslı Beton (UYPB) karışımında çimento yerine farklı oranlarda Cam Tozu (CT) ve Yüksek Fırın Cürufunun (YFC) kullanılabilirliği beton basınç dayanımı bakımından incelenmiştir. Bu çerçevede, beton karışımında CT ve YFC’nun kullanılmadığı kontrol karışımı ile birlikte %4 ve %8 oranlarında çimento yerine CT ve YFC’nun ayrı ayrı ve beraber kullanımı ile tekli, ikili ve üçlü bağlayıcı sistemine sahip toplam 16 adet UYPB karışımı üretilmiştir. Üretilen beton karışımlarına ait küp numunelerinin lifli / lifsiz ve buhar kürlü / kürsüz koşullarda 7, 14, 28, 56 ve 90 günlük basınç dayanımları elde edilmiştir. Çalışmada, gözönüne alınan beton yaşları için test numunelerinin basınç dayanımlarına ait ortalama değerler esas alınarak, ilgili katkı maddeleri ile çelik lif ve buhar kürü uygulamasına ait sonuçlar katkısız kontrol numuneleri referans alınarak değerlendirilmiştir. Elde edilen sonuçlar, UYPB karışımında CT miktarı arttıkça tüm beton yaşları için basınç dayanımları azalım eğiliminde olmasına karşın, 28 gün ve sonrasında bu değişimlerin oldukça küçük olduğunu göstermiştir. Bununla birlikte, karışımdaki YFC miktarından bağımsız olarak, 90 günlük basınç dayanımlarının katkısız kontrol numunesine oldukça yakın olduğu belirlenmiştir. Daha çevre dostu ve ekonomik UYPB elde etmek amacıyla karışımdaki çimento miktarı azaltılarak yerine CT veya YFC’nun kullanılması ile hedef beton basınç dayanımlarının elde edilebileceği görülmüştür. UYPB karışımına çelik lif eklenmesi ve buhar kürü uygulamasıyla bu katkı malzemelerinin basınç dayanımı üzerindeki etkileri daha belirgin hale gelmektedir.

