Research Article
BibTex RIS Cite

Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri

Year 2023, Volume: 38 Issue: 2, 653 - 664, 07.10.2022
https://doi.org/10.17341/gazimmfd.984248

Abstract

Ahşap, yaygın olarak kullanılan en eski yapı malzemelerden birisidir. Farklı alanlarda da farklı amaçlarla kullanımına yönelik giderek artan bir talep vardır. Bu talebi karşılayabilmek için ahşap esaslı yapısal kompozitler geliştirilmiştir. Bu çalışmada, ısıl işlem uygulanmış ve fenol formaldehit (FF) tutkalı kullanılarak karbon ve cam elyaf ile güçlendirilmiş kayın (Fagus orientalis Lipsky) kompozit örneklerin bazı fiziksel ve mekaniksel özellikleri araştırılmıştır. Bu amaçla ahşap malzemelere 150, 175 ve 200°C sıcaklıkta 3 saat süre ile ısıl işlem uygulanmış ve deney örnekleri hazırlanmıştır. Test sonuçları, karbon ve cam elyaf ile güçlendirilmiş örneklerin eğilme direnci (MOR) ve eğilmede elastikiyet modülü (MOE) değerlerini artırdığını göstermiştir. Bununla birlikte liflere paralel basınç direnci (CS//) değerlerinde, uygulanan ısıl işlem sıcaklığına ve güçlendirici malzeme türüne göre önemli değişikliklere neden olurken, liflere paralel yapışma direnci (SS) değerlerinde düşüşler belirlenmiştir. Genel olarak, karbon fiber ile güçlendirilmiş deney örneklerin MOR ve MOE değerleri, cam elyaf ile güçlendirilmiş örneklerden daha yüksek, CS// ve SS değerleri ise daha düşük belirlenmiştir.

Supporting Institution

Destekleyen Kurum Bulunmamaktadır

References

  • 1. Bultman, J.D., Southwell C.R., Natural resistance of tropical american woods to terrestrial wood-destroying organisms, Biotropica, 8 (2), 71-95, 1976.
  • 2. Ramage M.H., Burridge H., Busse-Wicher M., Fereday G., Reynolds T., Shah D.U., Wu G., Yu L., Fleming P., Densley-Tingley D., Allwood J., Dupree P., Linden P.F., Scherman, O., The wood from the trees: The use of timber in construction, Renewable and Sustainable Energy Reviews, 68 (1), 333-359, 2017.
  • 3. Hill C.A.S., Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, 2006.
  • 4. Korkut D.S., Hiziroglu S., Experimental test of heat treatment effect on physical properties of red oak (Quercus falcate Michx.) and southern pine (Pinus taeda L.), Materials, 7, 7314-7323, 2014.
  • 5. Kurtoğlu A., Ağaç Malzeme Yüzey işlemleri, Genel Bilgiler, 1. Cilt, İ.Ü. Orman Fakültesi Yayın No: 463, İstanbul, 2000.
  • 6. Kurtoğlu A., Sofuoğlu S.D., Mobilya ve ağaç işlerinde kullanılan ahşap malzemeler 1: Ağaç malzemelerin seçimi, işlenmesi, mobilya ve yapı elemanlarının üretiminde kullanılmaları, mobilya üretiminde kullanılan ağaç kökenli malzemeler. Mobilya Dekorasyon, 22 (118), 62-78, 2013.
  • 7. As N., Goker Y., Turker D., Effect of knots on the physical and mechanical properties of scots pine (Pinus Sylvestrıs L.). Wood Research, 51 (3), 51-58, 2006.
  • 8. Koman S., Feher S., Abraham J., Taschner R., Effect of knots on the bending strength and the modulus of elastıcity of wood. Wood Research, 58 (4), 617-626, 2013.
  • 9. Uluata A.R., Ağaç malzemenin mekanik özelliklerine etki eden faktörler, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 18 (1-4), 113-124, 1987.
  • 10. Sandberg D., Kutnar A., Mantanis G., Wood modification technologies - A review, iForest, 10: 895-908, 2017.
  • 11. Rowell R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, 2012.
  • 12. Dong Y., Wang K., Li J., Zhang S., Shi S.Q., Environmentally benign wood modifications: A review, ACS Sustainable Chem. Eng. 8, 3532-3540, 2020.
  • 13. Dagbro O., Studies on industrial-scale thermal modification of wood. Doctoral Thesis, Luleå University of Technology, Skellefteå, Sweden. 2016.
