Yığma duvarların mekanik parametrelerine harç ve örgü tipinin etkisi
Yıl 2024,
Cilt: 39 Sayı: 1, 621 - 634, 21.08.2023
Musa Yetkın
,
Yusuf Calayır
,
Kürşat Esat Alyamaç
Öz
Bu çalışmada, harç ve örgü tipinin yığma duvarların mekanik parametrelerine olan etkisi araştırılmıştır. Buna bağlı olarak içeriğinde farklı karışım oranlarında çelik lif bulunan dört farklı harç tipi (%0, %1, %2 ve %3 oranında çelik lif içeren harç), üç farklı derz kalınlığı (10 mm, 20 mm ve 30 mm) ve üç farklı örgü tipi (düz, 1/2 şaşırtmalı ve 1/3 şaşırtmalı örgü tipleri) için toplamda 108 adet duvar elemanı oluşturulmuştur. Daha sonra ilgili duvar elemanları diyagonal basınç testine tabi tutulmuştur. Testler sonucunda, her bir duvar elemanının göçme biçimleri ve süneklik kapasitesi, maksimum kayma mukavemeti, maksimum yer değiştirme miktarı ve göçme yükü gibi mekanik parametreleri elde edilmiştir. Bu mekanik parametreler bakımından en iyi davranışı gösteren duvar elemanı (optimum duvar elemanı) belirlenmiştir.
Destekleyen Kurum
Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP)
Teşekkür
Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (FÜBAP) tarafından MF.19.20 protokol numaralı proje ile desteklenmiştir. FÜBAP tarafından sağlanan mali destek için teşekkür ederiz.
Kaynakça
- 1. Bayülke N., 13 Mart 1992 Erzincan Earthquake Report, The Ministry of Public Works and Settlement, 1993.
- 2. Bayülke N., Seismic behavior and safety of masonry structures, 1. Turkey Earthquake Engineering and Seismology Conference, pp. 23–36, Ankara, 2011.
- 3. MTA., Evaluation report of March 25 (Mw 5.5) and March 28 (Mw 5.5) 2004 Aşkale (Erzurum) earthquakes, General Directorate of Mineral Research And Exploration, Ankara, 2004.
- 4. Gök Y., Altaş N.T., Zaman S., Aşkale earthquakes and effects, Eastern Geographical Review. 12, 161–184, 2007.
- 5. Doğangün A., Ural A., Seismic performance of masonry buildings during recent earthquakes in Turkey, The 14th World Conference on Earthquake Engineering, pp. 12–17, Beijing, China, 2008.
- 6. Ekincioğlu Ö., Mechanical behavior of cement based composites with hybrid fibres-an optimum design, MSc Thesis, Istanbul Technical Unıversity, Institute of Natural Sciences, Istanbul, 2003.
- 7. Kozak M., Investigation of usability of aggregate type (basaltlimestone) and steel-fiber in the concrete traverse production, MSc Thesis, Afyon Kocatepe University, Institute for the Natural and Applied Sciences, Department of Construction Education, Afyon, 2010.
- 8. Lee I., Complete stress-strain characteristic of high performance concrete, PhD Thesis, New Jersey Institute of Technology, Department of Civil and Environmental Engineering, United States, 2002.
- 9. Wu Z., Shi C., He W., Wu L., Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete, Construction and Building Materials. 103, 8–14, 2016.
- 10. Tokyay M., Ramyar K., Turanlı L., Behavior of polypropylene and steel fiber high strength concrete under compressive and tensile loads, 2. National Concrete Congress. pp. 303–311, İstanbul, 1991.
- 11. Bentur A., Mindess S., Fibre Reinforced Cementitious Composites, CRC Press, London, 2006.
- 12. Gao J., Sun W., Morino K., Mechanical properties of steel fiber-reinforced, high-strength, lightweight concrete, Cement and Concrete Composites, 19, 307–313, 1997.
- 13. Sevil C., Uçucu küllü, lifli beton kompozitinde lif tipinin beton özelliklerine etkisi, Eskisehir Osmangazi University, The Graduate School of Natural and Applied Sciences, Eskisehir, 2001.
- 14. Kayali O., Haque M., Zhu B., Some characteristics of high strength fiber reinforced lightweight aggregate concrete, Cement and Concrete Composites, 25, 207–213, 2003.
- 15. Ünal B., Köksal F., Eyyubov C., Joint effect of polypropylene and steel fibers on freeze-thaw and abrasion resistance of concrete. 5. National Concrete Congress, pp. 345–354, İstanbul, 2003.
- 16. Yazıcı Ş., Arel H.Ş., Tabak V., The effects of impact loading on the mechanical properties of the SFRCs, Construction and Building Materials, 41, 68–72, 2013.
- 17. Aydın S., Effects of fiber strength on fracture characteristics of normal and high strength concrete, Periodica Polytechnica Civil Engineering, 57, 191–200, 2013.
- 18. ACI 544.1R-96., State of the art report on fiber reinforced concrete, ACI Journal, 544, 1–66, 2002.
- 19. Cachim P.B., Figueiras J.A., Pereira P.A., Fatigue behavior of fiber-reinforced concrete in compression, Cement and Concrete Composites, 24, 211–217, 2002.
- 20. Parvez A., Foster S.J., Fatigue behavior of steel-fiber-reinforced concrete beams, Journal of Structural Engineering, 141, 04014117, 2015.
