Research Article
BibTex RIS Cite

Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi

Year 2023, Volume: 38 Issue: 2, 1247 - 1262, 07.10.2022
https://doi.org/10.17341/gazimmfd.970498

Abstract

Bu çalışmada, atık PET'in depolimerizasyonu sonucunda elde edilen fonksiyonel ürünlerin muhtemel ürün bileşimi ve dağılımı DSC tekniği kullanılarak araştırılmıştır. Böylece, reaksiyon koşullarının optimizasyonu ve standardize edilmesi için veriler elde edilmesi sağlanmıştır. Öncelikle, tüketim sonrası su şişelerinden elde edilen atık PET kırpıntıları, yüksek basınçta, eş zamanlı hidroliz-glikoliz reaksiyonları ile depolimerize edilmiştir. Reaksiyonlar, sabit miktarda su kullanılarak, farklı PET/diol mol oranlarında, çözücü varlığında veya yokluğunda ve farklı sıcaklıklarda gerçekleştirilmiştir. Ham depolimerizasyon ürünleri, kaynar su ile ekstrakte edilerek "suda çözünen ve kristallenebilen (SÇ+)" ve "suda çözünmeyen (SÇ-)" fraksiyonlarına ayrılmıştır. Daha sonra, depolimerizasyon reaksiyonlarının ağırlıkça %verimleri (dönüşüm oranları), bu fraksiyonların ağırlıkça %oranları, fonksiyonel grup içerikleri (asit indisi (AI), hidroksil indisi (HI) analizleri), teorik sayıca ortalama molekül ağırlıkları (Mn) belirlenmiş ve DSC analizleri gerçekleştirilmiştir. En etkin parçalanma için optimum koşullar; PET/diol mol oranının 1/5 olduğu, 2.5 mol su varlığında, ksilenli ortamda ve 200oC’de gerçekleştirilen depolimerizasyon reaksiyonunda gözlenmiştir. Bu koşullarda, %99 oranında dönüşüm sağlanmış %81 (SÇ+) ve %19 (SÇ-) şeklinde ürün dağılımı gözlenmiştir. (SÇ+) ürün bileşiminde ~%80 civarında, PET’in hidroksil sonlu monomeri (BHET) ve (SÇ-) ürün bileşiminde de ~%80 civarında PET’in karboksil sonlu monomeri elde edilmiştir. Nihai ürün bileşiminin Mn değeri 234, AI ve HI değerleri de, sırasıyla, 121 mg KOH/g ve 358 mg KOH/g’dır.

Supporting Institution

İstanbul Üniversitesi-Cerrahpaşa, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA-2017-24002

