Research Article
BibTex RIS Cite

Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü

Year 2022, Volume: 37 Issue: 4, 1957 - 1970, 28.02.2022
https://doi.org/10.17341/gazimmfd.985449

Abstract

Bu çalışmada Euler-Bernoulli kirişi olarak modellenebilen köprü üzerinden geçen üç serbestlik dereceli çeyrek araç süspansiyon sisteminin aktif kontrolü üzerine çalışılmıştır. Köprü ve aracın matematik modeli belirlenip Lagrange yöntemi kullanılarak hareket denklemleri çıkarılmıştır. Elde edilen hareket denklemleri dördüncü dereceden Runge-Kutta yöntemi kullanılarak Matlab ortamında çözdürülmüştür. Tekerleklere köprü kirişinin salınımları ile birlikte iki farklı yol profili verilerek aracın yol tutuşunun ve yolcu konforunun klasik PID ve Kayan kipli kontrol (SMC) yöntemi kullanılarak en optimum olması sağlanmıştır. Çalışmada önerilen yöntemin doğruluğu literatürde bulunan diğer çalışmalarla karşılaştırılmıştır. Simülasyon sonuçları göstermiştir ki önerilen aktif süspansiyon kontrolcüleri sayesinde yolcu deplasmanı ve ivmelenme değerlerinin sonucu pasif olana göre yüksek oranda iyileşme sağlamıştır.

