Araştırma Makalesi
BibTex RIS Kaynak Göster

İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması

Yıl 2024, Cilt: 39 Sayı: 3, 1597 - 1610, 20.05.2024
https://doi.org/10.17341/gazimmfd.1241334

Öz

Motor Hayali Elektroensefalogram (EEG) sinyalleri, Beyin-Bilgisayar Arayüzlerinde (BBA) yaygın olarak kullanılmaktadır. Son yıllarda, büyük uzuv hareketlerinin motor hayali EEG sinyalleri, çeşitli makine öğrenme yaklaşımları kullanılarak sınıflandırılmaya çalışılmıştır. Ancak, hayali parmak hareketlerinin EEG sinyallerinin sınıflandırılması, parmak hareketlerinin ayırt edilmesini zorlaştıran daha küçük ve gürültülü sinyal özelliklerinden dolayı daha az sıklıkla analiz edilmektedir. Bu çalışma, hayali parmak hareketlerinin (Başparmak, İşaret parmağı, Orta parmak, Yüzük parmağı, Serçe parmak) ve hayali olmayan görev durumunun (NoMT) sınıflandırılması için EEG sinyal temsillerinin istatistiksel olarak anlamlı zaman alanı özniteliklerine dayalı olduğu bir yöntem önermektedir. 8 sağlıklı deneğin 21 EEG kanalından 24 farklı zaman alanı özniteliği çıkarılmaktadır. Önemli ve ilgili zaman alanı özniteliklerini belirlemek için istatistiksel anlamlılığa (ANOVA) dayalı özellik seçim yöntemi ve Temel Bileşen Analizi (TBA) kullanılmaktadır. Bu çalışma, istatistiksel olarak anlamlı özniteklilerin etkili analizi için 4 farklı yaklaşımı araştırmaktadır. Bunlar (i) tüm zaman alanı özniteliklerini, (ii) PCA tabanlı belirlenmiş temel zaman alanı bileşenlerini, (iii) ANOVA tabanlı belirlenmiş olan istatistiksel olarak anlamlı zaman alanı özniteliklerini ve (iv) ANOVA tabanlı belirlenmiş istatistiksel olarak anlamlı zaman alanı özelliklerinden PCA tabanlı belirlenmiş temel zaman alanı bileşenlerini kullanan yaklaşımlardır. Farklı parametrelere sahip sekiz farklı tipik sınıflandırıcı, 5-kat çapraz doğrulama kullanılarak 6 grubu sınıflandırmak için hesaplanmıştır. Önerilen yöntemler hem denek bağımlı hem de denek bağımsız koşullar için incelenmiştir. Sonuçlar, istatistiksel anlamlılığa dayalı öznitelik seçim yönteminin TBA tabanlı öznitelik seçimine kıyasla daha iyi performans verdiğini göstermektedir. Denekten bağımsız analizde, istatistiksel olarak anlamlı zaman alanı öznitelikleri ve Destek Vektör Makinesi (SVM) algoritması kullanılarak en yüksek eğitim doğrulama doğruluğu ve test doğruluğu değerleri %37,8 ve %35,8 olarak hesaplanmıştır. Deneğe bağlı analizlerde istatistiksel olarak anlamlı zaman alanı öznitelikleri ve DVM kullanılarak 8 kişinin en yüksek eğitim doğruluk değerleri %27,7-%53,0 olarak hesaplanmıştır ve 8 kişinin test doğruluk değerleri %33,3-%57,5 olarak hesaplanmıştır. Çalışma sonucunda, denek bağımlı sınıflandırmaların performansları denek bağımsız sınıflamalara göre daha yüksektir. Deneğe bağlı bu en yüksek sonuçlar, gelecek zamanda kişiselleştirilmiş el protezlerinin tasarımı çalışmalarında EEG tabanlı BBA sistemlerinin tasarımı için ümit vericidir.