- 21. Arslan A., Mixed-mode fracture performance of fibre reinforced concrete under impact loading, Materials and Structures, 28, 473–478, 1995.
- 22. Suaris W., Shah S.P., Strain-rate effects in fibre-reinforced concrete subjected to impact and impulsive loading, Composites, 13, 153–159, 1982.
- 23. Zhang X.X., Ruiz G., Yu R.C., Tarifa M., Fracture behaviour of high-strength concrete at a wide range of loading rates, International Journal of Impact Engineering, 36, 1204–1209, 2009.
- 24. Dancygier A.N., Katz A., Yardimci M.Y., Yankelevsky D.Z., Behavior of high ductility cement composite beams under low impact, International Journal of Protective Structures, 3, 177–191, 2012.
- 25. Zhang X.X., Abd Elazim A.M., Ruiz G., Yu R.C., Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates, International Journal of Impact Engineering, 71, 89–96, 2014.
- 26. Kızılırmak, C., An investigation on the mechanical properties of fibre reinforced concrete under static and impact loads, MSc Thesis, Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Izmir, 2017.
- 27. Atiş C.D., Karahan O., Properties of steel fiber reinforced fly ash concrete, Construction and Building Materials, 23, 392–399, 2009.
- 28. ASTM E519/ E519M., Standard test method for diagonal tension (shear) in masonry assemblages, West Conshohocken, PA, 2010.
- 29. RILEM LUM-B6., Diagonal tensile strength tests of small wall specimens, RILEM recommendations for the testing and use of constructions materials, 1991.
- 30. Alecci V., Fagone M., Rotunno T., De Stefano M., Shear strength of brick masonry walls assembled with different types of mortar, Construction and Building Materials, 40, 1038–1045, 2013.
- 31. Basaran H., Demir A., Bagci M., Investigating the behaviour of plaster mortared rural masonry walls, 2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, Epoka University, Tirana, Albania, 2013.
- 32. Çobanoğlu A.B., Investigation of material properties for the Turkish masonry buildings, MSc Thesis, Middle East Technical University, The Graduate School of Natural and Applied Sciences, Ankara, 2014.
- 33. Atay M.N., Strengthening brick filling walls with plastic waste material, flexible polypropylene and geogrid, Osmaniye Korkut Ata University, The Graduate School of Natural and Applied Sciences, Osmaniye, 2017.
- 34. Shermi C., Dubey R.N., In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar, Construction and Building Materials, 178, 195–203, 2018.
- 35. Mezrea P.E., Ispir M., Balci I.A., Bal I.E., Ilki A., Diagonal tensile tests on historical brick masonry wallets strengthened with fabric reinforced cementitious mortar, Structures, 33, 935–946, 2021.
- 36. Buyukkaragoz A., Kopraman Y., In-plane behaviour of masonry brick walls strengthened with mortar from two sides, Structures, 29, 1627–1639, 2021.
- 37. Wang X., Lam C.C., Iu V.P., Experimental investigation of in-plane shear behaviour of grey clay brick masonry panels strengthened with SRG, Engineering Structures, 162, 84–96, 2018.
- 38. Wang X., Ghiassi B., Oliveira D.V., Lam C.C., Modelling the nonlinear behaviour of masonry walls strengthened with textile reinforced mortars, Engineering Structures, 134, 11–24, 2017.
- 39. Gabor A., Ferrier E., Jacquelin E., Hamelin P., Analysis and modelling of the in-plane shear behaviour of hollow brick masonry panels, Construction and Building Materials, 20, 308–321, 2006.
- 40. Yılmaz E., FRP strengthening of masonary walls constructed with hollow clay bricks and size effects on the observed behavior, MSc Thesis, Istanbul Technical Unıversity, Institute of Natural Sciences, Istanbul, 2010.
- 41. Addessi D., Marfia S., Sacco E., Toti J., Modeling Approaches for Masonry Structures, The Open Civil Engineering Journal. 8, 288–300, 2014.
- 42. Hamdy G., Kamal O., Al-Hariri O., El-Salakawy T., Plane and vaulted masonry elements strengthened by different techniques – Testing, numerical modeling and nonlinear analysis, Journal of Building Engineering, 15, 203–217, 2018.
- 43. Knox C.L., Dizhur D., Ingham J.M., Experimental study on scale effects in clay brick masonry prisms and wall panels investigating compression and shear related properties, Construction and Building Materials, 163, 706–713, 2018.
- 44. Basili M., Vestroni F., Marcari G., Brick masonry panels strengthened with textile reinforced mortar: Experimentation and numerical analysis, Construction and Building Materials, 227, 117061, 2019.
- 45. Shabdin M., Zargaran M., Attari N.K.A., Experimental diagonal tension (shear) test of Un-Reinforced Masonry (URM) walls strengthened with textile reinforced mortar (TRM), Construction and Building Materials, 164, 704–715, 2018.
- 46. Zhang S., Taheri Mousavi S.M., Richart N., Molinari J.F., Beyer K., Micro-mechanical finite element modeling of diagonal compression test for historical stone masonry structure, International Journal of Solids and Structures, 112, 122–132, 2017.
- 47. Singhal V., Rai D.C., Suitability of half-scale burnt clay bricks for shake table tests on masonry walls, Journal of Materials in Civil Engineering, 26, 644–657, 2014.