  • 14. Xing D., Li J., Wang S., Comparison of the chemical and micromechanical properties of Larix spp. after eco-friendly heat treatments measured by in situ nanoindentation. Scientific Reports, 10: 4358, 2020.
  • 15. Candelier K., Thevenon M.F., Petrissans A., Dumarcay S., Gerardin P., Petrissans M., Control of wood thermal treatment and its effects on decay resistance: A review, Annals of Forest Science, 73, 571-583, 2016.
  • 16. Jirouš-Rajković V., Miklečić, J., Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Hindawi, Advances in Materials Science and Engineering, Article ID: 8621486, 1-9, 2019.
  • 17. Korkut S., Kocaefe D., Isıl işlemin odun özellikleri üzerine etkisi. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 5 (2), 11-34, 2009.
  • 18. Esteves B.M., Pereira H.M., Wood modification by heat treatment: A review. BioResources 4 (1), 370-404, 2009.
  • 19. Chu D., Mu J., Avramidis S., Rahimi S., Lai Z., Ayanleye S., Effect of heat treatment on bonding performance of poplar via an insight into dynamic wettability and surface strength transition from outer to inner layers, Holzforschung, 74 (8), 777-787, 2020.
  • 20. Lahtela V., Kärki T., Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood, Wood Material Science & Engineering, 11 (4), 217-227, 2016.
  • 21. Bal B.C., Some physical and mechanical properties of thermally modified juvenile and mature black pine wood, European Journal of Wood and Wood Products, 72, 61-66, 2014.
  • 22. Taghiyari H.R., Bayani S., Militz H., Papadopoulos A.N., Heat treatment of pine wood: Possible effect of ımpregnation with silver nanosuspension, Forests, 11, 1-8, 2020.
  • 23. Yang T.H., Chang F.R., Lin C.J., Chang F.C., Effects of temperature and duration of heat treatment on the physical, surface, and mechanical properties of Japanese cedar wood, BioResources, 11 (2), 3947-3963, 2016.
  • 24. Boonstra M.J., Van Acker J., Kegel E.V., Tjeerdsma B.F., Strength properties of thermally modified sofwoods and its relation to polymeric structural wood constituents. Ann. For. Sci., 64, 679-690, 2007.
  • 25. Sivrikaya H., Hosseinpourpia R., Ahmed S.A., Adamopoulos S., Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science & Engineering, DOI: 10.1080/17480272.2020.1861085, 2020.
  • 26. Roszyk E., Stachowska E., Majka J., Mania P., Broda, M., Moisture-dependent strength properties of thermally-modified fraxinus excelsior wood in compression. Materials, 13 (7), 1-12, 2020.
  • 27. Yildirim N., Karaman A., Zor M., Bending characteristics of laminated wood composites made of poplar wood and GFRP, Drvna Industrıja, 72 (1), 3-11, 2021.
  • 28. Bal B.C., Efe F.T., Tabakalı kaplama kerestenin bazı vida dirençleri üzerine cam elyaf dokuma ile güçlendirmenin etkisi, Ormancılık Dergisi, 11 (2), 40-47, 2015.
  • 29. Güller B., Odun kompozitleri, Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri A, Sayı: 2, 135-160, 2001.
  • 30. Burdurlu E., Kilic M., Ilce A.C., Uzunkavak O., The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and lombardy poplar (Populus nigra L.), Construction and Building Materials, 21, 1720-1725, 2007.
  • 31. El Haouzali H., Marchal R., Bléron L., Kifani Sahban F., Butaud J.C., Mechanical properties of laminated veneer lumber produced from ten cultivars of poplar, European Journal of Wood and Wood Products, 78, 715-722, 2020.
  • 32. Altınok M., Lamine ahşapta katman teşekkülünün mekanik performansa etkilerinin belirlenmesi, G.Ü. Fen Bilimleri Dergisi, 16 (1), 217-224, 2003.
  • 33. Bal B.,C., Bektaş İ., The effects of wood species, load direction, and adhesives on bending properties of laminated veneer lumber, BioResources, 7 (3), 3104-3112, 2012.
  • 34. Wei P., Wang B.J., Zhou D., Dai C., Wang Q., Huang S., Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer, BioResources, 8 (4), 4883-4898, 2013.
