Research Article
BibTex RIS Cite

2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu

Year 2024, Volume: 39 Issue: 1, 233 - 242, 21.08.2023
https://doi.org/10.17341/gazimmfd.1162306

Abstract

Bu çalışmada sol-jel yöntemi ile üretilen titanyum dioksit (TiO2) fotokatalizörü ile, yaygın olarak kullanılan 2,4 Diklorofenoksiasetik asit (2,4D) pestisitinin fotokatalitik bozunumu incelenmiştir. Optimum TiO2 sentezi için seçilen üç farklı parametrenin (Titanyum isopropoksit (TIP) miktarı, HNO3 konsantrasyonu ve yaşlandırma süresi) etkileri Box-Behnken deneysel tasarım metodu ile incelenmiş ve modellenmiştir. Farklı şartlarda üretilen TiO2 fotokaalizörleri ile 2,4D’in fotokatalitik bozunma hızları incelenerek, fotokatalizör üretim prosesi optimize edilmiştir. Belirlenen optimum şartlarda üretilen TiO2 numuneleri XRD, SEM, zeta potansiyeli ve boyut analizi ile karakterize edilmiş, ayrıca ticari Degussa P25 TiO2 fotokatalizörü ile kıyaslanmıştır. 2,4 D’in fotokatalitik bozunma hızı belirlenen optimum koşul 1 (TIP miktarı: 24,08mL, HNO3 konsantrasyonu: 3,53 M ve yaşlandırma süresi:2,29 saat) ve optimum koşul 2 (TIP miktarı:10,33mL, HNO3 konsantrasyonu: 0 M ve yaşlandırma süresi:19,51 saat) için sırasıyla 0,0084 ve 0,0085 dak-1 olarak belirlenmiştir. TiO2 üretim parametrelerinin deneysel tasarım kullanılarak optimize edilmesi ile asit miktarı kullanımı sıfıra ya da yaşlandırma süresi en aza indirilebilmiş ve oldukça yüksek fotokatalitik etkinlik elde edilmiştir.

