Research Article
BibTex RIS Cite

Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi

Year 2024, Volume: 39 Issue: 1, 339 - 350, 21.08.2023
https://doi.org/10.17341/gazimmfd.1181623

Abstract

Batarya elektrikli araçların ağırlığına katkıda bulunan en büyük kalemlerden biridir ve konumu süspansiyon sisteminin performansını doğrudan etkilemektedir. Bu makalenin amacı tekerlek içi motorlu elektrikli otomobillerde sürüş konforu açısından optimal batarya konumlarının lineer olmayan bir taşıt süspansiyon modeli kullanılarak belirlenmesidir. Analizlerde tüm yay ve amortisörlerin lineer karakteristiklerine ilaveten kübik doğrusalsızlıklarının da hesaba katıldığı yedi serbestlik dereceli bir yarım taşıt süspansiyon modeli kullanılmıştır. Modelde yay ve amortisör doğrusalsızlıklarına ek olarak tüm trigonometrik doğrusalsızlıklar da dikkate alınmıştır. Sinüzoidal formda 48 farklı yol profili ve 3 farklı ilerleme hızı ile toplamda 144 farklı sürüş senaryosu oluşturulmuş ve her bir senaryo için aracın boylamasına ekseni boyunca 36 batarya konumu test edilerek optimal olanı bulunmuştur. Optimizasyon kriteri, sürücü ve koltuğunun dikey ivmesinin kök ortalama kare değerinin minimizasyonudur. Gerçekleştirilen 5184 analiz neticesinde optimal batarya konumunun 0,2 ila 5 m arasındaki dalga boylarına sahip yol profilleri için aracın orta kısmı; 10 ila 30 m arasındaki dalga boylarına sahip yol profilleri içinse aracın arka kısmı olduğu görülmüştür.

Thanks

Bu makale, ikinci yazarın birinci yazarın tez danışmanlığında yürüttüğü yüksek lisans tez çalışmasının bir bölümüne dayanmaktadır.