Kaynakça

  • Hassan A.M.T., Jones S.W., Mahmud G.H., Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC), Constr. Build. Mater., 37, 874-882, 2012.
  • Rossi P., Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites, Cem. Concr. Compos., 37, 246-248, 2013.
  • Yu R., Spiesz P., Brouwers H.J.H., Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses, Cem. Concr. Compos., 55, 383-394, 2015.
  • Turker K., Hasgul U., Birol T., Yavas A., Yazici H., Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams, Compos. Struct., 229, 111400, 2019.
  • Yavas A., Hasgul U., Turker K., Birol T., Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams, Adv. Struct. Eng., 22 (7), 1591–1605, 2019.
  • Park J.J., Kang S.T., Koh K.T., Kim S.W., Influence of the Ingredients on the Compressive Strength of UHPC as A Fundamental Study to Optimize the Mixing Proportion, The Second International Symposium on Ultra High Performance Concrete, Kassel-Germany, 105–112, 05-07 March, 2008.
  • Yoo D.Y., Lee J.H., Yoon Y.S., Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites, Compos. Struct., 106, 742–753, 2013.
  • Şi̇mşek O., Aruntaş H. , Demi̇r İ., Beton üretiminde süper akışkanlaştırıcı çeşiti ve oranının belirlenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22 (4), 829-835, 2013.
  • Birol T., Ultra yüksek performanslı lifli beton ile üretilen betonarme kirişlerin eğilme davranışının incelenmesi, Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, 2016.
  • Habel K., Gauvreau P., Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading, Cem. Concr. Compos., 30 (10), 938–946, 2008.
  • Wille K., Naaman A.E., Parra-Montesinos G.J., Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way, ACI Mater. J., 108 (1), 46-54, 2011.
  • AFGC/SETRA, Ultra high performance fibre-reinforced concretes, Revised ed., Association Française de Génie Civil; Service d’études techniques des routes et autoroutes, France, 2013.
  • Fehling E., Schmidt M., Walraven J., Leutbecher T., Frönlich S., Ultra-High Performance Concrete, UHPC: Fundamentals, Design, Examples, Beton-Kalender, Wilhelm Ernst & Sohn, Berlin, Germany, 2014.
  • Hussein L., Amleh L., Size effect of ultra‐high performance fiber reinforced concrete composite beams in shear, Struct. Concr., 19 (1), 141–151, 2018.
  • Moreillon L., Menetrey P., Rehabilitation and Strengthening of Existing RC Structures with UHPFRC: Various Application, RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, Marseille-France, 127-136, 1-3 October, 2013.
  • SAMARIS, Full scale application of UHPFRC project rehabilitation of bridges-from the lab to the field, European Project 5th FWP/SAMARIS-Sustainable and Advanced Materials for Road Infrastructures - WP14: HPFRCC, Report D22, 2005.
  • Wang Y.C., Lee M.G., Ultra-high strength steel fiber reinforced concrete for strengthening of RC frames, J. Mar. Sci. Technol., 15 (3), 210- 218, 2007.
  • Graybeal B.A., Flexural behavior of an ultrahigh-performance concrete I-girder, J. Bridge Eng., 13 (6), 602–610, 2008.
  • Russell H.G., Graybeal B.A., Ultra-high performance concrete: A state-of-the-art report project bridge community, FHWA Publication HRT-13-060, Federal Highway Administration, 2013.
  • Yoo D-Y., Yoon Y-S., A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete, Int. J. Concr. Struct. Mater., 10 (2), 125-142, 2016.
  • Ceylan S., Yazıcıoğlu S., Turanlı L., Usage of micronized zeolite in high performanced concrete, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 163-176, 2021.
  • Yazıcı H., Yiğiter H., Karabulut A.Ş., Baradan B., Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete, Fuel, 87 (12), 2401-2407, 2008.
  • Yazıcı H., Yardımcı M.Y., Aydın S., Karabulut A.Ş., Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes, Constr. Build. Mater., 23 (3), 1223-1231, 2009.
  • Shaikh F.U.A., Nishiwaki T., Kwon S., Effect of fly ash on tensile properties of ultra high performance fiber reinforced cementitious composites (UHP-FRCC), J. Sustainable Cem.-Based Mater., 7 (3), 1-15, 2018.
  • Vaitkevicius V., Serelis E., Hilbig H., The effect of glass powder on the microstructure of ultra high performance concrete, Constr. Build. Mater., 68, 102-109, 2014.
  • Soliman N.A., Tagnit-Hamou A., Development of ultra high performance concrete using glass powder-towards ecofriendly concrete, Constr. Build. Mater., 125, 600-612, 2016.
  • Du H., Tan K.H., Properties of high volume glass powder concrete, Cem. Concr. Compos., 75, 22-29, 2017.
  • Yazıcı H., Yardımcı M.Y., Yiğiter H., Aydın S., Türkel S., Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32 (8), 639-648, 2010.
  • Song H-W., Saraswathy V., Studies on corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag - An overview, J. Hazard. Mater., 138 (2), 226-233, 2006.
  • Soliman N.A., Tagnit-Hamou A., Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap, Constr. Build. Mater., 139, 374-383, 2017.
  • Yazıcı H., The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures, Build. Environ., 42 (5), 2083-2089, 2007.
  • Yalçınkaya Ç., Yazıcı H., Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures, Constr. Build. Mater., 144, 252-259, 2017.
  • Taşdemir M.A., Bayramov F., Yüksek performanslı çimento esaslı kompozitlerin mekanik davranışı, itüdergisi/d, mühendislik serisi, 1 (2), 125-144, 2002.
  • JSCE, Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), Concrete Engineering Series, 82, Japan Society of Civil Engineers, 2008.
  • JSCE, Recommendations for design and construction of ultra-high strength fiber reinforced concrete structures (Draft), JSCE Guidelines for Concrete No. 9, Japan Society of Civil Engineers, 2006.
  • Betterman L.R., Ouyang C., Shah S.P., Fiber-matrix interaction in microfiber-reinforced mortar, Adv. Cem. Based Mater., 2 (2), 53-61, 1995.
  • Rossi P., Ultra High Performance Fibre Reinforced Concretes (UHPFRC): An Overview, Fifth RILEM Symposium on fibre reinforced concretes (FRC), Lyon-France, 87-100, 13-15 September, 2000.
  • Kocatürk A.N., Haberveren S., Aslan E.G., Taşdemir M.A., Özel Prefabrike Elemanların Ultra Yüksek Performanslı Betonlarla Üretimi, 6. Ulusal Beton Kongresi, İstanbul-Türkiye, 447-458, 16-18 Kasım, 2005.
  • Yavas A., Birol T., Türker K., Hasgül U., Yazıcı H., Improvement on flexural performance of UHPFRC with hybrid steel fiber, Tech. J., 31 (6), 10379-10397, 2020.
  • Neville A.M., Properties of Concrete, 4th edition, Prentice Hall, Harlow, Essex, England, 1995.
  • Park J.S., Kim Y.J., Cho J.R., Jeon S.J., Early-age strength of ultra high performance concrete in various curing conditions, Materials, 8 (8), 5537-5553, 2015.
  • Hiremath P., Yaragal S.C., Investigation on mechanical properties of reactive powder concrete under different curing regimes, Mater. Today: Proc., 4 (9), 9758- 9762, 2017.
  • Azmee N.M., Shafiq N., Ultra high performance concrete: From fundamental to applications, Case Stud. Constr. Mater., 9, e001979, 2018.
  • Wu Z., Shi C., He. W., Wu L., Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete, Constr. Build. Mater., 103, 8-14, 2016.
  • Birol T., Hasgul U., Terzi M., Yavaş A., Turker K., Yazıcı H., Effect of Different Steel Fiber Type and Content in Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete, 3rd International Balkans Conference on Challenges of Civil Engineering, Tirana-Albania, 262-272, 19-21 May, 2016.
  • Arel H.Ş., Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC, Results Phys., 6, 664-674, 2016.
  • Smarzewski P., Effect of curing period on properties of steel and polypropylene fibre reinforced ultra-high performance concrete, IOP Conf. Ser.: Mater. Sci. Eng., 245 (3), 032059, 2017.
  • Askar L.K., Tayeh B.A., Abu Bakar B.H., Effect of different curing conditions on the mechanical properties of UHPFC, Iran. j. energy environ., 4, 299-303, 2013.
  • Shen P., Lu L., He Y., Wang F., Hu S., The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra high performance concrete, Cem. Concr. Res., 118, 1-13, 2019.
  • Bıçakçıoğlu N., Cam tozu ve yüksek fırın cürufu kullanımlarının ultra yüksek performanslı beton karışımlarının basınç dayanımına etkisi, Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, 2020.
  • BS EN 12390-3:2009: Testing hardened concrete – Part 3: Compressive strength of test specimens, British Standards Institution, Milton Keynes, UK, 2009.