Supporting Institution

Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

2016-07-01-YL07

References

  • [1] Hess F.D., Herbicide Effects on Plant Structure, Physiology and Biochemistry, Pesticide Interactions in Crop Production: Beneficial and Deleterious Effects, Boca Raton: CRC Press, Florida, 75, 198–207, 1993.
  • [2] Viertel K., Hess D. Shoot tips of wheat as an alternative source for regenerable embryogenic callus cultures, Plant Cell Tiss Organ Cult, 44, 183–188 , 1996.
  • [3] Qurratu A., Reehan A., A review of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Derivatives: 2,4-D Dimethylamine Salt and 2,4-D Butyl Ester, International Journal of Applied Engineering Research (ISSN 073-4562), 11(19), 9946-9955, 2016.
  • [4] Ekberli İ., Kars N. 2,4-D (Diklorofenoksiasetik Asit) Herbisiti Uygulanan Kil Ve Kum Bünyeli Toprakta Katalaz Aktivitesi Ve Kinetiğinin İncelenmesi, Anadolu Tarım Bilim. Derg., 27(2), 89-100, 2012.
  • [5] Gervais, J., Luukinen, B., Buhl, K., Stone, D. 2008. 2,4-D Technical Fact Sheet. National Pesticide Information Center. Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/2,4-DTech.html. Yayın tarihi Kasım 2008. Erişim tarihi Temmuz 2022.
  • [6] Ahmad T., Rafatullah M., Ghazali A., Sulaiman O., Hashim R., Ahmad A, Removal of Pesticides from Water and Wastewater by Different Adsorbents: A Review, Journal of Environmental Science and Health, Part C, 28(4), 231-271, 2010.
  • [7] Marican A., Durán-Lara E.F., A review on pesticide removal through different processes, Environ Sci Pollut Res, 25, 2051–2064, 2018.
  • [8] Porto A. L. M., Melgar G. Z., Kasemodel M. C., Nitschke M., Biodegradation of Pesticides, Universidade de São Paulo, Instituto de Química de São Carlos, 2011.
  • [9] Saleh I.A., Zouari N., Al-Ghouti M.A., Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches, Environmental Technology & Innovation, 19, 101026, 2020.
  • [10] Tandoğan B., Eker Şanlı G., UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 779-792, 2021.
  • [11] Khan S.H., Pathak B., Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review Environmental Nanotechnology, Monitoring & Management, 13, 100290, 2020.
  • [12] Vaya D., Suroli P.K., Semiconductor based photocatalytic degradation of pesticides: An overview, Environmental Technology & Innovation, 20, 101128, 2020.
  • [13] Hadei M., Mesdaghinia A., Nabizadeh R. et al. A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO2, Environ Sci Pollut Res, 28, 13055–13071, 2021.
  • [14] Fujishima A., Rao T.N., Tryk D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21, 2000.
  • [15] Fujishima A., Zhang X., Tryk D.A., TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63, 515-582, 2008.
  • [16] Uçan Köysüren, H.Nagehan ,Köysüren, Ö.,Preparation of polyvinyl alcohol composite nanofibers and solid-phase photocatalytic degradation of polyvinyl alcohol, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1411-1418, 2018.
  • [17] Chong M.N., Jin B., Chow C.W.K., Saint C., Recent Developments in Photocatalytic Water Treatment Technology:a review, Water Research, 44(10), 2997-3027, 2010.
  • [18] Lazar M.A., Varghese S., Nair S.S, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, 2(4), 572-601, 2012.
  • [19] Anandan S., Ikuma Y., Niwa K., An Overview of Semi-Conducter Photocatalysis: Modification of TiO2 Nanomaterials, Solid State Phenomena, 162, 239-260, 2010.
  • [20] Barakat A.M., Kumar R., Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles Degradation of Pollutants in Wastewater, Degradation of Pollutants in Wastewater Springer Cham, New York, A.B.D., 2016.
  • [21] Dogu D., Karakas G., Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 859-869, 2019.
  • [22] Ibhadon A. O., Fitzpatrick P., Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, 3(1), 189-218, 2013.
  • [23] Akpan U. G., Hameed B. H., Photocatalytic Degradation of 2.4 D by Ca-Ce-W-TiO2 Composite Photocatalyst, Chemical Engineering Journal, 173, 369-375, 2011.
  • [24] Abdennouri M., Baala, M., Galadi, A., Makhfouk, M. E., Bensitel, M., Nohair, K., Sadiq, M., Boussaous, A., Barka, N., Photocatalytic degradation of pesticides by TiO2 and Titanium pillared purified clays, Arabian Journal of Chemistry, 9 (1), 313-318, 2011.
  • [25] Abdennouri M., Elhalil A., Farnane M., Tounsad, H., Mahjoubi F.Z., Elmourbarki R., Sadiq M., Khamar L., Galadi A., Baala M., Bensitel M., El Hafiane Y., Smi, A., Barka N., Photocatalytic degradation of 2,4 D and 2,4 DP herbicides on Pt/ TiO2 nanoparticles, Journal of Saudi Chemical Society, 19, 485-493, 2015.
  • [26] Ayala S. L., Rincon M. E., Qurioz Alfaro M. A., Bandala E. R., Mendez Rojas M. A., Castano V.M., Nanocrystalline titania xerogels doped by metal precusors in the photocatalytic degradation of 2,4 D sodium salts, Journal of Photochemistry and Photobiology A: Chemistry, 311, 166-175, 2015.
  • [27] Okçu G. D., Pakdİl N. B., Ökten H. E., Yalçuk A., A Box-Behnken design (BBD) optimization of the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using TiO2/H2O2,Desalination and Water Treatment, 123, 188-195, 2018. [28] Zulfiqara M., Fakhrul M., Samsudina R., Sufiana S., Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network, Journal of Photochemistry and Photobiology A: Chemistry , 384, 112039, 2019.
  • [29] Moztahida M., Lee D.S., Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surfacemethodology, Journal of Hazardous Materials, 400, 123314, 2020.
  • [30] Kumar A., Pandey G., Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review, American Journal of Nano Research and Applications, 6(1), 1-10, 2018.
  • [31] Gökçe B., Taşgetiren S., Kalite için Deney Tasarımı, Makine Teknolojileri Elektronik Dergisi, 6,71-83, 2009.
  • [32] Ohtani, B., Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics., J. Chem. Soc. Faraday Trans., 16 (5), 1788–1797, 2014.
  • [33] Soltani-Nezhad F., Saljooqia A., Mostafavi A., Shamspur T., Synthesis of Fe3O4/CdS–ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions, Ecotoxicology and Environmental Safety, 189(022), 109886, 2019.
  • [34] Luna-Sanguino G., Ruíz-Delgado A., Tolosana-Moranchel A., Pascual L., Malato S., Bahamonde A., Faraldos M., Solar photocatalytic degradation of pesticides over TiO2-rGOnanocomposites at pilot plant scale, Science of the Total Environment, 737, 140286, 2020.
  • [35] Badr Y., Abd El-Wahed M. G., Mahmoud M. A., Photocatalytic Degradation of Methyl Red Dye by Silica Nanoparticles, Journal of Hazardous Materials, 154, 245-253, 2018.
  • [36] Sandeep S., Nagashree K.L. , Maiyalaganc T., Keerthiga G., Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid – A comparative study in hydrothermal TiO2 and commercial TiO2, Applied Surface Science, 449, 371-379, 2018.
  • [37] Malvern Instrument, Zeta Potential An Introduction in 30 Minutes, https://www.materials-talks.com/wp-content/uploads/2017/09/mrk654-01_an_introduction_to_zeta_potential_v3.pdf Yayın tarihi 2017. Erişim tarihi Temmuz 2022.
  • [38] Ohtani, B., Prieto-Mahaney O. O., Li D., Abe R., What is Degussa (Evonik) P25 Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test, SP-3 3rd International Conference on Semiconductor Photochemistry, Glasgow UK, 179-182, 12-15 April, 2010.
  • [39] Lin H., Huang C.P., Li W., Ni C., Shah S. I., Tseng Y. H., Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol, Applied Catalysis B: Environmental ,68(1-2), 1-11, 2016.
  • [40] Ramazani M., Farahmandjou M., Firoozabadi T. P., Effect of Nitric Acid on Particle Morphology of the Nano- TiO2, Int. J. Nanosci. Nanotechnol., 11(2), 115-122, 2015.
  • [41] Shanini S., Askari M., Sadrnezhaad S. K., Gel- Sol Synthesis and Aging Effect on Highly Crystalline Anatase Nanopowder, Bull. Mater. Sci., 34(6), 1189- 1195, 2011.
Year 2024, Volume: 39 Issue: 1, 233 - 242, 21.08.2023
https://doi.org/10.17341/gazimmfd.1162306