References

  • Jena R., An empirical case study on Indian consumers' sentiment towards electric vehicles: A big data analytics approach, Industrial Marketing Management, 90, 605-616, 2020.
  • Harrison R.M., Vu T.V., Jafar H., Shi Z., More mileage in reducing urban air pollution from road traffic, Environ. Int., 149, 106329, 2021.
  • United States Environmental Protection Agency (EPA). Fast Facts: U.S. Transportation Sector Greenhouse Gas Emissions, 1990-2019. Office of Transportation and Air Quality, EPA-420-F-21-076, December 2021.
  • Ajanovic A., Haas R., On the economics and the future prospects of battery electric vehicles, Greenhouse Gases Sci. Technol., 10 (6), 1151-1164, 2020.
  • Sharma S., Agarwal S., Jain A., Significance of hydrogen as economic and environmentally friendly fuel, Energies, 14 (21), 7389, 2021.
  • Alimujiang A., Jiang P., Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—A case of Shanghai, Energy Sustainable Dev., 55, 181-189, 2020.
  • Shafique M., Azam A., Rafiq M., Luo X., Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong, Research in Transportation Economics, 91, 101112, 2022.
  • Choma E.F., Evans J.S., Hammitt J.K., Gómez-Ibáñez J.A., Spengler J.D., Assessing the health impacts of electric vehicles through air pollution in the United States, Environ. Int., 144, 106015, 2020.
  • Yao J., Zhang Y., Yan Z., Li L., A group approach of smart hybrid poles with renewable energy, street lighting and EV charging based on DC micro-grid, Energies, 11 (12), 3445, 2018.
  • Hua X., Thomas A., Shultis K., Recent progress in battery electric vehicle noise, vibration, and harshness, Sci. Prog., 104 (1), 368504211005224, 2021.
  • Pardo-Ferreira M. del C., Rubio-Romero J.C., Galindo-Reyes F.C., Lopez-Arquillos A., Work-related road safety: The impact of the low noise levels produced by electric vehicles according to experienced drivers, Saf. Sci., 121, 580-588, 2020.
  • International Energy Agency (IEA). Global EV Data Explorer. https://www.iea.org/articles/global-ev-data-explorer. Yayın tarihi Nisan 29, 2021. Erişim tarihi Mayıs 20, 2022.
  • Çabuk, A.S., Sağlam, S., Üstün, Ö., Investigation on efficiency of in-wheel BLDC motors for different winding structures, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (4), 1975-1985, 2019.
  • Kurnaz Araz H., Yilmaz M., Design procedure and implementation of a high-efficiency PMSM with reduced magnet-mass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1089-1109, 2020.
  • Demir U., Aküner M.C., Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1517-1530, 2018.
  • Yueying Z., Chuantian Y., Yuan Y., Weiyan W., Chengwen Z., Design and optimisation of an in-wheel switched reluctance motor for electric vehicles, IET Intelligent Transport Systems, 13 (1), 175-182, 2019.
  • Mohammed S.A.Q., Jung J.-W., A comprehensive state-of-the-art review of wired/wireless charging technologies for battery electric vehicles: Classification/common topologies/future research issues, IEEE Access, 9, 19572-19585, 2021.
  • Funke S.Á., Sprei F., Gnann T., Plötz P., How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison, Transp. Res. Part D Transp. Environ., 77, 224-242, 2019.
  • Güneş D., Tekdemir İ.G., Şengül Karaarslan M., Alboyacı B., Assessment of the impact of electric vehicle charge station loads on reliability indices, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (3), 1073-1084, 2018.
  • Sarıkurt T., Balıkçı A., A novel energy management system for full electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 323-333, 2017.
  • Tete P.R., Gupta M.M., Joshi S.S., Developments in battery thermal management systems for electric vehicles: A technical review, J. Energy Storage, 35, 102255, 2021.
  • Xu J., Ma J., Zhao X., Chen H., Xu B., Wu X., Detection technology for battery safety in electric vehicles: A review, Energies, 13 (18), 4636, 2020.
  • Ali M.U., Zafar A., Nengroo S.H., Hussain S., Junaid Alvi M., Kim H.-J., Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation, Energies, 12 (3), 446, 2019.
  • Lipu M.S.H., Hannan M.A., Hussain A., Hoque M.M., Ker P.J., Saad M.H.M., Ayob A., A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations, J. Cleaner Prod., 205, 115-133, 2018.
  • Pelletier S., Jabali O., Laporte G., Veneroni M., Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models, Transp. Res. Part B Methodol., 103, 158-187, 2017.
  • Reinhardt R., Christodoulou I., Gassó-Domingo S., Amante García B., Towards sustainable business models for electric vehicle battery second use: A critical review, J. Environ. Manage., 245, 432-446, 2019.
  • Xu C., Zhang W., He W., Li G., Huang J., Zhu H., Generation and management of waste electric vehicle batteries in China, Environ. Sci. Pollut. Res., 24 (26), 20825-20830, 2017.
  • Navale A.B., Chippa S.P., Chougule D.A., Raut P.M., Crashworthiness aspects of electric vehicle design, Int. J. Crashworthiness, 26 (4), 368-387, 2021.
  • Sever M., Şendur H.S., Yazıcı H., Arslan M.S., Active vibration control of a vehicle suspension system having biodynamic driver model with state derivative feedback LQR, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1573-1583, 2019.
  • Eroğlu M., Koç M.A., Kozan R., Esen İ., Active control of quarter-car and bridge vibrations using the sliding mode control, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1957-1970, 2022.
  • Jazar R.N., Vehicle Dynamics: Theory and Application, 2nd edition, Springer, New York, USA, 2014.
  • Ganesh S., Venkatesan S., Evolution of flexible modular electric vehicle platforms among automotive industry and its influence on battery integration, International Journal of Vehicle Structures & Systems, 13 (3), 361-366, 2021.
  • Arora S., Shen W., Kapoor A., Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable Sustainable Energy Rev., 60, 1319-1331, 2016.
  • Wang P., Effect of electric battery mass distribution on electric vehicle movement safety, Vibroengineering PROCEDIA, 33, 78-83, 2020.
  • Wang M., Jiang F., Zhang Q., Song S., Matching up the suspension of electric vehicle with the supporting system of battery pack, Mechanika, 20 (4), 382-389, 2014.
  • Narayanan S., Senthil S., Stochastic optimal active control of a 2-DOF quarter car model with non-linear passive suspension elements, J. Sound Vib., 211 (3), 495-506, 1998.
  • Doebelin E.O., System Dynamics: Modeling, Analysis, Simulation, Design, Marcel Dekker, New York, USA, 1998.
  • Jerrelind J., Allen P., Gruber P., Berg M., Drugge L., Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles, Veh. Syst. Dyn., 59 (7), 1114-1147, 2021.
  • İnce B., Başlamışlı S.Ç., Design of energy management system algorithms for the improvement of fuel economy of intracity hybrid buses and development of an adaptive hybrid algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 559-575, 2021.
  • Wu C., Xu B., Lu S., Xue F., Jiang L., Chen M., Adaptive eco-driving strategy and feasibility analysis for electric trains with onboard energy storage devices, IEEE Trans. Transp. Electrif., 7 (3), 1834-1848, 2021.
  • Fang S., Wang Y., Gou B., Xu Y., Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships, IEEE Trans. Veh. Technol., 69 (1), 207-219, 2020.
  • Parajuly K., Ternald D., Kuehr R., The Future of Electric Vehicles and Material Resources: A Foresight Brief, United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) - Sustainable Cycles (SCYCLE) Programme, Bonn, Germany & United Nations Environment Programme (UNEP)-International Environmental Technology Centre (IETC), Osaka, Japan, 2020.
  • Li Z., Khajepour A., Song J., A comprehensive review of the key technologies for pure electric vehicles, Energy, 182, 824-839, 2019.
  • Kocakulak T., Solmaz H., Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2269-2286, 2020.
  • European Commission, EU Transport in Figures – Statistical Pocketbook 2020, Publications Office of the European Union, Luxembourg, 2020.
  • Ehsani M., Gao Y., Emadi A., Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, 2nd edition, CRC Press, Boca Raton, USA, 2010.
  • Mazumder H., Al Emran Hassan M.M., Ektesabi M., Kapoor A., Performance analysis of EV for different mass distributions to ensure safe handling, Energy Procedia, 14, 949-954, 2012.
  • Liu Y., Zhao J., Jiang F., Study on the influence of the arrangement of battery pack on the steering characteristics of electric vehicles, Mechanika, 22 (6), 537-545, 2016.
  • Kim K.J., Development of light–weight design technologies for the secure mounting of battery into the body of electric vehicles, Materialwiss. Werkstofftech., 48 (5), 400-405, 2017.
  • Jiang J., Seaid M., Mohamed M.S., Li H., Inverse algorithm for real-time road roughness estimation for autonomous vehicles, Archive of Applied Mechanics, 90 (6), 1333-1348, 2020.
  • Ma Y., Deng Z., Xie D., Control of the active suspension for in-wheel motor, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 7 (4), 535-543, 2013.
  • Quynh L.V., Cuong B.V., Liem N.V., Long L.X., Thanh Dung P.T., Effect of in-wheel motor suspension system on electric vehicle ride comfort, Vibroengineering PROCEDIA, 29, 148-152, 2019.
  • Huang S., Nguyen V., Influence of dynamic parameters of electric-vehicles on the ride comfort under different operation conditions, Journal of Mechanical Engineering, Automation and Control Systems, 2 (1), 1-8, 2021.
  • Haug E.J., Arora J.S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley & Sons, New York, USA, 1979.
  • Polyanin A.D., Zaitsev V.F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2018.

