Research Article
BibTex RIS Cite

Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi

Year 2023, Volume: 38 Issue: 2, 1141 - 1152, 07.10.2022
https://doi.org/10.17341/gazimmfd.1011142

Abstract

Bu çalışmada, ampisilin antibiyotiği içeren atıksuların elektrokimyasal oksidasyonunda yeni nesil Sn/Sb/Ni-Ti anotların uygulanabilirliğinin araştırılması amaçlanmıştır. Elektrolit olarak değerlendirmek üzere sodyum klorür ve potasyum klorür olmak üzere iki farklı tür tuz kullanılmıştır. Ancak, potasyum klorür ile giderim verimleri daha yüksek bulunmuştur. Potasyum klorür ile ampisilin ve kimyasal oksijen ihtiyacının tamamen giderilmesi sırasıyla 5 ve 60 dakika reaksiyon süresi sonunda gerçekleşirken; sodyum klorür ile sırasıyla 5 ve 90 dakika sonra gerçekleşmiştir. Sonuç olarak optimum elektrokimyasal reaksiyon koşulları 750 mg L-1 potasyum klorür ilavesi, pH 8 ve 50 mA cm-2 akım yoğunluğu olarak bulunmuştur. Bu çalışmanın sonucunda, ampisilinin bozunması için yeni nesil Sn/Sb/Ni-Ti anotları ile elektrokimyasal oksidasyon prosesleri, daha az reaksiyon süresi ihtiyacı, tam mineralizasyonun sağlanması ve pH ayarlama adımına ihtiyaç duyulmaması açısından gelecekteki uygulamalar için bu konuda umut verici görünmektedir.

Supporting Institution

Bursa Uludağ Universitesi

Project Number

OUAP (MH)-2018/8

Thanks

Yazarlar, bu çalışma için Bursa Uludağ Üniversitesi Araştırma Projeleri Birimi’nin desteğini kabul etmiştir (Proje No. OUAP (MH)-2018/8).