Abstract

Project Number

2016-07-01-YL07

References

  • [1] Hess F.D., Herbicide Effects on Plant Structure, Physiology and Biochemistry, Pesticide Interactions in Crop Production: Beneficial and Deleterious Effects, Boca Raton: CRC Press, Florida, 75, 198–207, 1993.
  • [2] Viertel K., Hess D. Shoot tips of wheat as an alternative source for regenerable embryogenic callus cultures, Plant Cell Tiss Organ Cult, 44, 183–188 , 1996.
  • [3] Qurratu A., Reehan A., A review of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Derivatives: 2,4-D Dimethylamine Salt and 2,4-D Butyl Ester, International Journal of Applied Engineering Research (ISSN 073-4562), 11(19), 9946-9955, 2016.
  • [4] Ekberli İ., Kars N. 2,4-D (Diklorofenoksiasetik Asit) Herbisiti Uygulanan Kil Ve Kum Bünyeli Toprakta Katalaz Aktivitesi Ve Kinetiğinin İncelenmesi, Anadolu Tarım Bilim. Derg., 27(2), 89-100, 2012.
  • [5] Gervais, J., Luukinen, B., Buhl, K., Stone, D. 2008. 2,4-D Technical Fact Sheet. National Pesticide Information Center. Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/2,4-DTech.html. Yayın tarihi Kasım 2008. Erişim tarihi Temmuz 2022.
  • [6] Ahmad T., Rafatullah M., Ghazali A., Sulaiman O., Hashim R., Ahmad A, Removal of Pesticides from Water and Wastewater by Different Adsorbents: A Review, Journal of Environmental Science and Health, Part C, 28(4), 231-271, 2010.
  • [7] Marican A., Durán-Lara E.F., A review on pesticide removal through different processes, Environ Sci Pollut Res, 25, 2051–2064, 2018.
  • [8] Porto A. L. M., Melgar G. Z., Kasemodel M. C., Nitschke M., Biodegradation of Pesticides, Universidade de São Paulo, Instituto de Química de São Carlos, 2011.
  • [9] Saleh I.A., Zouari N., Al-Ghouti M.A., Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches, Environmental Technology & Innovation, 19, 101026, 2020.
  • [10] Tandoğan B., Eker Şanlı G., UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı, Journal of the Faculty of Engineering and Architecture of Gazi University, 36(2), 779-792, 2021.
  • [11] Khan S.H., Pathak B., Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review Environmental Nanotechnology, Monitoring & Management, 13, 100290, 2020.
  • [12] Vaya D., Suroli P.K., Semiconductor based photocatalytic degradation of pesticides: An overview, Environmental Technology & Innovation, 20, 101128, 2020.
  • [13] Hadei M., Mesdaghinia A., Nabizadeh R. et al. A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO2, Environ Sci Pollut Res, 28, 13055–13071, 2021.
  • [14] Fujishima A., Rao T.N., Tryk D.A., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21, 2000.
  • [15] Fujishima A., Zhang X., Tryk D.A., TiO2 photocatalysis and related surface phenomena, Surface Science Reports, 63, 515-582, 2008.
  • [16] Uçan Köysüren, H.Nagehan ,Köysüren, Ö.,Preparation of polyvinyl alcohol composite nanofibers and solid-phase photocatalytic degradation of polyvinyl alcohol, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1411-1418, 2018.
  • [17] Chong M.N., Jin B., Chow C.W.K., Saint C., Recent Developments in Photocatalytic Water Treatment Technology:a review, Water Research, 44(10), 2997-3027, 2010.
  • [18] Lazar M.A., Varghese S., Nair S.S, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, 2(4), 572-601, 2012.
  • [19] Anandan S., Ikuma Y., Niwa K., An Overview of Semi-Conducter Photocatalysis: Modification of TiO2 Nanomaterials, Solid State Phenomena, 162, 239-260, 2010.
  • [20] Barakat A.M., Kumar R., Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles Degradation of Pollutants in Wastewater, Degradation of Pollutants in Wastewater Springer Cham, New York, A.B.D., 2016.
  • [21] Dogu D., Karakas G., Praseodymium katkılı titanyum dioksit fotokatalizörünün metilen mavisinin bozunma reaksiyonundaki etkinliği, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), 859-869, 2019.
  • [22] Ibhadon A. O., Fitzpatrick P., Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, 3(1), 189-218, 2013.
  • [23] Akpan U. G., Hameed B. H., Photocatalytic Degradation of 2.4 D by Ca-Ce-W-TiO2 Composite Photocatalyst, Chemical Engineering Journal, 173, 369-375, 2011.