  • 35. Johnsson H., Blanksvärd T., Carolin A., Glulam members strengthened by carbon fibre reinforcement. materials and structure. Materials and Structures, 40, 47-56, 2006.
  • 36. Akgül T., Apay A., Sarıbıyık M., Ahşap yapıların birleşim bölgelerinde karbon elyaf takviyeli polimer levhaların kullanımının araştırılması, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 Mayıs, Karabük, Türkiye, 2009.
  • 37. Zhang P., Shen S., Ma C., Strengthening mechanical properties of glulam with basalt fiber, Advances in Natural Science, 4 (2), 130-133, 2011.
  • 38. Gilfillan J.R., Gilbert S.G, Patrick G.R.H., The use of FRP composites in enhancing the structural behaviour of timber beams, Journal of Reinforced Plastics and Composites, 22 (15), 1373-1388, 2003.
  • 39. Bulleit W.M. Reinforcement of wood materials: A review, Wood and Fibre Science, 16 (3), 391-397, 1983.
  • 40. Buel T.W., Saadatmanesh P.E., Strengthening timber bridge beams using carbon fiber. Journal of Structural Engineering, 131 (1), 173-187, 2005.
  • 41. Johns K.C., Lacroix S., Composite reinforcement of timber in bending, Canadian Journal of Civil Engineering 27 (5), 899-906, 2000.
  • 42. Pirvu A., Gardner D.J., Lopez-Anido R., Carbon fiber-vinyl ester composite reinforcement of wood using the VARTM/SCRIMP fabrication process, Composites Part A: Applied Science and Manufacturing, 35 (11), 1257-1265, 2004.
  • 43. Chen F., Deng J., Li X., Wang G., Smith L.M., Shi S.O., Effect of laminated structure design on the mechanical properties of bamboo-wood hybrid laminated veneer lumber. European Journal of Wood and Wood Products, 75, 439-448, 2016.
  • 44. Yu Y.L, Huang X., Yu W., A novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Composites Part B: Engineering, 56 (1), 48-53, 2014.
  • 45. Ogawa H., Architectural application of carbon fibres: Development of new carbon fibre reinforced glulam. Carbon, 38 (2), 211-226, 2000.
  • 46. Shukla S.R., Kamdem D.P., Properties of laminated veneer lumber (LVL) made with low density hardwood species: effect of the pressure duration. Holz Roh Werkst, 66, 119-127, 2008.
  • 47. Ozarska B., A review of the utilisation of hardwoods for LVL, Wood Science and Technology, 33, 341-351, 1999.
  • 48. Aydın İ., Çolak S., Çolakoğlu G., Salih E., A comparative study on some physical and mechanical properties of Laminated Veneer Lumber (LVL) produced from Beech (Fagus orientalis Lipsky) and Eucalyptus (Eucalyptus camaldulensis Dehn.) veneers. Holz Roh Werkst, 62, 218-220, 2004.
  • 49. Wang J, Guo X, Zhong W, Wang H, Cao O., Evaluation of mechanical properties of reinforced poplar laminated veneer lumber. BioResources 10 (4), 7455-7465, 2015.
  • 50. Wong E.D., Razali A.K., Kawai, S., Properties of rubberwood LVL reinforced with acacia veneers. Wood research: bulletin of the Wood Research Institute Kyoto University, 83: 8-16, Kyoto, Japan, 1996.
  • 51. Bal B.C., Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Construction and Building Materials, 51 (31), 9-14, 2014.
  • 52. Meekum U. Experimental design on multi layers of LVL fiber reinforced wood composite using bagasse as core structure, The 5th International Conference on GFRP Composites in Civil Engineering, Beijing, China, 135-138, 2010.
  • 53. Hu Y., Li J., Cheng F., Zhang X., Design and property analysis of the metal mesh reinforced LVL. Advanced Materials Research, 113 (116), 2145-2149, 2010.
  • 54. Basterra L.A., Acuña L., Casado M., López G., Bueno A., Strength testing of Poplar duo beams, Populus x euramericana (Done) Guinier cv. I-214, with fibre reinforcement. Construction and Building Materials, 36, 90-96, 2012.
  • 55. Borri A., Corradi M., Grazini A., A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering, 36 (2), 143-153, 2005.
  • 56. TS 2472, Odunda, fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 57. TS 2474, Odunun statik eğilme dayanımının tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 58. TS 2478, Odunun statik eğilmede elastikiyet modülünün tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 59. TS 2595, Odunun liflere paralel doğrultuda basınç dayanımı tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1977.