Feasibility of use of glass powder and/or ground granulated blast furnace slag in place of cement in ultra high performance concrete

Yıl 2022, Cilt: 37 Sayı: 4, 2241 - 2258, 28.02.2022
https://doi.org/10.17341/gazimmfd.868527

Öz

In the presented study, the partial use of Glass Powder (GP) and Ground Granulated Blast Furnace Slag (GGBFS) in place of cement on Ultra High Performance Concrete (UHPC) was investigated in terms of concrete compressive strength. In this context, the total of 16 UHPC mixtures with single, double and triple binder systems were produced by the independence and dual-uses of GP and GGBFS of 4% and 8% by volume as well as additive-free control mixture. The compressive strengths of cube specimens for each mixture were determined for 7, 14, 28, 56 and 90 days by considering with and without steel fiber and steam curing. Based on the average compressive strengths related to the test specimens for each concrete age, the impacts of studied additive materials as well as contribution of the steel fiber and steam curing on the compressive strength of UHPC were discussed by referencing the results of control specimens. The test results showed that while the compressive strengths were decreasing trend as the GP amount increases at all concrete ages, relative differences were very small at 28 day and beyond. However, regardless of the GGBFS amount in the mixture, the compressive strengths of 90 day were very close the control specimens. It can be deduced that the target compressive strengths of UHPC can be obtained with the partial uses of GP and/or GGBFS by reducing the amount of cement in the mixture in order to obtain eco-friendlier and more economical concrete. It should be noted that the effects of these additive materials on the compressive strength become more apparent with the inclusion of steel fiber to the UHPC mixture and the application of steam curing.