  • [24] Abdennouri M., Baala, M., Galadi, A., Makhfouk, M. E., Bensitel, M., Nohair, K., Sadiq, M., Boussaous, A., Barka, N., Photocatalytic degradation of pesticides by TiO2 and Titanium pillared purified clays, Arabian Journal of Chemistry, 9 (1), 313-318, 2011.
  • [25] Abdennouri M., Elhalil A., Farnane M., Tounsad, H., Mahjoubi F.Z., Elmourbarki R., Sadiq M., Khamar L., Galadi A., Baala M., Bensitel M., El Hafiane Y., Smi, A., Barka N., Photocatalytic degradation of 2,4 D and 2,4 DP herbicides on Pt/ TiO2 nanoparticles, Journal of Saudi Chemical Society, 19, 485-493, 2015.
  • [26] Ayala S. L., Rincon M. E., Qurioz Alfaro M. A., Bandala E. R., Mendez Rojas M. A., Castano V.M., Nanocrystalline titania xerogels doped by metal precusors in the photocatalytic degradation of 2,4 D sodium salts, Journal of Photochemistry and Photobiology A: Chemistry, 311, 166-175, 2015.
  • [27] Okçu G. D., Pakdİl N. B., Ökten H. E., Yalçuk A., A Box-Behnken design (BBD) optimization of the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using TiO2/H2O2,Desalination and Water Treatment, 123, 188-195, 2018. [28] Zulfiqara M., Fakhrul M., Samsudina R., Sufiana S., Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network, Journal of Photochemistry and Photobiology A: Chemistry , 384, 112039, 2019.
  • [29] Moztahida M., Lee D.S., Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surfacemethodology, Journal of Hazardous Materials, 400, 123314, 2020.
  • [30] Kumar A., Pandey G., Different Methods Used for the Synthesis of TiO2 Based Nanomaterials: A Review, American Journal of Nano Research and Applications, 6(1), 1-10, 2018.
  • [31] Gökçe B., Taşgetiren S., Kalite için Deney Tasarımı, Makine Teknolojileri Elektronik Dergisi, 6,71-83, 2009.
  • [32] Ohtani, B., Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics., J. Chem. Soc. Faraday Trans., 16 (5), 1788–1797, 2014.
  • [33] Soltani-Nezhad F., Saljooqia A., Mostafavi A., Shamspur T., Synthesis of Fe3O4/CdS–ZnS nanostructure and its application for photocatalytic degradation of chlorpyrifos pesticide and brilliant green dye from aqueous solutions, Ecotoxicology and Environmental Safety, 189(022), 109886, 2019.
  • [34] Luna-Sanguino G., Ruíz-Delgado A., Tolosana-Moranchel A., Pascual L., Malato S., Bahamonde A., Faraldos M., Solar photocatalytic degradation of pesticides over TiO2-rGOnanocomposites at pilot plant scale, Science of the Total Environment, 737, 140286, 2020.
  • [35] Badr Y., Abd El-Wahed M. G., Mahmoud M. A., Photocatalytic Degradation of Methyl Red Dye by Silica Nanoparticles, Journal of Hazardous Materials, 154, 245-253, 2018.
  • [36] Sandeep S., Nagashree K.L. , Maiyalaganc T., Keerthiga G., Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid – A comparative study in hydrothermal TiO2 and commercial TiO2, Applied Surface Science, 449, 371-379, 2018.
  • [37] Malvern Instrument, Zeta Potential An Introduction in 30 Minutes, https://www.materials-talks.com/wp-content/uploads/2017/09/mrk654-01_an_introduction_to_zeta_potential_v3.pdf Yayın tarihi 2017. Erişim tarihi Temmuz 2022.
  • [38] Ohtani, B., Prieto-Mahaney O. O., Li D., Abe R., What is Degussa (Evonik) P25 Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test, SP-3 3rd International Conference on Semiconductor Photochemistry, Glasgow UK, 179-182, 12-15 April, 2010.
  • [39] Lin H., Huang C.P., Li W., Ni C., Shah S. I., Tseng Y. H., Size Dependency of Nanocrystalline TiO2 on Its Optical Property and Photocatalytic Reactivity Exemplified by 2-Chlorophenol, Applied Catalysis B: Environmental ,68(1-2), 1-11, 2016.
  • [40] Ramazani M., Farahmandjou M., Firoozabadi T. P., Effect of Nitric Acid on Particle Morphology of the Nano- TiO2, Int. J. Nanosci. Nanotechnol., 11(2), 115-122, 2015.
  • [41] Shanini S., Askari M., Sadrnezhaad S. K., Gel- Sol Synthesis and Aging Effect on Highly Crystalline Anatase Nanopowder, Bull. Mater. Sci., 34(6), 1189- 1195, 2011.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Dilek Duranoğlu 0000-0002-7025-3359