  • 60. TS EN 205, Yapıştırıcılar-Yapısal olmayan uygulamalar için ahşap yapıştırıcılar-Bindirmeyle yapıştırılmış eklerin çekmeyle kayma mukavemetinin tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 2017.
  • 61. Auriga R., Gumowska A., Szymanowski K., Wronka A., Robles E., Ocipka P., Kowaluk G., Performance properties of plywood composites reinforced with carbon fibers, Composite Structures, 248, 112533, 2020,
  • 62. Bal B.C., Özyurt H., Some technological properties of laminated veneer lumber reinforced with woven glass fiber. KSU Journal of Engineering Sciences, 18 (1), 9-16, 2015.
  • 63. Kocaefe D., Poncsak S., Boluk Y., Effect of thermal treatment on the chemical composıtion and mechanical propertıes of birch and aspen. BioResources, 3 (2), 517-537, 2008.
  • 64. Kotilainen R.A., Toivanen T.J., Alen R.J., FTIR monitoring of chemical changes in softwood during heating, J Wood Chem Technol, 20 (3), 307-320, 2000.
  • 65. Esteves B.M., Domingos I.J., Pereira H.M., Pine wood modification by heat treatment in air, BioResources 3 (1), 142-154, 2008.
  • 66. Li Y.F., Xie Y.M., Tsai M.J., Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Construction and Building Materials 23 (1), 411-422, 2009.
  • 67. Bakalarz M.M., Kossakowski P. G., Tworzewski P., Strengthening of Bent LVL Beams with Near-Surface Mounted (NSM) FRP Reinforcement. Materials 13, 2350, 2020.
  • 68. Šedivka P., Bomba J., Böhm M., Zeidler A., Determination of strength characteristics of construction timber strengthened with carbon and glass fibre composite using a destructive method, BioResources 10 (3), 4674-4685, 2015.
  • 69. Kubojima Y., Okano T., Ohta M. Bending strength and toughness of heat-treated wood, J Wood Sci. 46, 8-15, 2000.
  • 70. Huang X., Fabrication and properties of carbon fibers. Materials 2, 2369-2403, 2009.
  • 71. Togay A., Ergin E., Determination of some physical attributes for wooden construction elements strengthened with woven wire fiberglass, BioResources 9 (3), 3883-3900, 2014.
  • 72. Muratoğlu A., Uysal B., Kurt Ş., Restorasyonda ahşap yapı elemanlarının karbon fiber takviyeli polimerler (CFRP) ile güçlendirilmesi, Selçuk Teknik Dergisi, Özel Sayı 2, 1219-1240, 2016.
  • 73. Sahin Kol H., Özbay G., Altun S., Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods, bonded with various adhesives, BioResources, 4 (4), 1545-1554, 2009.
  • 74. Sernek M., Boonstra M., Pizzi A., Despres A., Gerardin, P., Bonding performance of heat treated wood with structural adhesives, Holz Roh Werkst. 66 (3), 173-180, 2008.
  • 75. Bastani A., Adamopoulos S., Militz H., Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives, Wood Material Science & Engineering 12 (4), 236-241, 2016.
  • 76. Goli G., Cremonini C., Negro F., Zanuttini R., Fioravanti M., Physicalmechanical properties and bonding quality of heat treated poplar (I-214) and ceiba plywood. iForest 8: 687-692, 2014.
  • 77. Esen R., Özcan C., The effects of heat treatment on shear strength of oak (Quercus petraea L.) wood. SDU Faculty of Forestry Journal, 13, 150-154, 2012.
  • 78. Budhe S., Ghumatkar A., Birajdar N., Banea M.D. Effect of surface roughness using different adherend materials on the adhesive bond strength. Applied Adhesion Science, 3 (20), 1-10, 2015.
  • 79. Cui X., Matsumura J., Wood surface changes of heat-treated cunninghamia lanceolate following natural weathering, Forests, 10, 791, 2019.
Year 2023, Volume: 38 Issue: 2, 653 - 664, 07.10.2022
https://doi.org/10.17341/gazimmfd.984248

Abstract

References

  • 1. Bultman, J.D., Southwell C.R., Natural resistance of tropical american woods to terrestrial wood-destroying organisms, Biotropica, 8 (2), 71-95, 1976.