References

  • 1. Tan, B.L., Hawker, D.W., Müller, J.F., Tremblay, L.A., Chapman, H.F., Stir bar sorptive extraction and trace analysis of selected endocrine disruptors in water, biosolids and sludge samples by thermal desorption with gas chromatography–mass spectrometry, Water Res., 42 (1-2), 404-412, 2008.
  • 2. Imai, S., Shiraishi, A., Gamo, K., Watanabe, I., Okuhata, H., Miyasaka, H., Ikeda, K., Bamba, T., Hirata, K., Removal of phenolic endocrine disruptors by Portulaca oleracea, J. Biosci. Bioeng., 103 (5), 420-426, 2007.
  • 3. Boxall, A.B., The environmental side effects of medication: How are human and veterinary medicines in soils and water bodies affecting human and environmental health?, EMBO Rep., 5 (12), 1110-1116, 2004.
  • 4. Kosjek, T., Heath, E., Kompare, B., Removal of pharmaceutical residues in a pilot wastewater treatment plant, Anal. Bioanal. Chem., 387 (4), 1379-1387, 2007.
  • 5. Daughton, C.G., Ternes, T.A., Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107 (6), 907-938, 1999.
  • 6. European Centre for Disease Prevention and Control. Second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. https://www.ecdc.europa.eu/en/publications-data/ecdcefsaema-second-joint-report-integrated-analysis-consumption-antimicrobial. Yayın tarihi Temmuz 27, 2017. Erişim tarihi Mart 12, 2021.
  • 7. Kemper, N., Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Indic., 8 (1), 1-13, 2008.
  • 8. Louvet, J.N., Giammarino, C., Potier, O., Pons, M.N., Adverse effects of erythromycin on the structure and chemistry of activated sludge, Environ. Pollut., 158 (3), 688-693, 2010.
  • 9. Ternes, T.A., Occurrence of drugs in German sewage treatment plants and rivers, Water Res., 32 (11), 3245-3260, 1998.
  • 10. Kümmerer, K., Pharmaceuticals in the environment: sources, fate, effects and risks, Springer Science & Business Media, Germany, 2008.
  • 11. Heberer, T., Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131 (1-2), 5-17, 2002.
  • 12. Košutić, K., Dolar, D., Ašperger, D., Kunst, B., Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol., 53 (3), 244-249, 2007.
  • 13. De Moura, D.C., De Araújo, C.K.C., Zanta, C.L., Salazar, R., Martínez-Huitle, C.A., Active chlorine species electrogenerated on Ti/RuO.3TiO.7O2 surface: electrochemical behavior, concentration determination and their application, J. Electroanal. Chem., 731, 145-152, 2014.
  • 14. Chiang, L.C., Chang, J.E., Wen, T.C., Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Res., 29 (2), 671-678, 1995.
  • 15. Liu, Y.J., Hu, C.Y., Lo, S.L., Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes, J. Hazard. Mater., 366, 592-605, 2019.
  • 16. Wang, J., Zheng, T., Liu, H., Wang, G., Zhang, Y., Cai, C., Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution, Electrochim. Acta, 356, 136706-136706, 2020.
  • 17. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39 (11-12), 1857-1862, 1994.
  • 18. Montes, I.J., Silva, B.F., Aquino, J.M., On the performance of a hybrid process to mineralize the herbicide tebuthiuron using a DSA® anode and UVC light: A mechanistic study, Appl. Catal. B: Environmental, 200, 237-245, 2017.
  • 19. Comninellis, C. Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, J. Appl. Electrochem., 25 (1), 23-28, 1995.
  • 20. Canizares, P., Garcia-Gomez, J., Saez, C., Rodrigo, M., Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism, J. Appl. Electrochem., 33 (10), 917-927, 2003.
  • 21. Cotillas, S., Clematis, D., Cañizares, P., Carpanese, M.P., Rodrigo, M.A., Panizza, M., Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes, Chemosphere, 199, 445-452, 2018.
  • 22. dos Santos, A.J., Kronka, M.S., Fortunato, G.V., Lanza, M.R., Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review, Curr. Opin. Electrochem., 100674, 2021.
  • 23. Zhang, A.Y., Long, L.L., Liu, C., Li, W.W., Yu, H.Q., Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy facets, Water Res., 66, 273-282, 2014.
  • 24. Zhao, G., Cui, X., Liu, M., Li, P., Zhang, Y., Cao, T., Li, H., Lei, Y., Liu, L., Li, D., Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode, Environ. Sci. Technol., 43 (5), 1480-1486, 2009.
  • 25. Polcaro, A., Palmas, S., Renoldi, F., Mascia, M., On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment, J. Appl. Electrochem., 29 (2), 147-151, 1999.
  • 26. Gherardini, L., Michaud, P., Panizza, M., Comninellis, C., Vatistas, N., Electrochemical oxidation of 4-chlorophenol for wastewater treatment: definition of normalized current efficiency (ϕ), J. Electrochem. Soc., 148 (6), D78, 2001.
  • 27. Samet, Y., Elaoud, S.C., Ammar, S., Abdelhedi, R., Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes, J. Hazard. Mater., 138 (3), 614-619, 2006.
  • 28. Comninellis, C., Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, J. Appl. Electrochem., 25 (1), 1995.
  • 29. Panizza, M., Cerisola, G., Application of diamond electrodes to electrochemical processes, Electrochim. Acta, 51 (2), 191-199, 2005.
  • 30. Correa-Lozano, B., Comninellis, C., De Battisti, A., Service life of Ti/SnO2–Sb2O5 anodes, J. Appl. Electrochem., 27 (8), 970-974, 1997.
  • 31. Maneelok, S., The relationship between the composition and structure of Ni/Sb-SnO₂ and electrochemical ozone activity, Newcastle University, U.K., 2017.
  • 32. Christensen, P., Lin, W., Christensen, H., Imkum, A., Jin, J., Li, G., Dyson, C., Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 m sulfuric acid at cell voltages< 3V, Ozone: Sci. Eng., 31 (4), 287-293, 2009.
  • 33. Cheng, S.A., Chan, K.Y., Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode, Electrochem. Solid-State Lett., 7 (3), D4, 2004.