Kaynakça

  • Hassan A.M.T., Jones S.W., Mahmud G.H., Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC), Constr. Build. Mater., 37, 874-882, 2012.
  • Rossi P., Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites, Cem. Concr. Compos., 37, 246-248, 2013.
  • Yu R., Spiesz P., Brouwers H.J.H., Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses, Cem. Concr. Compos., 55, 383-394, 2015.
  • Turker K., Hasgul U., Birol T., Yavas A., Yazici H., Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams, Compos. Struct., 229, 111400, 2019.
  • Yavas A., Hasgul U., Turker K., Birol T., Effective fiber type investigation on the shear behavior of ultrahigh-performance fiber-reinforced concrete beams, Adv. Struct. Eng., 22 (7), 1591–1605, 2019.
  • Park J.J., Kang S.T., Koh K.T., Kim S.W., Influence of the Ingredients on the Compressive Strength of UHPC as A Fundamental Study to Optimize the Mixing Proportion, The Second International Symposium on Ultra High Performance Concrete, Kassel-Germany, 105–112, 05-07 March, 2008.
  • Yoo D.Y., Lee J.H., Yoon Y.S., Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites, Compos. Struct., 106, 742–753, 2013.
  • Şi̇mşek O., Aruntaş H. , Demi̇r İ., Beton üretiminde süper akışkanlaştırıcı çeşiti ve oranının belirlenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22 (4), 829-835, 2013.
  • Birol T., Ultra yüksek performanslı lifli beton ile üretilen betonarme kirişlerin eğilme davranışının incelenmesi, Doktora Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, 2016.
  • Habel K., Gauvreau P., Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading, Cem. Concr. Compos., 30 (10), 938–946, 2008.
  • Wille K., Naaman A.E., Parra-Montesinos G.J., Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way, ACI Mater. J., 108 (1), 46-54, 2011.
  • AFGC/SETRA, Ultra high performance fibre-reinforced concretes, Revised ed., Association Française de Génie Civil; Service d’études techniques des routes et autoroutes, France, 2013.
  • Fehling E., Schmidt M., Walraven J., Leutbecher T., Frönlich S., Ultra-High Performance Concrete, UHPC: Fundamentals, Design, Examples, Beton-Kalender, Wilhelm Ernst & Sohn, Berlin, Germany, 2014.
  • Hussein L., Amleh L., Size effect of ultra‐high performance fiber reinforced concrete composite beams in shear, Struct. Concr., 19 (1), 141–151, 2018.
  • Moreillon L., Menetrey P., Rehabilitation and Strengthening of Existing RC Structures with UHPFRC: Various Application, RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, Marseille-France, 127-136, 1-3 October, 2013.
  • SAMARIS, Full scale application of UHPFRC project rehabilitation of bridges-from the lab to the field, European Project 5th FWP/SAMARIS-Sustainable and Advanced Materials for Road Infrastructures - WP14: HPFRCC, Report D22, 2005.
  • Wang Y.C., Lee M.G., Ultra-high strength steel fiber reinforced concrete for strengthening of RC frames, J. Mar. Sci. Technol., 15 (3), 210- 218, 2007.
  • Graybeal B.A., Flexural behavior of an ultrahigh-performance concrete I-girder, J. Bridge Eng., 13 (6), 602–610, 2008.
  • Russell H.G., Graybeal B.A., Ultra-high performance concrete: A state-of-the-art report project bridge community, FHWA Publication HRT-13-060, Federal Highway Administration, 2013.
  • Yoo D-Y., Yoon Y-S., A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete, Int. J. Concr. Struct. Mater., 10 (2), 125-142, 2016.
  • Ceylan S., Yazıcıoğlu S., Turanlı L., Usage of micronized zeolite in high performanced concrete, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 163-176, 2021.
  • Yazıcı H., Yiğiter H., Karabulut A.Ş., Baradan B., Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete, Fuel, 87 (12), 2401-2407, 2008.
  • Yazıcı H., Yardımcı M.Y., Aydın S., Karabulut A.Ş., Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes, Constr. Build. Mater., 23 (3), 1223-1231, 2009.
  • Shaikh F.U.A., Nishiwaki T., Kwon S., Effect of fly ash on tensile properties of ultra high performance fiber reinforced cementitious composites (UHP-FRCC), J. Sustainable Cem.-Based Mater., 7 (3), 1-15, 2018.
  • Vaitkevicius V., Serelis E., Hilbig H., The effect of glass powder on the microstructure of ultra high performance concrete, Constr. Build. Mater., 68, 102-109, 2014.