  • 2. Ramage M.H., Burridge H., Busse-Wicher M., Fereday G., Reynolds T., Shah D.U., Wu G., Yu L., Fleming P., Densley-Tingley D., Allwood J., Dupree P., Linden P.F., Scherman, O., The wood from the trees: The use of timber in construction, Renewable and Sustainable Energy Reviews, 68 (1), 333-359, 2017.
  • 3. Hill C.A.S., Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, 2006.
  • 4. Korkut D.S., Hiziroglu S., Experimental test of heat treatment effect on physical properties of red oak (Quercus falcate Michx.) and southern pine (Pinus taeda L.), Materials, 7, 7314-7323, 2014.
  • 5. Kurtoğlu A., Ağaç Malzeme Yüzey işlemleri, Genel Bilgiler, 1. Cilt, İ.Ü. Orman Fakültesi Yayın No: 463, İstanbul, 2000.
  • 6. Kurtoğlu A., Sofuoğlu S.D., Mobilya ve ağaç işlerinde kullanılan ahşap malzemeler 1: Ağaç malzemelerin seçimi, işlenmesi, mobilya ve yapı elemanlarının üretiminde kullanılmaları, mobilya üretiminde kullanılan ağaç kökenli malzemeler. Mobilya Dekorasyon, 22 (118), 62-78, 2013.
  • 7. As N., Goker Y., Turker D., Effect of knots on the physical and mechanical properties of scots pine (Pinus Sylvestrıs L.). Wood Research, 51 (3), 51-58, 2006.
  • 8. Koman S., Feher S., Abraham J., Taschner R., Effect of knots on the bending strength and the modulus of elastıcity of wood. Wood Research, 58 (4), 617-626, 2013.
  • 9. Uluata A.R., Ağaç malzemenin mekanik özelliklerine etki eden faktörler, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 18 (1-4), 113-124, 1987.
  • 10. Sandberg D., Kutnar A., Mantanis G., Wood modification technologies - A review, iForest, 10: 895-908, 2017.
  • 11. Rowell R.M. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, 2012.
  • 12. Dong Y., Wang K., Li J., Zhang S., Shi S.Q., Environmentally benign wood modifications: A review, ACS Sustainable Chem. Eng. 8, 3532-3540, 2020.
  • 13. Dagbro O., Studies on industrial-scale thermal modification of wood. Doctoral Thesis, Luleå University of Technology, Skellefteå, Sweden. 2016.
  • 14. Xing D., Li J., Wang S., Comparison of the chemical and micromechanical properties of Larix spp. after eco-friendly heat treatments measured by in situ nanoindentation. Scientific Reports, 10: 4358, 2020.
  • 15. Candelier K., Thevenon M.F., Petrissans A., Dumarcay S., Gerardin P., Petrissans M., Control of wood thermal treatment and its effects on decay resistance: A review, Annals of Forest Science, 73, 571-583, 2016.
  • 16. Jirouš-Rajković V., Miklečić, J., Heat-treated wood as a substrate for coatings, weathering of heat-treated wood, and coating performance on heat-treated wood. Hindawi, Advances in Materials Science and Engineering, Article ID: 8621486, 1-9, 2019.
  • 17. Korkut S., Kocaefe D., Isıl işlemin odun özellikleri üzerine etkisi. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 5 (2), 11-34, 2009.
  • 18. Esteves B.M., Pereira H.M., Wood modification by heat treatment: A review. BioResources 4 (1), 370-404, 2009.
  • 19. Chu D., Mu J., Avramidis S., Rahimi S., Lai Z., Ayanleye S., Effect of heat treatment on bonding performance of poplar via an insight into dynamic wettability and surface strength transition from outer to inner layers, Holzforschung, 74 (8), 777-787, 2020.
  • 20. Lahtela V., Kärki T., Effects of impregnation and heat treatment on the physical and mechanical properties of Scots pine (Pinus sylvestris) wood, Wood Material Science & Engineering, 11 (4), 217-227, 2016.
  • 21. Bal B.C., Some physical and mechanical properties of thermally modified juvenile and mature black pine wood, European Journal of Wood and Wood Products, 72, 61-66, 2014.
  • 22. Taghiyari H.R., Bayani S., Militz H., Papadopoulos A.N., Heat treatment of pine wood: Possible effect of ımpregnation with silver nanosuspension, Forests, 11, 1-8, 2020.
  • 23. Yang T.H., Chang F.R., Lin C.J., Chang F.C., Effects of temperature and duration of heat treatment on the physical, surface, and mechanical properties of Japanese cedar wood, BioResources, 11 (2), 3947-3963, 2016.