References

  • [1] Kint, D., Muñoz‐Guerra, S., A review on the potential biodegradability of poly(ethylene terephthalate), Polymer Int., 48(5), 346-352, 1999.
  • [2] Thomas, S., Rane, A.V., Kanny, K., Abitha V.K., Thomas, M.G. (Editors), Recycling of Polyethylene Terephthalate Bottles, Elsevier, William Andrew, Applied Science Publishers, India, 2018.
  • [3] Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., Sabeen, A. H., Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Product., 225, 1052-1064, 2019.
  • [4] Karayannidis, G.P., Achilias, D.S., Chemical recycling of poly(ethylene terephthalate), Macromol. Mater. Eng., 292, 128-146, 2007.
  • [5] Sinha, V., Patel, M. R., Patel, J. V., PET waste management by chemical recycling: A Review. J. Polym. Environ. 18(1), 8-25, 2010.
  • [6] Thiounn, T., & Smith, R. C., Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci., 58(10), 1347-1364, 2020.
  • [7] Shojaei, B., Abtahi, M., & Najafi, M., Chemical recycling of PET: A stepping‐stone toward sustainability. Polym. Adv. Tech., 31(12), 2912-2938, 2020.
  • [8] Güçlü, G., Yalçınyuva, T., Özgümüş, S., Orbay, M., Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry, Thermochim. Acta, 404, 193-205, 2003.
  • [9] Karayannidis, G.P.,Chatziavgoustis, A.P., Achilias, D.S., Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., 21, 250-259, 2002.
  • [10] Mancini, S. D., Zanin, M., Post consumer PET depolymerization by acid hydrolysis. Polym-Plast. Tech. Eng. 46(2), 135-144, 2007.
  • [11] Sun, C. H., Chen, X. P., Zhuo, Q., & Zhou, T., Recycling and depolymerization of waste polyethylene terephthalate bottles by alcohol alkali hydrolysis. J. Central South University, 25(3), 543-549, 2018.
  • [12] Stanica-Ezeanu, D., & Matei, D., Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Scientific Reports, 11(1), 1-7, 2021.
  • [13] Güçlü, G., Kaşgöz, A., Özbudak, S., Özgümüş, S., Orbay, M., Glycolysis of poly(ethylene terephthalate) wastes in xylene, J. Appl. Polym. Sci., 69, 2311-2319, 1998.
  • [14] Wang, Q., Yao, X., Geng, Y., Zhou, Q., Lu, X., & Zhang, S., Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chemistry, 17(4), 2473-2479, 2015.
  • [15] Sangalang, A., & Bartolome, L., Generalized kinetic analysis of heterogeneous PET glycolysis: Nucleation-controlled depolymerization. Polym. Degrad. Stabil., 115, 45-53, 2015.
  • [16] Guo, Z., Lindqvist, K., & de la Motte, H., An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst. J. Appl. Polym. Sci., 135(21), 46285, 2018.
  • [17] Sheel, A., & Pant, D., Chemical Depolymerization of PET Bottles via Glycolysis. In Recycling of Polyethylene Terephthalate Bottles (pp. 61-84). William Andrew Publishing, 2019.
  • [18] Acar I., Bal, A., Güçlü G., The effect of xylene as aromatic solvent to aminoglycolysis of post consumer PET bottles, Polym. Eng. Sci., 53, 2429-2438, 2013.
  • [19] Achilias, D.S., Tsintzou, G.P., Nikolaidis, A.K., Bikiaris, D.N., Karayannidis, G.P., Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor, Polym. Int., 60, 500–506, 2011.
  • [20] Musale, R. M., & Shukla, S. R., Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int. J. Plast. Tech., 20(1), 106-120, 2016.
  • [21] Bulak, E., Acar, I., The use of aminolysis, aminoglycolysis and simultaneous aminolysis-hydrolysis products of waste PET for production of paint binder , Polym. Eng. Sci., 54(10), 2272–2281, 2014.
  • [22] Shukla, S.R., Harad, A.M., Aminolysis of polyethylene terephthalate waste, Polym. Degrad. Stabil., 91,1850-1854, 2006.
  • [23] Spychaj, T., Fabrycy, E., Spychaj, S., Kacperski, M., Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate), J Mater Cycles Waste Manag., 3, 24-31, 2001.
  • [24] Tawfik, M.E., Eskander, S.B., Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products, Polym. Degrad. Stabil., 95, 187-194, 2010.
  • [25] Güçlü, G., Yalçınyuva, T., Özgümüş, S. Orbay, M., Simultaneous glycolysis and hydrolysis of polyethylene terephthalate and characterization of products by differential scanning calorimetry, Polymer, 44, 7609-7616, 2003.
  • [26] Farahat, M.S., Abdel-Azim, A.A., Abdel-Raowf, M.E., Modified unsaturated polyester resins synthesized from poly(ethylene terephthalate) waste. 1. Synthesis and curing characteristics, Macromol. Mater. Eng., 283, 1-6, 2000.
  • [27] Öztürk Y., Güçlü G., Unsaturated polyester resins obtained from glycolysis products of waste PET, Polym. Plast. Technol. Eng., 43, 1539-1552, 2004.
  • [28] Suh, D.J., Park, O.O., Yoon, K.H., The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polymer, 41, 461-466, 2000.
  • [29] Rusmirović, J. D., Radoman, T., Džunuzović, E. S., Džunuzović, J. V., Markovski, J., Spasojević, P., & Marinković, A.D., Effect of the modified silica nanofiller on the mechanical properties of unsaturated polyester resins based on recycled polyethylene terephthalate. Polym. Comp., 38(3), 538-554, 2017.
  • [30] Lozano-Escárcega, R. J., Sánchez-Anguiano, M. G., Serrano, T., Chen, J. Y., & Gómez, I., Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull., 76(8), 4157-4188, 2019.
  • [31] Vaidya, U.R., Nadkarni, V.M., Polyester polyols from glycolyzed PET waste-Effect of glycol type on kinetics of polyesterification. J. Appl. Polym. Sci. 38(6), 1179-1190, 1989.
  • [32] Acar, I., Bal, A., Güçlü, G., The use of intermediates obtained from aminoglycolysis of waste PET for synthesis of water-reducible alkyd resin, Canadian J. Chem., 91, 357-363, 2013.
  • [33] Ertaş K., Güçlü G., Alkyd resins synthesized from glycolysis products of waste PET, Polym. Plast. Technol. Eng., 44, 783-794, 2005.
  • [34] Güçlü, G., Orbay M., Alkyd resins synthesized from postconsumer PET bottles, Prog. Org. Coat., 65, 362-365, 2009.
  • [35] Güçlü, G., Alkyd resins based on waste PET for water-reducible coating applications, Polym. Bull., 64, 739–748, 2010.
  • [36] Torlakoğlu, A., Güçlü G., Alkyd-Amino resins based on waste PET for coating applications, Waste Manage., 29, 350-354, 2009.
  • [37] Tuna, Ö., Bal A., Güçlü G., Investigation of the effect of hydrolysis products of post-consumer PET bottles on the properties of alkyd resins, Polym. Eng. Sci.,53, 176-182, 2013.
  • [38] Büyükyonga, Ö. N., Akgün, N., Acar, I., & Güçlü, G., The usage of novel acrylic-modified water-reducible alkyd resin obtained from post-consumer PET bottles in water-based paint formulation. J. Mater. Cycles Waste Manag., 22(1), 187-196, 2020.
  • [39] Acar, I., Orbay, M., Aminoglycolysis of waste poly(ethylene terephthalate) (PET) with diethanolamine (DEA) and evaluation of the products as polyurethane surface coating materials, Polym. Eng. Sci., 51, 746-754, 2011.
  • [40] Shamsi, R., Abdouss, M., Sadeghi, G. M., Taromi, F. A., Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties, Polym. Int., 58, 22-30, 2009.
  • [41] Shamsi, R., & Sadeghi, G. M. M., Novel polyester diol obtained from PET waste and its application in the synthesis of polyurethane and carbon nanotube-based composites: swelling behavior and characteristic properties. RSC advances, 6(44), 38399-38415, 2016.
  • [42] Ivdre, A., Abolins, A., Sevastyanova, I., Kirpluks, M., Cabulis, U., & Merijs-Meri, R., Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste PET. Polymers, 12(4), 738, 2020.
  • [43] Bal, K., Ünlü, K.C., Acar, I., Güçlü, G., Epoxy based paints from glycolysis products of post-consumer PET bottles: Synthesis, wet paint properties and film properties, J. Coat. Tech. Res,.14, 747-753, 2017.
  • [44] Çam, Ç., Bal, A., Güçlü, G., Synthesis and film properties of epoxy esters modified with amino resins from glycolysis products of postconsumer PET Bottles, Polym. Eng. Sci., 55, 2519-2525, 2015.
  • [45] Brandrup, J., Immergut, E.H. Eds., Polymer Handbook, 1st ed., Interscience Publishers/John Wiley & Sons, New York 1966.