  • 34. Rozas, O., Contreras, D., Mondaca, M.A., Pérez-Moya, M., Mansilla, H.D., Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions, J. Hazard. Mater., 177 (1-3), 1025-1030, 2010.
  • 35. Trovó, A.G., Pupo Nogueira, R.F., Aguera, A., Fernandez-Alba, A.R., Malato, S., Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment, Water Res., 45 (3), 1394-1402, 2011.
  • 36. Arslan-Alaton, I., Dogruel, S., Pre-treatment of penicillin formulation effluent by advanced oxidation processes, J. Hazard. Mater., 112 (1-2), 105-113, 2004.
  • 37. APHA (American Public Health Association), APHA Fact Sheet: The Prevention and Public Health Fund. www.apha.org/∼/media/files/pdf/factsheets/160127_pphf.ashx. Yayın tarihi Temmuz 27, 2017. Erişim tarihi Kasım 24, 2020.
  • 38. Shen, B., Wen, X., Huang, X., Enhanced removal performance of estriol by a three-dimensional electrode reactor, Chem. Eng. J., 327, 597-607, 2017.
  • 39. Wang, Y.H., Cheng, S., Chan, K.Y., Li, X.Y., Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode, J. Electrochem. Soc., 152 (11), D197-D197, 2005.
  • 40. Abbasi, M., Soleymani, A.R., Parssa, J.B., Operation simulation of a recycled electrochemical ozone generator using artificial neural network, Chem. Eng. Res. Des., 92 (11), 2618-2625, 2014.
  • 41. Alver, A., Tağaç, A.A., Kılıç, A., Removal of natural organic matters from aquatic environment by catalytic ozonation processes with silver nanoparticles: Determination of ozonation products, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1285-1295, 2020.
  • 42. Pillai, I.M.S., Gupta, A.K., Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, J. Environ. Manage., 176, 45-53, 2016.
  • 43. Sivrioğlu, Ö., Yonar, T., Fourth International Conference on Advances in Bio-Informatics and Environmental Engineering-ICABEE, Rome, Italy, 48-52, 2016.
  • 44. Hai, H., Xing, X., Li, S., Xia, S., Xia, J., Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation, Sci. Total Environ., 738, 139909, 2020.
  • 45. Qian, S., Liu, S., Jiang, Z., Deng, D., Tang, B., Zhang, J., Electrochemical degradation of tetracycline antibiotics using a Ti/SnO2-Sb2O3/PbO2 anode: kinetics, pathways, and biotoxicity change, J. Electrochem. Soc., 166 (6), E192, 2019.
  • 46. Xie, R., Meng, X., Sun, P., Niu, J., Jiang, W., Bottomley, L., Li, D., Chen, Y., Crittenden, J., Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Appl. Catal. B: Environmental, 203, 515-525, 2017.
  • 47. Peternel, I., Kusic, H., Marin, V., Koprivanac, N., UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant, React. Kinet. Mech. Catal., 108 (1), 17-39, 2013.
  • 48. Das, T.N., Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, J. Phys. Chem. A, 105 (40), 9142-9155, 2001.
  • 49. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K., Tchobanoglous, G., MWH's water treatment: principles and design, John Wiley & Sons, New Jersey, 2012.
  • 50. Li, X., Wang, M., Jiao, Z., Chen, Z., Study on electrolytic oxidation for landfill leachate treatment, China Water and Wastewater, 17 (8), 14-17, 2001.
  • 51. Deng, Y., Englehardt, J.D., Electrochemical oxidation for landfill leachate treatment, Waste Manage., 27 (3), 380-388, 2007.
  • 52. Kaur, R., Kushwaha, J.P., Singh, N., Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: Evaluation and mechanistic approach, Chemosphere, 193, 685-694, 2018.
  • 53. Yonar, T., Shakir, F., Kurt, A., Investigation of electrochemical color removal from organized industrial district (OID) wastewater treatment plants using new generation Sn/Sb/Ni-Ti anodes, Global Nest Journal, 21 (2), 106-112, 2019.
  • 54. Kurt, A., Anodic oxidation of cefaclor antibiotic in aqueous solution containing potassium chloride, Global Nest Journal, 22 (3), 438-445, 2020.
  • 55. Zhi, D., Qin, J., Zhou, H., Wang, J., Yang, S., Removal of tetracycline by electrochemical oxidation using a Ti/SnO2–Sb anode: characterization, kinetics, and degradation pathway, J. Appl. Electrochem., 47 (12), 1313-1322, 2017.
  • 56. Yang, Y., Wang, H., Li, J., He, B., Wang, T., Liao, S., Novel Functionalized Nano-TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment, Environ. Sci. Technol., 46 (12), 6815-6821, 2012.
  • 57. Liu, Z., Zhu, M., Wang, Z., Wang, H., Deng, C., Li, K., Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane, Materials, 9 (5), 364, 2016.
  • 58. Aquino, J.M., Rodrigo, M.A., Rocha-Filho, R.C., Sáez, C., Cañizares, P., Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes, Chem. Eng. J., 184, 221-227, 2012.
  • 59. Shmychkova, O., Lukyanenko, T., Amadelli, R., Velichenko, A., Physico-chemical properties of PbO2-anodes doped with Sn4+ and complex ions, J. Electroanal. Chem., 717-718, 196-201, 2014.
  • 60. Christensen, P.A., Zakaria, K., Christensen, H., Yonar, T., The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni, J. Electrochem. Soc., 160 (8), H405, 2013.
  • 61. Parsa, J.B. Abbasi, M., Application of in situ electrochemically generated ozone for degradation of anthraquninone dye Reactive Blue 19, J. Appl. Electrochem., 42 (6), 435-442, 2012.
  • 62. Montilla, F., Morallón, E., De Battisti, A., Vázquez, J.L., Preparation a nd Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization, The Journal of Physical Chemistry B, 108 (16), 5036-5043, 2004.
  • 63. Shmychkova, O., Lukyanenko, T., Dmitrikova, L., Velichenko, A., Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity, J. Serb. Chem. Soc., 84 (2), 187-198, 2019.
Year 2023, Volume: 38 Issue: 2, 1141 - 1152, 07.10.2022
https://doi.org/10.17341/gazimmfd.1011142