  • 24. Boonstra M.J., Van Acker J., Kegel E.V., Tjeerdsma B.F., Strength properties of thermally modified sofwoods and its relation to polymeric structural wood constituents. Ann. For. Sci., 64, 679-690, 2007.
  • 25. Sivrikaya H., Hosseinpourpia R., Ahmed S.A., Adamopoulos S., Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol. Wood Material Science & Engineering, DOI: 10.1080/17480272.2020.1861085, 2020.
  • 26. Roszyk E., Stachowska E., Majka J., Mania P., Broda, M., Moisture-dependent strength properties of thermally-modified fraxinus excelsior wood in compression. Materials, 13 (7), 1-12, 2020.
  • 27. Yildirim N., Karaman A., Zor M., Bending characteristics of laminated wood composites made of poplar wood and GFRP, Drvna Industrıja, 72 (1), 3-11, 2021.
  • 28. Bal B.C., Efe F.T., Tabakalı kaplama kerestenin bazı vida dirençleri üzerine cam elyaf dokuma ile güçlendirmenin etkisi, Ormancılık Dergisi, 11 (2), 40-47, 2015.
  • 29. Güller B., Odun kompozitleri, Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri A, Sayı: 2, 135-160, 2001.
  • 30. Burdurlu E., Kilic M., Ilce A.C., Uzunkavak O., The effects of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and lombardy poplar (Populus nigra L.), Construction and Building Materials, 21, 1720-1725, 2007.
  • 31. El Haouzali H., Marchal R., Bléron L., Kifani Sahban F., Butaud J.C., Mechanical properties of laminated veneer lumber produced from ten cultivars of poplar, European Journal of Wood and Wood Products, 78, 715-722, 2020.
  • 32. Altınok M., Lamine ahşapta katman teşekkülünün mekanik performansa etkilerinin belirlenmesi, G.Ü. Fen Bilimleri Dergisi, 16 (1), 217-224, 2003.
  • 33. Bal B.,C., Bektaş İ., The effects of wood species, load direction, and adhesives on bending properties of laminated veneer lumber, BioResources, 7 (3), 3104-3112, 2012.
  • 34. Wei P., Wang B.J., Zhou D., Dai C., Wang Q., Huang S., Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer, BioResources, 8 (4), 4883-4898, 2013.
  • 35. Johnsson H., Blanksvärd T., Carolin A., Glulam members strengthened by carbon fibre reinforcement. materials and structure. Materials and Structures, 40, 47-56, 2006.
  • 36. Akgül T., Apay A., Sarıbıyık M., Ahşap yapıların birleşim bölgelerinde karbon elyaf takviyeli polimer levhaların kullanımının araştırılması, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), 13-15 Mayıs, Karabük, Türkiye, 2009.
  • 37. Zhang P., Shen S., Ma C., Strengthening mechanical properties of glulam with basalt fiber, Advances in Natural Science, 4 (2), 130-133, 2011.
  • 38. Gilfillan J.R., Gilbert S.G, Patrick G.R.H., The use of FRP composites in enhancing the structural behaviour of timber beams, Journal of Reinforced Plastics and Composites, 22 (15), 1373-1388, 2003.
  • 39. Bulleit W.M. Reinforcement of wood materials: A review, Wood and Fibre Science, 16 (3), 391-397, 1983.
  • 40. Buel T.W., Saadatmanesh P.E., Strengthening timber bridge beams using carbon fiber. Journal of Structural Engineering, 131 (1), 173-187, 2005.
  • 41. Johns K.C., Lacroix S., Composite reinforcement of timber in bending, Canadian Journal of Civil Engineering 27 (5), 899-906, 2000.
  • 42. Pirvu A., Gardner D.J., Lopez-Anido R., Carbon fiber-vinyl ester composite reinforcement of wood using the VARTM/SCRIMP fabrication process, Composites Part A: Applied Science and Manufacturing, 35 (11), 1257-1265, 2004.
  • 43. Chen F., Deng J., Li X., Wang G., Smith L.M., Shi S.O., Effect of laminated structure design on the mechanical properties of bamboo-wood hybrid laminated veneer lumber. European Journal of Wood and Wood Products, 75, 439-448, 2016.
  • 44. Yu Y.L, Huang X., Yu W., A novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Composites Part B: Engineering, 56 (1), 48-53, 2014.