Determination of optimal battery locations for ride comfort in electric automobiles using a nonlinear half-vehicle suspension model

Year 2024, Volume: 39 Issue: 1, 339 - 350, 21.08.2023
https://doi.org/10.17341/gazimmfd.1181623

Abstract

Battery is one of the largest contributors to the weight of electric vehicles, and its location directly affects the performance of the suspension system. The aim of this article is to determine the optimal battery locations for ride comfort of in-wheel-motor electric automobiles using a nonlinear vehicle suspension model. In the analyses, a seven-degree-of-freedom half-vehicle suspension model was used, in which cubic nonlinearities of all springs and dampers are taken into account in addition to their linear characteristics. In addition to spring and damper nonlinearities, all trigonometric nonlinearities are also considered in the model. Totally 144 different driving scenarios were generated with 48 different sinusoidal road profiles and 3 different travel speeds, and for each scenario by testing 36 battery locations along the vehicle’s longitudinal axis, the optimal one was found. The optimization criterion is the minimization of the root-mean-square of the vertical acceleration of the driver and seat. As a result of the 5184 analyses carried out, it has been seen that the optimal battery location is the middle of the vehicle for road profiles with wavelengths between 0.2 and 5 m, whereas the rear of the vehicle for road profiles with wavelengths between 10 and 30 m.