References

  • Kalaivani R, Sudhagar K, Lakshmi P. Neural Network based Vibration Control for Vehicle Active Suspension System. Indian J Sci Technol 2016;9:18–21. https://doi.org/10.17485/ijst/2016/v9i1/83806.
  • Yildirim E, Esen I. Dynamic Behavior and Force Analysis of the Full Vehicle Model using Newmark Average Acceleration Method. Eng Technol Appl Sci Res 2020;10:5330–9. https://doi.org/10.48084/etasr.3335.
  • Paksoy M, Guclu R, Cetin S. Semiactive self-tuning fuzzy logic control of full vehicle model with MR damper. Adv Mech Eng 2014;2014. https://doi.org/10.1155/2014/816813.
  • Singh D, Aggarwal ML. Passenger seat vibration control of a semi-active quarter car system with hybrid Fuzzy–PID approach. Int J Dyn Control 2017;5:287–96. https://doi.org/10.1007/s40435-015-0175-0.
  • Devdutt, Aggarwal ML. Fuzzy control of passenger ride performance using MR shock absorber suspension in quarter car model. Int J Dyn Control 2015;3:463–9. https://doi.org/10.1007/s40435-014-0128-z.
  • Khodadadi H, Ghadiri H. Self-tuning PID controller design using fuzzy logic for half car active suspension system. Int J Dyn Control 2018;6:224–32. https://doi.org/10.1007/s40435-016-0291-5.
  • Zhang YQ, Zhao YS, Yang J, Chen LP. A dynamic sliding-mode controller with fuzzy adaptive tuning for an active suspension system. Proc Inst Mech Eng Part D J Automob Eng 2007;221:417–28. https://doi.org/10.1243/09544070JAUTO379.
  • Güçlü R. Active control of seat vibrations of a vehicle model using various suspension alternatives. Turkish J Eng Environ Sci 2003;27:361–73. https://doi.org/10.3906/sag-1204-7.
  • Demir O, Keskin I, Cetin S. Modeling and control of a nonlinear half-vehicle suspension system: A hybrid fuzzy logic approach. Nonlinear Dyn 2012;67:2139–51. https://doi.org/10.1007/s11071-011-0135-y.
  • Ben LZ, Hasbullah F, Faris FW. A comparative ride performance of passive, semi-active and active suspension systems for off-road vehicles using half car model. Int J Heavy Veh Syst 2014;21:26–41. https://doi.org/10.1504/IJHVS.2014.057827.
  • Leblebici AS, Türkay S. An H∞ and Skyhook Controller Design for a High Speed Railway Vehicle. IFAC-PapersOnLine 2018;51:156–61. https://doi.org/10.1016/j.ifacol.2018.07.026.
  • Kieneke R, Graf C, Maas J. Active seat suspension with two degrees of freedom for military vehicles. IFAC Proc Vol 2013;46:523–9. https://doi.org/10.3182/20130410-3-CN-2034.00085.
  • Nagarkar M, Bhalerao Y, Patil GV, Patil RZ. Multi-Objective Optimization of Nonlinear Quarter Car Suspension System - PID and LQR Control. Procedia Manuf 2018;20:420–7. https://doi.org/10.1016/j.promfg.2018.02.061.
  • Guclu R, Metin M. Fuzzy logic control of vibrations of a light rail transport vehicle in use in Istanbul traffic. JVC/Journal Vib Control 2009;15:1423–40. https://doi.org/10.1177/1077546309102664.
  • Yoshimura T, Nakaminami K, Kurimoto M, Hino J. Active suspension of passenger cars using linear and fuzzy-logic controls. Control Eng Pract 1999;7:41–7. https://doi.org/10.1016/S0967-0661(98)00145-2.
  • Emam AS. Fuzzy Self Tuning of PID Controller for Active Suspension System. Adv Powertrains Automotives 2015. https://doi.org/10.12691/apa-1-1-4.
  • Sever M, Şendur HS, Yazıcı H, Arslan MS. Biodinamik sürücü modeli içeren bir taşıt süspansiyon sisteminin durum türevi geri beslemeli LQR ile aktif titreşim kontrolü. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg 2019;3:1573–1572. https://doi.org/10.17341/gazimmfd.570732.
  • Altun Y. Çeyrek Taşıt Aktif Süspansiyon Sistemi için LQR ve LQI Denetleyicilerinin Karşılaştırılması. Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 2017;5:61–70.
  • Aktas KG, Esen I. State-Space Modeling and Active Vibration Control of Smart Flexible Cantilever Beam with the Use of Finite Element Method. Eng Technol Appl Sci Res 2020;10:6549–56. https://doi.org/10.48084/etasr.3949.
  • Cakir MF, Bayraktar M. Modelling of main battle tank and designing LQR controller to decrease weapon oscillations. J Fac Eng Archit Gazi Univ 2020;35:1861–76. https://doi.org/10.17341/gazimmfd.660584.
  • Ozer HO, Hacioglu Y, Yagiz N. High order sliding mode control with estimation for vehicle active suspensions. Trans Inst Meas Control 2018;40:1457–70. https://doi.org/10.1177/0142331216685394.
  • Singh D. Active Vibration Control of Passenger Seat in Quarter Car Model using Supertwisting Controller. Int J Control Autom 2017;10:83–94. https://doi.org/10.14257/ijca.2017.10.11.08.
  • Rath JJ, Defoort M, Karimi HR, Veluvolu KC. Output Feedback Active Suspension Control with Higher Order Terminal Sliding Mode. IEEE Trans Ind Electron 2017;64:1392–403. https://doi.org/10.1109/TIE.2016.2611587.
  • Bai R, Guo D. Sliding-mode control of the active suspension system with the dynamics of a hydraulic actuator. Complexity 2018;2018. https://doi.org/10.1155/2018/5907208.
  • Du M, Zhao D, Yang B, Wang L. Terminal sliding mode control for full vehicle active suspension systems. J Mech Sci Technol 2018;32:2851–66. https://doi.org/10.1007/s12206-018-0541-x.
  • Khan L, Qamar S, Khan MU. Comparative analysis of adaptive neurofuzzy control techniques for full car active suspension system. Arab J Sci Eng 2012;39:2045–69. https://doi.org/10.1007/s13369-013-0729-4.
  • Konoiko A, Kadhem A, Saiful I, Ghorbanian N, Zweiri Y, Sahinkaya MN. Deep learning framework for controlling an active suspension system. JVC/Journal Vib Control 2019;25:2316–29. https://doi.org/10.1177/1077546319853070.
  • Frýba L. Vibration of Solids and Structures under Moving Loads. Thomas Telford House 1999.
  • Biggs JM. Introduction to Structural Dynamics. McGraw- Hill 1964.
Year 2022, Volume: 37 Issue: 4, 1957 - 1970, 28.02.2022
https://doi.org/10.17341/gazimmfd.985449