Characterization of waste PET simultaneous hydrolysis-glycolysis products by DSC: Determination of product composition and distribution

Year 2023, Volume: 38 Issue: 2, 1247 - 1262, 07.10.2022
https://doi.org/10.17341/gazimmfd.970498

Abstract

In this study, the possible product composition and distribution of the functional products obtained as a result of the depolymerization of waste PET were investigated using DSC technique. Thus, it was provided to obtain data for the optimization and standardization of the reaction conditions. First, waste PET flakes obtained from post-consumer water bottles were depolymerized at high pressure by simultaneous hydrolysis-glycolysis reactions. The reactions were carried out using a fixed amount of water, at different mole ratios of PET/diol, in the presence or absence of solvent, and at different temperatures. Crude depolymerization products were extracted with boiling water and separated into "water-soluble and crystallizable (WSCF)" and "water-insoluble (WIF)" fractions. Then, the yields% by weight (conversion ratios) of depolymerization reactions and, these fractions' ratios% by weight, functional group contents (acid value (AV), hydroxyl value (HV) analyses), theoretical number average molecular weights (Mn) were determined, and DSC analyzes were performed. The optimum conditions for most efficient fragmentation were observed in the depolymerization reaction that mole ratio of PET/diol was 1/5, in the presence of 2.5 moles of water, on the xylene medium and at 200oC. In these conditions, 99% conversion was achieved, and product distribution was observed as 81% WSCF and 19% WIF. In the WSCF product composition, PET's hydroxyl-terminated monomer (BHET) and in the WIF product composition, PET's carboxyl-terminated monomer were obtained at around~80% and ~80%, respectively. The Mn value of the final product composition is 234, the AV and HV values are 121 mg KOH/g and 358 mg KOH/g, respectively.