References

  • Jena R., An empirical case study on Indian consumers' sentiment towards electric vehicles: A big data analytics approach, Industrial Marketing Management, 90, 605-616, 2020.
  • Harrison R.M., Vu T.V., Jafar H., Shi Z., More mileage in reducing urban air pollution from road traffic, Environ. Int., 149, 106329, 2021.
  • United States Environmental Protection Agency (EPA). Fast Facts: U.S. Transportation Sector Greenhouse Gas Emissions, 1990-2019. Office of Transportation and Air Quality, EPA-420-F-21-076, December 2021.
  • Ajanovic A., Haas R., On the economics and the future prospects of battery electric vehicles, Greenhouse Gases Sci. Technol., 10 (6), 1151-1164, 2020.
  • Sharma S., Agarwal S., Jain A., Significance of hydrogen as economic and environmentally friendly fuel, Energies, 14 (21), 7389, 2021.
  • Alimujiang A., Jiang P., Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—A case of Shanghai, Energy Sustainable Dev., 55, 181-189, 2020.
  • Shafique M., Azam A., Rafiq M., Luo X., Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong, Research in Transportation Economics, 91, 101112, 2022.
  • Choma E.F., Evans J.S., Hammitt J.K., Gómez-Ibáñez J.A., Spengler J.D., Assessing the health impacts of electric vehicles through air pollution in the United States, Environ. Int., 144, 106015, 2020.
  • Yao J., Zhang Y., Yan Z., Li L., A group approach of smart hybrid poles with renewable energy, street lighting and EV charging based on DC micro-grid, Energies, 11 (12), 3445, 2018.
  • Hua X., Thomas A., Shultis K., Recent progress in battery electric vehicle noise, vibration, and harshness, Sci. Prog., 104 (1), 368504211005224, 2021.
  • Pardo-Ferreira M. del C., Rubio-Romero J.C., Galindo-Reyes F.C., Lopez-Arquillos A., Work-related road safety: The impact of the low noise levels produced by electric vehicles according to experienced drivers, Saf. Sci., 121, 580-588, 2020.
  • International Energy Agency (IEA). Global EV Data Explorer. https://www.iea.org/articles/global-ev-data-explorer. Yayın tarihi Nisan 29, 2021. Erişim tarihi Mayıs 20, 2022.
  • Çabuk, A.S., Sağlam, S., Üstün, Ö., Investigation on efficiency of in-wheel BLDC motors for different winding structures, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (4), 1975-1985, 2019.
  • Kurnaz Araz H., Yilmaz M., Design procedure and implementation of a high-efficiency PMSM with reduced magnet-mass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1089-1109, 2020.
  • Demir U., Aküner M.C., Design and optimization of in-wheel asynchronous motor for electric vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1517-1530, 2018.
  • Yueying Z., Chuantian Y., Yuan Y., Weiyan W., Chengwen Z., Design and optimisation of an in-wheel switched reluctance motor for electric vehicles, IET Intelligent Transport Systems, 13 (1), 175-182, 2019.
  • Mohammed S.A.Q., Jung J.-W., A comprehensive state-of-the-art review of wired/wireless charging technologies for battery electric vehicles: Classification/common topologies/future research issues, IEEE Access, 9, 19572-19585, 2021.
  • Funke S.Á., Sprei F., Gnann T., Plötz P., How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison, Transp. Res. Part D Transp. Environ., 77, 224-242, 2019.
  • Güneş D., Tekdemir İ.G., Şengül Karaarslan M., Alboyacı B., Assessment of the impact of electric vehicle charge station loads on reliability indices, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (3), 1073-1084, 2018.
  • Sarıkurt T., Balıkçı A., A novel energy management system for full electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 323-333, 2017.
  • Tete P.R., Gupta M.M., Joshi S.S., Developments in battery thermal management systems for electric vehicles: A technical review, J. Energy Storage, 35, 102255, 2021.
  • Xu J., Ma J., Zhao X., Chen H., Xu B., Wu X., Detection technology for battery safety in electric vehicles: A review, Energies, 13 (18), 4636, 2020.
  • Ali M.U., Zafar A., Nengroo S.H., Hussain S., Junaid Alvi M., Kim H.-J., Towards a smarter battery management system for electric vehicle applications: A critical review of lithium-ion battery state of charge estimation, Energies, 12 (3), 446, 2019.
  • Lipu M.S.H., Hannan M.A., Hussain A., Hoque M.M., Ker P.J., Saad M.H.M., Ayob A., A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations, J. Cleaner Prod., 205, 115-133, 2018.
  • Pelletier S., Jabali O., Laporte G., Veneroni M., Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models, Transp. Res. Part B Methodol., 103, 158-187, 2017.
  • Reinhardt R., Christodoulou I., Gassó-Domingo S., Amante García B., Towards sustainable business models for electric vehicle battery second use: A critical review, J. Environ. Manage., 245, 432-446, 2019.
  • Xu C., Zhang W., He W., Li G., Huang J., Zhu H., Generation and management of waste electric vehicle batteries in China, Environ. Sci. Pollut. Res., 24 (26), 20825-20830, 2017.