Abstract

References

  • Kalaivani R, Sudhagar K, Lakshmi P. Neural Network based Vibration Control for Vehicle Active Suspension System. Indian J Sci Technol 2016;9:18–21. https://doi.org/10.17485/ijst/2016/v9i1/83806.
  • Yildirim E, Esen I. Dynamic Behavior and Force Analysis of the Full Vehicle Model using Newmark Average Acceleration Method. Eng Technol Appl Sci Res 2020;10:5330–9. https://doi.org/10.48084/etasr.3335.
  • Paksoy M, Guclu R, Cetin S. Semiactive self-tuning fuzzy logic control of full vehicle model with MR damper. Adv Mech Eng 2014;2014. https://doi.org/10.1155/2014/816813.
  • Singh D, Aggarwal ML. Passenger seat vibration control of a semi-active quarter car system with hybrid Fuzzy–PID approach. Int J Dyn Control 2017;5:287–96. https://doi.org/10.1007/s40435-015-0175-0.
  • Devdutt, Aggarwal ML. Fuzzy control of passenger ride performance using MR shock absorber suspension in quarter car model. Int J Dyn Control 2015;3:463–9. https://doi.org/10.1007/s40435-014-0128-z.
  • Khodadadi H, Ghadiri H. Self-tuning PID controller design using fuzzy logic for half car active suspension system. Int J Dyn Control 2018;6:224–32. https://doi.org/10.1007/s40435-016-0291-5.
  • Zhang YQ, Zhao YS, Yang J, Chen LP. A dynamic sliding-mode controller with fuzzy adaptive tuning for an active suspension system. Proc Inst Mech Eng Part D J Automob Eng 2007;221:417–28. https://doi.org/10.1243/09544070JAUTO379.
  • Güçlü R. Active control of seat vibrations of a vehicle model using various suspension alternatives. Turkish J Eng Environ Sci 2003;27:361–73. https://doi.org/10.3906/sag-1204-7.
  • Demir O, Keskin I, Cetin S. Modeling and control of a nonlinear half-vehicle suspension system: A hybrid fuzzy logic approach. Nonlinear Dyn 2012;67:2139–51. https://doi.org/10.1007/s11071-011-0135-y.
  • Ben LZ, Hasbullah F, Faris FW. A comparative ride performance of passive, semi-active and active suspension systems for off-road vehicles using half car model. Int J Heavy Veh Syst 2014;21:26–41. https://doi.org/10.1504/IJHVS.2014.057827.
  • Leblebici AS, Türkay S. An H∞ and Skyhook Controller Design for a High Speed Railway Vehicle. IFAC-PapersOnLine 2018;51:156–61. https://doi.org/10.1016/j.ifacol.2018.07.026.
  • Kieneke R, Graf C, Maas J. Active seat suspension with two degrees of freedom for military vehicles. IFAC Proc Vol 2013;46:523–9. https://doi.org/10.3182/20130410-3-CN-2034.00085.
  • Nagarkar M, Bhalerao Y, Patil GV, Patil RZ. Multi-Objective Optimization of Nonlinear Quarter Car Suspension System - PID and LQR Control. Procedia Manuf 2018;20:420–7. https://doi.org/10.1016/j.promfg.2018.02.061.
  • Guclu R, Metin M. Fuzzy logic control of vibrations of a light rail transport vehicle in use in Istanbul traffic. JVC/Journal Vib Control 2009;15:1423–40. https://doi.org/10.1177/1077546309102664.
  • Yoshimura T, Nakaminami K, Kurimoto M, Hino J. Active suspension of passenger cars using linear and fuzzy-logic controls. Control Eng Pract 1999;7:41–7. https://doi.org/10.1016/S0967-0661(98)00145-2.
  • Emam AS. Fuzzy Self Tuning of PID Controller for Active Suspension System. Adv Powertrains Automotives 2015. https://doi.org/10.12691/apa-1-1-4.
  • Sever M, Şendur HS, Yazıcı H, Arslan MS. Biodinamik sürücü modeli içeren bir taşıt süspansiyon sisteminin durum türevi geri beslemeli LQR ile aktif titreşim kontrolü. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg 2019;3:1573–1572. https://doi.org/10.17341/gazimmfd.570732.
  • Altun Y. Çeyrek Taşıt Aktif Süspansiyon Sistemi için LQR ve LQI Denetleyicilerinin Karşılaştırılması. Gazi Üniversitesi Fen Bilim Derg Part C Tasarım ve Teknol 2017;5:61–70.
  • Aktas KG, Esen I. State-Space Modeling and Active Vibration Control of Smart Flexible Cantilever Beam with the Use of Finite Element Method. Eng Technol Appl Sci Res 2020;10:6549–56. https://doi.org/10.48084/etasr.3949.
  • Cakir MF, Bayraktar M. Modelling of main battle tank and designing LQR controller to decrease weapon oscillations. J Fac Eng Archit Gazi Univ 2020;35:1861–76. https://doi.org/10.17341/gazimmfd.660584.
  • Ozer HO, Hacioglu Y, Yagiz N. High order sliding mode control with estimation for vehicle active suspensions. Trans Inst Meas Control 2018;40:1457–70. https://doi.org/10.1177/0142331216685394.
  • Singh D. Active Vibration Control of Passenger Seat in Quarter Car Model using Supertwisting Controller. Int J Control Autom 2017;10:83–94. https://doi.org/10.14257/ijca.2017.10.11.08.
  • Rath JJ, Defoort M, Karimi HR, Veluvolu KC. Output Feedback Active Suspension Control with Higher Order Terminal Sliding Mode. IEEE Trans Ind Electron 2017;64:1392–403. https://doi.org/10.1109/TIE.2016.2611587.
  • Bai R, Guo D. Sliding-mode control of the active suspension system with the dynamics of a hydraulic actuator. Complexity 2018;2018. https://doi.org/10.1155/2018/5907208.
  • Du M, Zhao D, Yang B, Wang L. Terminal sliding mode control for full vehicle active suspension systems. J Mech Sci Technol 2018;32:2851–66. https://doi.org/10.1007/s12206-018-0541-x.
  • Khan L, Qamar S, Khan MU. Comparative analysis of adaptive neurofuzzy control techniques for full car active suspension system. Arab J Sci Eng 2012;39:2045–69. https://doi.org/10.1007/s13369-013-0729-4.
  • Konoiko A, Kadhem A, Saiful I, Ghorbanian N, Zweiri Y, Sahinkaya MN. Deep learning framework for controlling an active suspension system. JVC/Journal Vib Control 2019;25:2316–29. https://doi.org/10.1177/1077546319853070.
  • Frýba L. Vibration of Solids and Structures under Moving Loads. Thomas Telford House 1999.
  • Biggs JM. Introduction to Structural Dynamics. McGraw- Hill 1964.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Eroğlu 0000-0002-1429-7656