Project Number

FBA-2017-24002

References

  • [1] Kint, D., Muñoz‐Guerra, S., A review on the potential biodegradability of poly(ethylene terephthalate), Polymer Int., 48(5), 346-352, 1999.
  • [2] Thomas, S., Rane, A.V., Kanny, K., Abitha V.K., Thomas, M.G. (Editors), Recycling of Polyethylene Terephthalate Bottles, Elsevier, William Andrew, Applied Science Publishers, India, 2018.
  • [3] Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., Sabeen, A. H., Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. J. Clean. Product., 225, 1052-1064, 2019.
  • [4] Karayannidis, G.P., Achilias, D.S., Chemical recycling of poly(ethylene terephthalate), Macromol. Mater. Eng., 292, 128-146, 2007.
  • [5] Sinha, V., Patel, M. R., Patel, J. V., PET waste management by chemical recycling: A Review. J. Polym. Environ. 18(1), 8-25, 2010.
  • [6] Thiounn, T., & Smith, R. C., Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci., 58(10), 1347-1364, 2020.
  • [7] Shojaei, B., Abtahi, M., & Najafi, M., Chemical recycling of PET: A stepping‐stone toward sustainability. Polym. Adv. Tech., 31(12), 2912-2938, 2020.
  • [8] Güçlü, G., Yalçınyuva, T., Özgümüş, S., Orbay, M., Hydrolysis of waste polyethylene terephthalate and characterization of products by differential scanning calorimetry, Thermochim. Acta, 404, 193-205, 2003.
  • [9] Karayannidis, G.P.,Chatziavgoustis, A.P., Achilias, D.S., Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Adv. Polym. Technol., 21, 250-259, 2002.
  • [10] Mancini, S. D., Zanin, M., Post consumer PET depolymerization by acid hydrolysis. Polym-Plast. Tech. Eng. 46(2), 135-144, 2007.
  • [11] Sun, C. H., Chen, X. P., Zhuo, Q., & Zhou, T., Recycling and depolymerization of waste polyethylene terephthalate bottles by alcohol alkali hydrolysis. J. Central South University, 25(3), 543-549, 2018.
  • [12] Stanica-Ezeanu, D., & Matei, D., Natural depolymerization of waste poly(ethylene terephthalate) by neutral hydrolysis in marine water. Scientific Reports, 11(1), 1-7, 2021.
  • [13] Güçlü, G., Kaşgöz, A., Özbudak, S., Özgümüş, S., Orbay, M., Glycolysis of poly(ethylene terephthalate) wastes in xylene, J. Appl. Polym. Sci., 69, 2311-2319, 1998.
  • [14] Wang, Q., Yao, X., Geng, Y., Zhou, Q., Lu, X., & Zhang, S., Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chemistry, 17(4), 2473-2479, 2015.
  • [15] Sangalang, A., & Bartolome, L., Generalized kinetic analysis of heterogeneous PET glycolysis: Nucleation-controlled depolymerization. Polym. Degrad. Stabil., 115, 45-53, 2015.
  • [16] Guo, Z., Lindqvist, K., & de la Motte, H., An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst. J. Appl. Polym. Sci., 135(21), 46285, 2018.
  • [17] Sheel, A., & Pant, D., Chemical Depolymerization of PET Bottles via Glycolysis. In Recycling of Polyethylene Terephthalate Bottles (pp. 61-84). William Andrew Publishing, 2019.
  • [18] Acar I., Bal, A., Güçlü G., The effect of xylene as aromatic solvent to aminoglycolysis of post consumer PET bottles, Polym. Eng. Sci., 53, 2429-2438, 2013.
  • [19] Achilias, D.S., Tsintzou, G.P., Nikolaidis, A.K., Bikiaris, D.N., Karayannidis, G.P., Aminolytic depolymerization of poly(ethylene terephthalate) waste in a microwave reactor, Polym. Int., 60, 500–506, 2011.
  • [20] Musale, R. M., & Shukla, S. R., Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int. J. Plast. Tech., 20(1), 106-120, 2016.
  • [21] Bulak, E., Acar, I., The use of aminolysis, aminoglycolysis and simultaneous aminolysis-hydrolysis products of waste PET for production of paint binder , Polym. Eng. Sci., 54(10), 2272–2281, 2014.
  • [22] Shukla, S.R., Harad, A.M., Aminolysis of polyethylene terephthalate waste, Polym. Degrad. Stabil., 91,1850-1854, 2006.
  • [23] Spychaj, T., Fabrycy, E., Spychaj, S., Kacperski, M., Aminolysis and aminoglycolysis of waste poly(ethylene terephthalate), J Mater Cycles Waste Manag., 3, 24-31, 2001.
  • [24] Tawfik, M.E., Eskander, S.B., Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products, Polym. Degrad. Stabil., 95, 187-194, 2010.