  • Navale A.B., Chippa S.P., Chougule D.A., Raut P.M., Crashworthiness aspects of electric vehicle design, Int. J. Crashworthiness, 26 (4), 368-387, 2021.
  • Sever M., Şendur H.S., Yazıcı H., Arslan M.S., Active vibration control of a vehicle suspension system having biodynamic driver model with state derivative feedback LQR, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1573-1583, 2019.
  • Eroğlu M., Koç M.A., Kozan R., Esen İ., Active control of quarter-car and bridge vibrations using the sliding mode control, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (4), 1957-1970, 2022.
  • Jazar R.N., Vehicle Dynamics: Theory and Application, 2nd edition, Springer, New York, USA, 2014.
  • Ganesh S., Venkatesan S., Evolution of flexible modular electric vehicle platforms among automotive industry and its influence on battery integration, International Journal of Vehicle Structures & Systems, 13 (3), 361-366, 2021.
  • Arora S., Shen W., Kapoor A., Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles, Renewable Sustainable Energy Rev., 60, 1319-1331, 2016.
  • Wang P., Effect of electric battery mass distribution on electric vehicle movement safety, Vibroengineering PROCEDIA, 33, 78-83, 2020.
  • Wang M., Jiang F., Zhang Q., Song S., Matching up the suspension of electric vehicle with the supporting system of battery pack, Mechanika, 20 (4), 382-389, 2014.
  • Narayanan S., Senthil S., Stochastic optimal active control of a 2-DOF quarter car model with non-linear passive suspension elements, J. Sound Vib., 211 (3), 495-506, 1998.
  • Doebelin E.O., System Dynamics: Modeling, Analysis, Simulation, Design, Marcel Dekker, New York, USA, 1998.
  • Jerrelind J., Allen P., Gruber P., Berg M., Drugge L., Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles, Veh. Syst. Dyn., 59 (7), 1114-1147, 2021.
  • İnce B., Başlamışlı S.Ç., Design of energy management system algorithms for the improvement of fuel economy of intracity hybrid buses and development of an adaptive hybrid algorithm, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (1), 559-575, 2021.
  • Wu C., Xu B., Lu S., Xue F., Jiang L., Chen M., Adaptive eco-driving strategy and feasibility analysis for electric trains with onboard energy storage devices, IEEE Trans. Transp. Electrif., 7 (3), 1834-1848, 2021.
  • Fang S., Wang Y., Gou B., Xu Y., Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships, IEEE Trans. Veh. Technol., 69 (1), 207-219, 2020.
  • Parajuly K., Ternald D., Kuehr R., The Future of Electric Vehicles and Material Resources: A Foresight Brief, United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) - Sustainable Cycles (SCYCLE) Programme, Bonn, Germany & United Nations Environment Programme (UNEP)-International Environmental Technology Centre (IETC), Osaka, Japan, 2020.
  • Li Z., Khajepour A., Song J., A comprehensive review of the key technologies for pure electric vehicles, Energy, 182, 824-839, 2019.
  • Kocakulak T., Solmaz H., Control of pre and post transmission parallel hybrid vehicles with fuzzy logic method and comparison with other power systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2269-2286, 2020.
  • European Commission, EU Transport in Figures – Statistical Pocketbook 2020, Publications Office of the European Union, Luxembourg, 2020.
  • Ehsani M., Gao Y., Emadi A., Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, 2nd edition, CRC Press, Boca Raton, USA, 2010.
  • Mazumder H., Al Emran Hassan M.M., Ektesabi M., Kapoor A., Performance analysis of EV for different mass distributions to ensure safe handling, Energy Procedia, 14, 949-954, 2012.
  • Liu Y., Zhao J., Jiang F., Study on the influence of the arrangement of battery pack on the steering characteristics of electric vehicles, Mechanika, 22 (6), 537-545, 2016.
  • Kim K.J., Development of light–weight design technologies for the secure mounting of battery into the body of electric vehicles, Materialwiss. Werkstofftech., 48 (5), 400-405, 2017.
  • Jiang J., Seaid M., Mohamed M.S., Li H., Inverse algorithm for real-time road roughness estimation for autonomous vehicles, Archive of Applied Mechanics, 90 (6), 1333-1348, 2020.
  • Ma Y., Deng Z., Xie D., Control of the active suspension for in-wheel motor, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 7 (4), 535-543, 2013.
  • Quynh L.V., Cuong B.V., Liem N.V., Long L.X., Thanh Dung P.T., Effect of in-wheel motor suspension system on electric vehicle ride comfort, Vibroengineering PROCEDIA, 29, 148-152, 2019.
  • Huang S., Nguyen V., Influence of dynamic parameters of electric-vehicles on the ride comfort under different operation conditions, Journal of Mechanical Engineering, Automation and Control Systems, 2 (1), 1-8, 2021.
  • Haug E.J., Arora J.S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley & Sons, New York, USA, 1979.
  • Polyanin A.D., Zaitsev V.F., Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 2018.
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Özdemir 0000-0002-4981-9573