Mehmet Akif Koç 0000-0001-7461-9795

Recep Kozan 0000-0001-8544-883X

İsmail Esen 0000-0002-7853-1464

Publication Date February 28, 2022
Submission Date August 20, 2021
Acceptance Date November 14, 2021
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Eroğlu, M., Koç, M. A., Kozan, R., Esen, İ. (2022). Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 1957-1970. https://doi.org/10.17341/gazimmfd.985449
AMA Eroğlu M, Koç MA, Kozan R, Esen İ. Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü. GUMMFD. February 2022;37(4):1957-1970. doi:10.17341/gazimmfd.985449
Chicago Eroğlu, Mustafa, Mehmet Akif Koç, Recep Kozan, and İsmail Esen. “Kayan Kipli Kontrol kullanılarak çeyrek Araç Ve köprü titreşimlerinin Aktif Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 4 (February 2022): 1957-70. https://doi.org/10.17341/gazimmfd.985449.
EndNote Eroğlu M, Koç MA, Kozan R, Esen İ (February 1, 2022) Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 1957–1970.
IEEE M. Eroğlu, M. A. Koç, R. Kozan, and İ. Esen, “Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü”, GUMMFD, vol. 37, no. 4, pp. 1957–1970, 2022, doi: 10.17341/gazimmfd.985449.
ISNAD Eroğlu, Mustafa et al. “Kayan Kipli Kontrol kullanılarak çeyrek Araç Ve köprü titreşimlerinin Aktif Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (February 2022), 1957-1970. https://doi.org/10.17341/gazimmfd.985449.
JAMA Eroğlu M, Koç MA, Kozan R, Esen İ. Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü. GUMMFD. 2022;37:1957–1970.
MLA Eroğlu, Mustafa et al. “Kayan Kipli Kontrol kullanılarak çeyrek Araç Ve köprü titreşimlerinin Aktif Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 4, 2022, pp. 1957-70, doi:10.17341/gazimmfd.985449.
Vancouver Eroğlu M, Koç MA, Kozan R, Esen İ. Kayan kipli kontrol kullanılarak çeyrek araç ve köprü titreşimlerinin aktif kontrolü. GUMMFD. 2022;37(4):1957-70.