Abstract

Project Number

OUAP (MH)-2018/8

References

  • 1. Tan, B.L., Hawker, D.W., Müller, J.F., Tremblay, L.A., Chapman, H.F., Stir bar sorptive extraction and trace analysis of selected endocrine disruptors in water, biosolids and sludge samples by thermal desorption with gas chromatography–mass spectrometry, Water Res., 42 (1-2), 404-412, 2008.
  • 2. Imai, S., Shiraishi, A., Gamo, K., Watanabe, I., Okuhata, H., Miyasaka, H., Ikeda, K., Bamba, T., Hirata, K., Removal of phenolic endocrine disruptors by Portulaca oleracea, J. Biosci. Bioeng., 103 (5), 420-426, 2007.
  • 3. Boxall, A.B., The environmental side effects of medication: How are human and veterinary medicines in soils and water bodies affecting human and environmental health?, EMBO Rep., 5 (12), 1110-1116, 2004.
  • 4. Kosjek, T., Heath, E., Kompare, B., Removal of pharmaceutical residues in a pilot wastewater treatment plant, Anal. Bioanal. Chem., 387 (4), 1379-1387, 2007.
  • 5. Daughton, C.G., Ternes, T.A., Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., 107 (6), 907-938, 1999.
  • 6. European Centre for Disease Prevention and Control. Second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. https://www.ecdc.europa.eu/en/publications-data/ecdcefsaema-second-joint-report-integrated-analysis-consumption-antimicrobial. Yayın tarihi Temmuz 27, 2017. Erişim tarihi Mart 12, 2021.
  • 7. Kemper, N., Veterinary antibiotics in the aquatic and terrestrial environment, Ecol. Indic., 8 (1), 1-13, 2008.
  • 8. Louvet, J.N., Giammarino, C., Potier, O., Pons, M.N., Adverse effects of erythromycin on the structure and chemistry of activated sludge, Environ. Pollut., 158 (3), 688-693, 2010.
  • 9. Ternes, T.A., Occurrence of drugs in German sewage treatment plants and rivers, Water Res., 32 (11), 3245-3260, 1998.
  • 10. Kümmerer, K., Pharmaceuticals in the environment: sources, fate, effects and risks, Springer Science & Business Media, Germany, 2008.
  • 11. Heberer, T., Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131 (1-2), 5-17, 2002.
  • 12. Košutić, K., Dolar, D., Ašperger, D., Kunst, B., Removal of antibiotics from a model wastewater by RO/NF membranes, Sep. Purif. Technol., 53 (3), 244-249, 2007.
  • 13. De Moura, D.C., De Araújo, C.K.C., Zanta, C.L., Salazar, R., Martínez-Huitle, C.A., Active chlorine species electrogenerated on Ti/RuO.3TiO.7O2 surface: electrochemical behavior, concentration determination and their application, J. Electroanal. Chem., 731, 145-152, 2014.
  • 14. Chiang, L.C., Chang, J.E., Wen, T.C., Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate, Water Res., 29 (2), 671-678, 1995.
  • 15. Liu, Y.J., Hu, C.Y., Lo, S.L., Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes, J. Hazard. Mater., 366, 592-605, 2019.
  • 16. Wang, J., Zheng, T., Liu, H., Wang, G., Zhang, Y., Cai, C., Direct and indirect electrochemical oxidation of ethanethiol on grey cast iron anode in alkaline solution, Electrochim. Acta, 356, 136706-136706, 2020.
  • 17. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment, Electrochim. Acta, 39 (11-12), 1857-1862, 1994.
  • 18. Montes, I.J., Silva, B.F., Aquino, J.M., On the performance of a hybrid process to mineralize the herbicide tebuthiuron using a DSA® anode and UVC light: A mechanistic study, Appl. Catal. B: Environmental, 200, 237-245, 2017.
  • 19. Comninellis, C. Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, J. Appl. Electrochem., 25 (1), 23-28, 1995.
  • 20. Canizares, P., Garcia-Gomez, J., Saez, C., Rodrigo, M., Electrochemical oxidation of several chlorophenols on diamond electrodes Part I. Reaction mechanism, J. Appl. Electrochem., 33 (10), 917-927, 2003.
  • 21. Cotillas, S., Clematis, D., Cañizares, P., Carpanese, M.P., Rodrigo, M.A., Panizza, M., Degradation of dye Procion Red MX-5B by electrolytic and electro-irradiated technologies using diamond electrodes, Chemosphere, 199, 445-452, 2018.