  • Soliman N.A., Tagnit-Hamou A., Development of ultra high performance concrete using glass powder-towards ecofriendly concrete, Constr. Build. Mater., 125, 600-612, 2016.
  • Du H., Tan K.H., Properties of high volume glass powder concrete, Cem. Concr. Compos., 75, 22-29, 2017.
  • Yazıcı H., Yardımcı M.Y., Yiğiter H., Aydın S., Türkel S., Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32 (8), 639-648, 2010.
  • Song H-W., Saraswathy V., Studies on corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag - An overview, J. Hazard. Mater., 138 (2), 226-233, 2006.
  • Soliman N.A., Tagnit-Hamou A., Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap, Constr. Build. Mater., 139, 374-383, 2017.
  • Yazıcı H., The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures, Build. Environ., 42 (5), 2083-2089, 2007.
  • Yalçınkaya Ç., Yazıcı H., Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures, Constr. Build. Mater., 144, 252-259, 2017.
  • Taşdemir M.A., Bayramov F., Yüksek performanslı çimento esaslı kompozitlerin mekanik davranışı, itüdergisi/d, mühendislik serisi, 1 (2), 125-144, 2002.
  • JSCE, Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), Concrete Engineering Series, 82, Japan Society of Civil Engineers, 2008.
  • JSCE, Recommendations for design and construction of ultra-high strength fiber reinforced concrete structures (Draft), JSCE Guidelines for Concrete No. 9, Japan Society of Civil Engineers, 2006.
  • Betterman L.R., Ouyang C., Shah S.P., Fiber-matrix interaction in microfiber-reinforced mortar, Adv. Cem. Based Mater., 2 (2), 53-61, 1995.
  • Rossi P., Ultra High Performance Fibre Reinforced Concretes (UHPFRC): An Overview, Fifth RILEM Symposium on fibre reinforced concretes (FRC), Lyon-France, 87-100, 13-15 September, 2000.
  • Kocatürk A.N., Haberveren S., Aslan E.G., Taşdemir M.A., Özel Prefabrike Elemanların Ultra Yüksek Performanslı Betonlarla Üretimi, 6. Ulusal Beton Kongresi, İstanbul-Türkiye, 447-458, 16-18 Kasım, 2005.
  • Yavas A., Birol T., Türker K., Hasgül U., Yazıcı H., Improvement on flexural performance of UHPFRC with hybrid steel fiber, Tech. J., 31 (6), 10379-10397, 2020.
  • Neville A.M., Properties of Concrete, 4th edition, Prentice Hall, Harlow, Essex, England, 1995.
  • Park J.S., Kim Y.J., Cho J.R., Jeon S.J., Early-age strength of ultra high performance concrete in various curing conditions, Materials, 8 (8), 5537-5553, 2015.
  • Hiremath P., Yaragal S.C., Investigation on mechanical properties of reactive powder concrete under different curing regimes, Mater. Today: Proc., 4 (9), 9758- 9762, 2017.
  • Azmee N.M., Shafiq N., Ultra high performance concrete: From fundamental to applications, Case Stud. Constr. Mater., 9, e001979, 2018.
  • Wu Z., Shi C., He. W., Wu L., Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete, Constr. Build. Mater., 103, 8-14, 2016.
  • Birol T., Hasgul U., Terzi M., Yavaş A., Turker K., Yazıcı H., Effect of Different Steel Fiber Type and Content in Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete, 3rd International Balkans Conference on Challenges of Civil Engineering, Tirana-Albania, 262-272, 19-21 May, 2016.
  • Arel H.Ş., Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC, Results Phys., 6, 664-674, 2016.
  • Smarzewski P., Effect of curing period on properties of steel and polypropylene fibre reinforced ultra-high performance concrete, IOP Conf. Ser.: Mater. Sci. Eng., 245 (3), 032059, 2017.
  • Askar L.K., Tayeh B.A., Abu Bakar B.H., Effect of different curing conditions on the mechanical properties of UHPFC, Iran. j. energy environ., 4, 299-303, 2013.
  • Shen P., Lu L., He Y., Wang F., Hu S., The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra high performance concrete, Cem. Concr. Res., 118, 1-13, 2019.
  • Bıçakçıoğlu N., Cam tozu ve yüksek fırın cürufu kullanımlarının ultra yüksek performanslı beton karışımlarının basınç dayanımına etkisi, Yüksek Lisans Tezi, Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir, 2020.
  • BS EN 12390-3:2009: Testing hardened concrete – Part 3: Compressive strength of test specimens, British Standards Institution, Milton Keynes, UK, 2009.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Umut Hasgül 0000-0002-9358-3369