Yeliz Yılmaz 0000-0003-4924-3188

Project Number 2016-07-01-YL07
Early Pub Date June 15, 2023
Publication Date August 21, 2023
Submission Date August 15, 2022
Acceptance Date February 1, 2023
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Duranoğlu, D., & Yılmaz, Y. (2023). 2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 233-242. https://doi.org/10.17341/gazimmfd.1162306
AMA Duranoğlu D, Yılmaz Y. 2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu. GUMMFD. August 2023;39(1):233-242. doi:10.17341/gazimmfd.1162306
Chicago Duranoğlu, Dilek, and Yeliz Yılmaz. “2,4 Diklorofenoksiasetik Asitin Fotokatalitik Degredasyonu için Titanyum Dioksit üretim Prosesinin Optimizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 233-42. https://doi.org/10.17341/gazimmfd.1162306.
EndNote Duranoğlu D, Yılmaz Y (August 1, 2023) 2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 233–242.
IEEE D. Duranoğlu and Y. Yılmaz, “2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu”, GUMMFD, vol. 39, no. 1, pp. 233–242, 2023, doi: 10.17341/gazimmfd.1162306.
ISNAD Duranoğlu, Dilek - Yılmaz, Yeliz. “2,4 Diklorofenoksiasetik Asitin Fotokatalitik Degredasyonu için Titanyum Dioksit üretim Prosesinin Optimizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 233-242. https://doi.org/10.17341/gazimmfd.1162306.
JAMA Duranoğlu D, Yılmaz Y. 2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu. GUMMFD. 2023;39:233–242.
MLA Duranoğlu, Dilek and Yeliz Yılmaz. “2,4 Diklorofenoksiasetik Asitin Fotokatalitik Degredasyonu için Titanyum Dioksit üretim Prosesinin Optimizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 233-42, doi:10.17341/gazimmfd.1162306.
Vancouver Duranoğlu D, Yılmaz Y. 2,4 Diklorofenoksiasetik asitin fotokatalitik degredasyonu için titanyum dioksit üretim prosesinin optimizasyonu. GUMMFD. 2023;39(1):233-42.