  • 22. dos Santos, A.J., Kronka, M.S., Fortunato, G.V., Lanza, M.R., Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review, Curr. Opin. Electrochem., 100674, 2021.
  • 23. Zhang, A.Y., Long, L.L., Liu, C., Li, W.W., Yu, H.Q., Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy facets, Water Res., 66, 273-282, 2014.
  • 24. Zhao, G., Cui, X., Liu, M., Li, P., Zhang, Y., Cao, T., Li, H., Lei, Y., Liu, L., Li, D., Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode, Environ. Sci. Technol., 43 (5), 1480-1486, 2009.
  • 25. Polcaro, A., Palmas, S., Renoldi, F., Mascia, M., On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment, J. Appl. Electrochem., 29 (2), 147-151, 1999.
  • 26. Gherardini, L., Michaud, P., Panizza, M., Comninellis, C., Vatistas, N., Electrochemical oxidation of 4-chlorophenol for wastewater treatment: definition of normalized current efficiency (ϕ), J. Electrochem. Soc., 148 (6), D78, 2001.
  • 27. Samet, Y., Elaoud, S.C., Ammar, S., Abdelhedi, R., Electrochemical degradation of 4-chloroguaiacol for wastewater treatment using PbO2 anodes, J. Hazard. Mater., 138 (3), 614-619, 2006.
  • 28. Comninellis, C., Nerini, A., Anodic oxidation of phenol in the presence of NaCl for wastewater treatment, J. Appl. Electrochem., 25 (1), 1995.
  • 29. Panizza, M., Cerisola, G., Application of diamond electrodes to electrochemical processes, Electrochim. Acta, 51 (2), 191-199, 2005.
  • 30. Correa-Lozano, B., Comninellis, C., De Battisti, A., Service life of Ti/SnO2–Sb2O5 anodes, J. Appl. Electrochem., 27 (8), 970-974, 1997.
  • 31. Maneelok, S., The relationship between the composition and structure of Ni/Sb-SnO₂ and electrochemical ozone activity, Newcastle University, U.K., 2017.
  • 32. Christensen, P., Lin, W., Christensen, H., Imkum, A., Jin, J., Li, G., Dyson, C., Room temperature, electrochemical generation of ozone with 50% current efficiency in 0.5 m sulfuric acid at cell voltages< 3V, Ozone: Sci. Eng., 31 (4), 287-293, 2009.
  • 33. Cheng, S.A., Chan, K.Y., Electrolytic generation of ozone on an antimony-doped tin dioxide coated electrode, Electrochem. Solid-State Lett., 7 (3), D4, 2004.
  • 34. Rozas, O., Contreras, D., Mondaca, M.A., Pérez-Moya, M., Mansilla, H.D., Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions, J. Hazard. Mater., 177 (1-3), 1025-1030, 2010.
  • 35. Trovó, A.G., Pupo Nogueira, R.F., Aguera, A., Fernandez-Alba, A.R., Malato, S., Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment, Water Res., 45 (3), 1394-1402, 2011.
  • 36. Arslan-Alaton, I., Dogruel, S., Pre-treatment of penicillin formulation effluent by advanced oxidation processes, J. Hazard. Mater., 112 (1-2), 105-113, 2004.
  • 37. APHA (American Public Health Association), APHA Fact Sheet: The Prevention and Public Health Fund. www.apha.org/∼/media/files/pdf/factsheets/160127_pphf.ashx. Yayın tarihi Temmuz 27, 2017. Erişim tarihi Kasım 24, 2020.
  • 38. Shen, B., Wen, X., Huang, X., Enhanced removal performance of estriol by a three-dimensional electrode reactor, Chem. Eng. J., 327, 597-607, 2017.
  • 39. Wang, Y.H., Cheng, S., Chan, K.Y., Li, X.Y., Electrolytic Generation of Ozone on Antimony- and Nickel-Doped Tin Oxide Electrode, J. Electrochem. Soc., 152 (11), D197-D197, 2005.
  • 40. Abbasi, M., Soleymani, A.R., Parssa, J.B., Operation simulation of a recycled electrochemical ozone generator using artificial neural network, Chem. Eng. Res. Des., 92 (11), 2618-2625, 2014.
  • 41. Alver, A., Tağaç, A.A., Kılıç, A., Removal of natural organic matters from aquatic environment by catalytic ozonation processes with silver nanoparticles: Determination of ozonation products, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1285-1295, 2020.
  • 42. Pillai, I.M.S., Gupta, A.K., Anodic oxidation of coke oven wastewater: multiparameter optimization for simultaneous removal of cyanide, COD and phenol, J. Environ. Manage., 176, 45-53, 2016.
  • 43. Sivrioğlu, Ö., Yonar, T., Fourth International Conference on Advances in Bio-Informatics and Environmental Engineering-ICABEE, Rome, Italy, 48-52, 2016.