  • 45. Ogawa H., Architectural application of carbon fibres: Development of new carbon fibre reinforced glulam. Carbon, 38 (2), 211-226, 2000.
  • 46. Shukla S.R., Kamdem D.P., Properties of laminated veneer lumber (LVL) made with low density hardwood species: effect of the pressure duration. Holz Roh Werkst, 66, 119-127, 2008.
  • 47. Ozarska B., A review of the utilisation of hardwoods for LVL, Wood Science and Technology, 33, 341-351, 1999.
  • 48. Aydın İ., Çolak S., Çolakoğlu G., Salih E., A comparative study on some physical and mechanical properties of Laminated Veneer Lumber (LVL) produced from Beech (Fagus orientalis Lipsky) and Eucalyptus (Eucalyptus camaldulensis Dehn.) veneers. Holz Roh Werkst, 62, 218-220, 2004.
  • 49. Wang J, Guo X, Zhong W, Wang H, Cao O., Evaluation of mechanical properties of reinforced poplar laminated veneer lumber. BioResources 10 (4), 7455-7465, 2015.
  • 50. Wong E.D., Razali A.K., Kawai, S., Properties of rubberwood LVL reinforced with acacia veneers. Wood research: bulletin of the Wood Research Institute Kyoto University, 83: 8-16, Kyoto, Japan, 1996.
  • 51. Bal B.C., Flexural properties, bonding performance and splitting strength of LVL reinforced with woven glass fiber. Construction and Building Materials, 51 (31), 9-14, 2014.
  • 52. Meekum U. Experimental design on multi layers of LVL fiber reinforced wood composite using bagasse as core structure, The 5th International Conference on GFRP Composites in Civil Engineering, Beijing, China, 135-138, 2010.
  • 53. Hu Y., Li J., Cheng F., Zhang X., Design and property analysis of the metal mesh reinforced LVL. Advanced Materials Research, 113 (116), 2145-2149, 2010.
  • 54. Basterra L.A., Acuña L., Casado M., López G., Bueno A., Strength testing of Poplar duo beams, Populus x euramericana (Done) Guinier cv. I-214, with fibre reinforcement. Construction and Building Materials, 36, 90-96, 2012.
  • 55. Borri A., Corradi M., Grazini A., A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering, 36 (2), 143-153, 2005.
  • 56. TS 2472, Odunda, fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 57. TS 2474, Odunun statik eğilme dayanımının tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 58. TS 2478, Odunun statik eğilmede elastikiyet modülünün tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1976.
  • 59. TS 2595, Odunun liflere paralel doğrultuda basınç dayanımı tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 1977.
  • 60. TS EN 205, Yapıştırıcılar-Yapısal olmayan uygulamalar için ahşap yapıştırıcılar-Bindirmeyle yapıştırılmış eklerin çekmeyle kayma mukavemetinin tayini, Türk Standardları Enstitüsü, Ankara, Türkiye, 2017.
  • 61. Auriga R., Gumowska A., Szymanowski K., Wronka A., Robles E., Ocipka P., Kowaluk G., Performance properties of plywood composites reinforced with carbon fibers, Composite Structures, 248, 112533, 2020,
  • 62. Bal B.C., Özyurt H., Some technological properties of laminated veneer lumber reinforced with woven glass fiber. KSU Journal of Engineering Sciences, 18 (1), 9-16, 2015.
  • 63. Kocaefe D., Poncsak S., Boluk Y., Effect of thermal treatment on the chemical composıtion and mechanical propertıes of birch and aspen. BioResources, 3 (2), 517-537, 2008.
  • 64. Kotilainen R.A., Toivanen T.J., Alen R.J., FTIR monitoring of chemical changes in softwood during heating, J Wood Chem Technol, 20 (3), 307-320, 2000.
  • 65. Esteves B.M., Domingos I.J., Pereira H.M., Pine wood modification by heat treatment in air, BioResources 3 (1), 142-154, 2008.
  • 66. Li Y.F., Xie Y.M., Tsai M.J., Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Construction and Building Materials 23 (1), 411-422, 2009.
  • 67. Bakalarz M.M., Kossakowski P. G., Tworzewski P., Strengthening of Bent LVL Beams with Near-Surface Mounted (NSM) FRP Reinforcement. Materials 13, 2350, 2020.