  • [25] Güçlü, G., Yalçınyuva, T., Özgümüş, S. Orbay, M., Simultaneous glycolysis and hydrolysis of polyethylene terephthalate and characterization of products by differential scanning calorimetry, Polymer, 44, 7609-7616, 2003.
  • [26] Farahat, M.S., Abdel-Azim, A.A., Abdel-Raowf, M.E., Modified unsaturated polyester resins synthesized from poly(ethylene terephthalate) waste. 1. Synthesis and curing characteristics, Macromol. Mater. Eng., 283, 1-6, 2000.
  • [27] Öztürk Y., Güçlü G., Unsaturated polyester resins obtained from glycolysis products of waste PET, Polym. Plast. Technol. Eng., 43, 1539-1552, 2004.
  • [28] Suh, D.J., Park, O.O., Yoon, K.H., The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polymer, 41, 461-466, 2000.
  • [29] Rusmirović, J. D., Radoman, T., Džunuzović, E. S., Džunuzović, J. V., Markovski, J., Spasojević, P., & Marinković, A.D., Effect of the modified silica nanofiller on the mechanical properties of unsaturated polyester resins based on recycled polyethylene terephthalate. Polym. Comp., 38(3), 538-554, 2017.
  • [30] Lozano-Escárcega, R. J., Sánchez-Anguiano, M. G., Serrano, T., Chen, J. Y., & Gómez, I., Synthesis of unsaturated polyester resin from waste cellulose and polyethylene terephthalate. Polym. Bull., 76(8), 4157-4188, 2019.
  • [31] Vaidya, U.R., Nadkarni, V.M., Polyester polyols from glycolyzed PET waste-Effect of glycol type on kinetics of polyesterification. J. Appl. Polym. Sci. 38(6), 1179-1190, 1989.
  • [32] Acar, I., Bal, A., Güçlü, G., The use of intermediates obtained from aminoglycolysis of waste PET for synthesis of water-reducible alkyd resin, Canadian J. Chem., 91, 357-363, 2013.
  • [33] Ertaş K., Güçlü G., Alkyd resins synthesized from glycolysis products of waste PET, Polym. Plast. Technol. Eng., 44, 783-794, 2005.
  • [34] Güçlü, G., Orbay M., Alkyd resins synthesized from postconsumer PET bottles, Prog. Org. Coat., 65, 362-365, 2009.
  • [35] Güçlü, G., Alkyd resins based on waste PET for water-reducible coating applications, Polym. Bull., 64, 739–748, 2010.
  • [36] Torlakoğlu, A., Güçlü G., Alkyd-Amino resins based on waste PET for coating applications, Waste Manage., 29, 350-354, 2009.
  • [37] Tuna, Ö., Bal A., Güçlü G., Investigation of the effect of hydrolysis products of post-consumer PET bottles on the properties of alkyd resins, Polym. Eng. Sci.,53, 176-182, 2013.
  • [38] Büyükyonga, Ö. N., Akgün, N., Acar, I., & Güçlü, G., The usage of novel acrylic-modified water-reducible alkyd resin obtained from post-consumer PET bottles in water-based paint formulation. J. Mater. Cycles Waste Manag., 22(1), 187-196, 2020.
  • [39] Acar, I., Orbay, M., Aminoglycolysis of waste poly(ethylene terephthalate) (PET) with diethanolamine (DEA) and evaluation of the products as polyurethane surface coating materials, Polym. Eng. Sci., 51, 746-754, 2011.
  • [40] Shamsi, R., Abdouss, M., Sadeghi, G. M., Taromi, F. A., Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties, Polym. Int., 58, 22-30, 2009.
  • [41] Shamsi, R., & Sadeghi, G. M. M., Novel polyester diol obtained from PET waste and its application in the synthesis of polyurethane and carbon nanotube-based composites: swelling behavior and characteristic properties. RSC advances, 6(44), 38399-38415, 2016.
  • [42] Ivdre, A., Abolins, A., Sevastyanova, I., Kirpluks, M., Cabulis, U., & Merijs-Meri, R., Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste PET. Polymers, 12(4), 738, 2020.
  • [43] Bal, K., Ünlü, K.C., Acar, I., Güçlü, G., Epoxy based paints from glycolysis products of post-consumer PET bottles: Synthesis, wet paint properties and film properties, J. Coat. Tech. Res,.14, 747-753, 2017.
  • [44] Çam, Ç., Bal, A., Güçlü, G., Synthesis and film properties of epoxy esters modified with amino resins from glycolysis products of postconsumer PET Bottles, Polym. Eng. Sci., 55, 2519-2525, 2015.
  • [45] Brandrup, J., Immergut, E.H. Eds., Polymer Handbook, 1st ed., Interscience Publishers/John Wiley & Sons, New York 1966.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ebru Mukrime Kasap Yegen 0000-0001-7240-9364