  • 44. Hai, H., Xing, X., Li, S., Xia, S., Xia, J., Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation, Sci. Total Environ., 738, 139909, 2020.
  • 45. Qian, S., Liu, S., Jiang, Z., Deng, D., Tang, B., Zhang, J., Electrochemical degradation of tetracycline antibiotics using a Ti/SnO2-Sb2O3/PbO2 anode: kinetics, pathways, and biotoxicity change, J. Electrochem. Soc., 166 (6), E192, 2019.
  • 46. Xie, R., Meng, X., Sun, P., Niu, J., Jiang, W., Bottomley, L., Li, D., Chen, Y., Crittenden, J., Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Appl. Catal. B: Environmental, 203, 515-525, 2017.
  • 47. Peternel, I., Kusic, H., Marin, V., Koprivanac, N., UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant, React. Kinet. Mech. Catal., 108 (1), 17-39, 2013.
  • 48. Das, T.N., Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation, J. Phys. Chem. A, 105 (40), 9142-9155, 2001.
  • 49. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K., Tchobanoglous, G., MWH's water treatment: principles and design, John Wiley & Sons, New Jersey, 2012.
  • 50. Li, X., Wang, M., Jiao, Z., Chen, Z., Study on electrolytic oxidation for landfill leachate treatment, China Water and Wastewater, 17 (8), 14-17, 2001.
  • 51. Deng, Y., Englehardt, J.D., Electrochemical oxidation for landfill leachate treatment, Waste Manage., 27 (3), 380-388, 2007.
  • 52. Kaur, R., Kushwaha, J.P., Singh, N., Electro-oxidation of Ofloxacin antibiotic by dimensionally stable Ti/RuO2 anode: Evaluation and mechanistic approach, Chemosphere, 193, 685-694, 2018.
  • 53. Yonar, T., Shakir, F., Kurt, A., Investigation of electrochemical color removal from organized industrial district (OID) wastewater treatment plants using new generation Sn/Sb/Ni-Ti anodes, Global Nest Journal, 21 (2), 106-112, 2019.
  • 54. Kurt, A., Anodic oxidation of cefaclor antibiotic in aqueous solution containing potassium chloride, Global Nest Journal, 22 (3), 438-445, 2020.
  • 55. Zhi, D., Qin, J., Zhou, H., Wang, J., Yang, S., Removal of tetracycline by electrochemical oxidation using a Ti/SnO2–Sb anode: characterization, kinetics, and degradation pathway, J. Appl. Electrochem., 47 (12), 1313-1322, 2017.
  • 56. Yang, Y., Wang, H., Li, J., He, B., Wang, T., Liao, S., Novel Functionalized Nano-TiO2 Loading Electrocatalytic Membrane for Oily Wastewater Treatment, Environ. Sci. Technol., 46 (12), 6815-6821, 2012.
  • 57. Liu, Z., Zhu, M., Wang, Z., Wang, H., Deng, C., Li, K., Effective degradation of aqueous tetracycline using a nano-TiO2/carbon electrocatalytic membrane, Materials, 9 (5), 364, 2016.
  • 58. Aquino, J.M., Rodrigo, M.A., Rocha-Filho, R.C., Sáez, C., Cañizares, P., Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes, Chem. Eng. J., 184, 221-227, 2012.
  • 59. Shmychkova, O., Lukyanenko, T., Amadelli, R., Velichenko, A., Physico-chemical properties of PbO2-anodes doped with Sn4+ and complex ions, J. Electroanal. Chem., 717-718, 196-201, 2014.
  • 60. Christensen, P.A., Zakaria, K., Christensen, H., Yonar, T., The effect of Ni and Sb oxide precursors, and of Ni composition, synthesis conditions and operating parameters on the activity, selectivity and durability of Sb-doped SnO2 anodes modified with Ni, J. Electrochem. Soc., 160 (8), H405, 2013.
  • 61. Parsa, J.B. Abbasi, M., Application of in situ electrochemically generated ozone for degradation of anthraquninone dye Reactive Blue 19, J. Appl. Electrochem., 42 (6), 435-442, 2012.
  • 62. Montilla, F., Morallón, E., De Battisti, A., Vázquez, J.L., Preparation a nd Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization, The Journal of Physical Chemistry B, 108 (16), 5036-5043, 2004.
  • 63. Shmychkova, O., Lukyanenko, T., Dmitrikova, L., Velichenko, A., Modified lead dioxide for organic wastewater treatment: Physicochemical properties and electrocatalytic activity, J. Serb. Chem. Soc., 84 (2), 187-198, 2019.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ayşe Kurt 0000-0003-0085-7517