  • 68. Šedivka P., Bomba J., Böhm M., Zeidler A., Determination of strength characteristics of construction timber strengthened with carbon and glass fibre composite using a destructive method, BioResources 10 (3), 4674-4685, 2015.
  • 69. Kubojima Y., Okano T., Ohta M. Bending strength and toughness of heat-treated wood, J Wood Sci. 46, 8-15, 2000.
  • 70. Huang X., Fabrication and properties of carbon fibers. Materials 2, 2369-2403, 2009.
  • 71. Togay A., Ergin E., Determination of some physical attributes for wooden construction elements strengthened with woven wire fiberglass, BioResources 9 (3), 3883-3900, 2014.
  • 72. Muratoğlu A., Uysal B., Kurt Ş., Restorasyonda ahşap yapı elemanlarının karbon fiber takviyeli polimerler (CFRP) ile güçlendirilmesi, Selçuk Teknik Dergisi, Özel Sayı 2, 1219-1240, 2016.
  • 73. Sahin Kol H., Özbay G., Altun S., Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods, bonded with various adhesives, BioResources, 4 (4), 1545-1554, 2009.
  • 74. Sernek M., Boonstra M., Pizzi A., Despres A., Gerardin, P., Bonding performance of heat treated wood with structural adhesives, Holz Roh Werkst. 66 (3), 173-180, 2008.
  • 75. Bastani A., Adamopoulos S., Militz H., Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives, Wood Material Science & Engineering 12 (4), 236-241, 2016.
  • 76. Goli G., Cremonini C., Negro F., Zanuttini R., Fioravanti M., Physicalmechanical properties and bonding quality of heat treated poplar (I-214) and ceiba plywood. iForest 8: 687-692, 2014.
  • 77. Esen R., Özcan C., The effects of heat treatment on shear strength of oak (Quercus petraea L.) wood. SDU Faculty of Forestry Journal, 13, 150-154, 2012.
  • 78. Budhe S., Ghumatkar A., Birajdar N., Banea M.D. Effect of surface roughness using different adherend materials on the adhesive bond strength. Applied Adhesion Science, 3 (20), 1-10, 2015.
  • 79. Cui X., Matsumura J., Wood surface changes of heat-treated cunninghamia lanceolate following natural weathering, Forests, 10, 791, 2019.
There are 79 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ercan Çiğdem This is me 0000-0002-4412-6815

Osman Perçin 0000-0003-0033-0918

Publication Date October 7, 2022
Submission Date August 18, 2021
Acceptance Date March 13, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Çiğdem, E., & Perçin, O. (2022). Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 653-664. https://doi.org/10.17341/gazimmfd.984248
AMA Çiğdem E, Perçin O. Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri. GUMMFD. October 2022;38(2):653-664. doi:10.17341/gazimmfd.984248
Chicago Çiğdem, Ercan, and Osman Perçin. “Karbon Fiber Ve Cam Fiber Ile güçlendirilmiş ısıl işlem uygulanmış Lamine Kaplama Kerestelerin (lvl) Bazı Fiziksel Ve Mekaniksel özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 653-64. https://doi.org/10.17341/gazimmfd.984248.
EndNote Çiğdem E, Perçin O (October 1, 2022) Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 653–664.
IEEE E. Çiğdem and O. Perçin, “Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri”, GUMMFD, vol. 38, no. 2, pp. 653–664, 2022, doi: 10.17341/gazimmfd.984248.
ISNAD Çiğdem, Ercan - Perçin, Osman. “Karbon Fiber Ve Cam Fiber Ile güçlendirilmiş ısıl işlem uygulanmış Lamine Kaplama Kerestelerin (lvl) Bazı Fiziksel Ve Mekaniksel özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 653-664. https://doi.org/10.17341/gazimmfd.984248.
JAMA Çiğdem E, Perçin O. Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri. GUMMFD. 2022;38:653–664.
MLA Çiğdem, Ercan and Osman Perçin. “Karbon Fiber Ve Cam Fiber Ile güçlendirilmiş ısıl işlem uygulanmış Lamine Kaplama Kerestelerin (lvl) Bazı Fiziksel Ve Mekaniksel özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 653-64, doi:10.17341/gazimmfd.984248.
Vancouver Çiğdem E, Perçin O. Karbon fiber ve cam fiber ile güçlendirilmiş ısıl işlem uygulanmış lamine kaplama kerestelerin (lvl) bazı fiziksel ve mekaniksel özellikleri. GUMMFD. 2022;38(2):653-64.