Eralp Osman Erdoğan 0000-0002-6273-5964

Early Pub Date June 15, 2023
Publication Date August 21, 2023
Submission Date September 29, 2022
Acceptance Date February 14, 2023
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Özdemir, M., & Erdoğan, E. O. (2023). Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 339-350. https://doi.org/10.17341/gazimmfd.1181623
AMA Özdemir M, Erdoğan EO. Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi. GUMMFD. August 2023;39(1):339-350. doi:10.17341/gazimmfd.1181623
Chicago Özdemir, Mustafa, and Eralp Osman Erdoğan. “Elektrikli Otomobillerde sürüş Konforu için Optimal Batarya konumlarının Lineer Olmayan Bir yarım taşıt süspansiyon Modeli kullanılarak Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 339-50. https://doi.org/10.17341/gazimmfd.1181623.
EndNote Özdemir M, Erdoğan EO (August 1, 2023) Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 339–350.
IEEE M. Özdemir and E. O. Erdoğan, “Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi”, GUMMFD, vol. 39, no. 1, pp. 339–350, 2023, doi: 10.17341/gazimmfd.1181623.
ISNAD Özdemir, Mustafa - Erdoğan, Eralp Osman. “Elektrikli Otomobillerde sürüş Konforu için Optimal Batarya konumlarının Lineer Olmayan Bir yarım taşıt süspansiyon Modeli kullanılarak Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 339-350. https://doi.org/10.17341/gazimmfd.1181623.
JAMA Özdemir M, Erdoğan EO. Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi. GUMMFD. 2023;39:339–350.
MLA Özdemir, Mustafa and Eralp Osman Erdoğan. “Elektrikli Otomobillerde sürüş Konforu için Optimal Batarya konumlarının Lineer Olmayan Bir yarım taşıt süspansiyon Modeli kullanılarak Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 339-50, doi:10.17341/gazimmfd.1181623.
Vancouver Özdemir M, Erdoğan EO. Elektrikli otomobillerde sürüş konforu için optimal batarya konumlarının lineer olmayan bir yarım taşıt süspansiyon modeli kullanılarak belirlenmesi. GUMMFD. 2023;39(1):339-50.