Işıl Acar 0000-0001-6274-0387

Gamze Güçlü 0000-0002-9854-4617

Project Number FBA-2017-24002
Publication Date October 7, 2022
Submission Date July 12, 2021
Acceptance Date June 3, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Kasap Yegen, E. M., Acar, I., & Güçlü, G. (2022). Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1247-1262. https://doi.org/10.17341/gazimmfd.970498
AMA Kasap Yegen EM, Acar I, Güçlü G. Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi. GUMMFD. October 2022;38(2):1247-1262. doi:10.17341/gazimmfd.970498
Chicago Kasap Yegen, Ebru Mukrime, Işıl Acar, and Gamze Güçlü. “Atık PET’in Eş Zamanlı Hidroliz-Glikoliz ürünlerinin DSC Ile Karakterizasyonu: Ürün bileşimi Ve dağılımının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 1247-62. https://doi.org/10.17341/gazimmfd.970498.
EndNote Kasap Yegen EM, Acar I, Güçlü G (October 1, 2022) Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1247–1262.
IEEE E. M. Kasap Yegen, I. Acar, and G. Güçlü, “Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi”, GUMMFD, vol. 38, no. 2, pp. 1247–1262, 2022, doi: 10.17341/gazimmfd.970498.
ISNAD Kasap Yegen, Ebru Mukrime et al. “Atık PET’in Eş Zamanlı Hidroliz-Glikoliz ürünlerinin DSC Ile Karakterizasyonu: Ürün bileşimi Ve dağılımının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 1247-1262. https://doi.org/10.17341/gazimmfd.970498.
JAMA Kasap Yegen EM, Acar I, Güçlü G. Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi. GUMMFD. 2022;38:1247–1262.
MLA Kasap Yegen, Ebru Mukrime et al. “Atık PET’in Eş Zamanlı Hidroliz-Glikoliz ürünlerinin DSC Ile Karakterizasyonu: Ürün bileşimi Ve dağılımının Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 1247-62, doi:10.17341/gazimmfd.970498.
Vancouver Kasap Yegen EM, Acar I, Güçlü G. Atık PET’in eş zamanlı hidroliz-glikoliz ürünlerinin DSC ile karakterizasyonu: Ürün bileşimi ve dağılımının belirlenmesi. GUMMFD. 2022;38(2):1247-62.