Niyazi Bıçakçıoğlu Bu kişi benim 0000-0001-8424-080X

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 26 Ocak 2021
Kabul Tarihi 23 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 4

Kaynak Göster

APA Hasgül, U., & Bıçakçıoğlu, N. (2022). Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2241-2258. https://doi.org/10.17341/gazimmfd.868527
AMA Hasgül U, Bıçakçıoğlu N. Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği. GUMMFD. Şubat 2022;37(4):2241-2258. doi:10.17341/gazimmfd.868527
Chicago Hasgül, Umut, ve Niyazi Bıçakçıoğlu. “Ultra yüksek Performanslı Betonda çimento Yerine Cam Tozu ve/Veya yüksek fırın cürufunun kullanılabilirliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 4 (Şubat 2022): 2241-58. https://doi.org/10.17341/gazimmfd.868527.
EndNote Hasgül U, Bıçakçıoğlu N (01 Şubat 2022) Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2241–2258.
IEEE U. Hasgül ve N. Bıçakçıoğlu, “Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği”, GUMMFD, c. 37, sy. 4, ss. 2241–2258, 2022, doi: 10.17341/gazimmfd.868527.
ISNAD Hasgül, Umut - Bıçakçıoğlu, Niyazi. “Ultra yüksek Performanslı Betonda çimento Yerine Cam Tozu ve/Veya yüksek fırın cürufunun kullanılabilirliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (Şubat 2022), 2241-2258. https://doi.org/10.17341/gazimmfd.868527.
JAMA Hasgül U, Bıçakçıoğlu N. Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği. GUMMFD. 2022;37:2241–2258.
MLA Hasgül, Umut ve Niyazi Bıçakçıoğlu. “Ultra yüksek Performanslı Betonda çimento Yerine Cam Tozu ve/Veya yüksek fırın cürufunun kullanılabilirliği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 4, 2022, ss. 2241-58, doi:10.17341/gazimmfd.868527.
Vancouver Hasgül U, Bıçakçıoğlu N. Ultra yüksek performanslı betonda çimento yerine cam tozu ve/veya yüksek fırın cürufunun kullanılabilirliği. GUMMFD. 2022;37(4):2241-58.