Fanar Shakir This is me 0000-0001-7338-3426

Taner Yonar 0000-0002-0387-0656

Project Number OUAP (MH)-2018/8
Publication Date October 7, 2022
Submission Date October 25, 2021
Acceptance Date May 19, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Kurt, A., Shakir, F., & Yonar, T. (2022). Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1141-1152. https://doi.org/10.17341/gazimmfd.1011142
AMA Kurt A, Shakir F, Yonar T. Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. GUMMFD. October 2022;38(2):1141-1152. doi:10.17341/gazimmfd.1011142
Chicago Kurt, Ayşe, Fanar Shakir, and Taner Yonar. “Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 1141-52. https://doi.org/10.17341/gazimmfd.1011142.
EndNote Kurt A, Shakir F, Yonar T (October 1, 2022) Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1141–1152.
IEEE A. Kurt, F. Shakir, and T. Yonar, “Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi”, GUMMFD, vol. 38, no. 2, pp. 1141–1152, 2022, doi: 10.17341/gazimmfd.1011142.
ISNAD Kurt, Ayşe et al. “Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 1141-1152. https://doi.org/10.17341/gazimmfd.1011142.
JAMA Kurt A, Shakir F, Yonar T. Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. GUMMFD. 2022;38:1141–1152.
MLA Kurt, Ayşe et al. “Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 1141-52, doi:10.17341/gazimmfd.1011142.
Vancouver Kurt A, Shakir F, Yonar T. Ampisilinin Sn/Sb/Ni-Ti Anotlarla Elektrokimyasal Olarak Giderimine Çeşitli Parametrelerin Etkisi. GUMMFD. 2022;38(2):1141-52.