Kaynakça

  • 1. Hidayatullah A.N., Pranowo P., Membuka Ruang Asa dan Kesejahteraan Bagi Penyandang Disabilitas, Jurnal Penelitian Kesejahteraan Sosial, 17 (2), 195-206, 2018.
  • 2. Condori K.A., Urquizo E.C., Diaz D.A., Embedded Brain Machine Interface based on motor imagery paradigm to control prosthetic hand, In 2016 IEEE ANDESCON, IEEE, 1-4, 2016.
  • 3. Elstob D., Secco E.L., A low cost EEG based BCI prosthetic using motor imagery, arXiv preprint arXiv:1603.02869, 6 (1), 2016.
  • 4. Azizah R.N., Zakaria H., Hermanto B.R., Channels Selection for Pattern Recognition of Five Fingers Motor Imagery Electroencephalography Signals, In Journal of Physics: Conference Series, IOP Publishing, 2312 (1), 012019, 2022.
  • 5. Kaya M., Binli M.K., Ozbay E., Yanar H., Mishchenko Y., A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces, Scientific Data, 5 (1), 1-16 2018.
  • 6. Anam K., Nuh M., Al-Jumaily A., Comparison of EEG pattern recognition of motor imagery for finger movement classification, 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, 24-27, 2019.
  • 7. Azizah R.N., Zakaria H., Hermanto B.R., Channels Selection for Pattern Recognition of Five Fingers Motor Imagery Electroencephalography Signals, In Journal of Physics: Conference Series, IOP Publishing 2312 (1), 012019, 2022.
  • 8. Kato M., Kanoga S., Hoshino T., Fukami T., Motor imagery classification of finger motions using multiclass CSP, 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2991-2994, 2020.
  • 9. Narin A., Isler Y., Detection of new coronavirus disease from chest x-ray images using pre-trained convolutional neural networks, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 2095-2107, 2021.
  • 10. Ozdemir M.A., Degirmenci M., Izci E., Akan A., EEG-based emotion recognition with deep convolutional neural networks, Biomedical Engineering/Biomedizinische Technik, 66 (1), 43-57, 2021.
  • 11. Degirmenci M., Ozdemir M.A., Izci E., Akan A., Arrhythmic heartbeat classification using 2d convolutional neural networks, Irbm, 43 (5), 422-433, 2021.
  • 12. Mwata-Velu T.Y., Avina-Cervantes J.G., Cruz-Duarte J.M., Rostro-Gonzalez H., Ruiz-Pinales J., Imaginary Finger Movements Decoding Using Empirical Mode Decomposition and a Stacked BiLSTM Architecture, Mathematics, 9 (24), 3297, 2021.
  • 13. Mwata-Velu T.Y., Avina-Cervantes J.G., Ruiz-Pinales J., Garcia-Calva T.A., González-Barbosa E.A., Hurtado-Ramos J.B., González-Barbosa J.J., Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture, Mathematics, 10 (13), 2302, 2022.
  • 14. Anam K., Bukhori S., Hanggara F.S., Pratama M., Subject-independent Classification on Brain-Computer Interface using Autonomous Deep Learning for finger movement recognition, 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 447-450, 2020.
  • 15. Zahra H.N., Zakaria H., Hermanto B.R., Exploration of Pattern Recognition Methods for Motor Imagery EEG Signal with Convolutional Neural Network Approach. In Journal of Physics: Conference Series, IOP Publishing, 2312 (1), 012064, 2022.
  • 16. Degirmenci M., Yuce Y.K., Isler Y., Motor imaginary task classification using statistically significant time-domain EEG features. In 2022 30th Signal Processing and Communications Applications Conference (SIU), IEEE May 16-18, Safranbolu, Turkey, 2022.
  • 17. Sayilgan E., Yuce Y.K., Isler Y., Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System Using Wavelet Features and Various Machine Learning Methods, In Brain-Computer Interface, IntechOpen, 2021.
  • 18. Isler Y., A detailed analysis of the effects of various combinations of heart rate variability indices in congestive heart failure, Ph.D. thesis, Dokuz Eylul University, Institute of Science, Izmir, 2009.
  • 19. Narin A., Isler Y., Ozer M., Investigating the performance improvement of HRV Indices in CHF using feature selection methods based on backward elimination and statistical significance, Computers in Biology and Medicine, 45, 72-79, 2014.
  • 20. Degirmenci M., Yuce Y.K., Isler Y., Motor imaginary task classification using statistically significant time domain and frequency domain eeg features, Journal of Intelligent Systems with Applications, 5 (1), 49-54, 2022.
  • 21. Duda R.O., Hart P.E., Stork D.G., Pattern Classification, 2nd Edition, John Wiley and Sons, New York, 2001.
  • 22. Selek M.B., Yesilkaya B., Egeli S.S., Isler Y., The effect of principal component analysis in the diagnosis of congestive heart failure via heart rate variability analysis, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235 (12), 1479-1488, 2021.
  • 23. Narin A., Isler Y., Effect of principal component analysis on diagnosing congestive heart failure patients using heart rate records. In 2012 20th Signal Processing and Communications Applications Conference (SIU), IEEE, 1-4, 2012.
  • 24. Lu H., Plataniotis K.N., Venetsanopoulos A. N., Multilinear principal component analysis of tensor objects for recognition, In 18th International Conference on Pattern Recognition (ICPR'06), IEEE, 2, 776-779, 2006.
  • 25. Hongye X., Zhuoya H., Gait recognition based on gait energy image and linear discriminant analysis. In 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), IEEE, 1-4, 2015.
  • 26. Degirmenci M., Yuce Y.K., Isler Y., Classification of multi-class motor imaginary tasks using poincare measurements extracted from eeg signals, Journal of Intelligent Systems with Applications, 5 (2), 74-78, 2022.
  • 27. Pan S., Iplikci S., Warwick K., Aziz T.Z., Parkinson’s Disease tremor classification–A comparison between Support Vector Machines and neural networks. Expert Systems with Applications, 39 (12), 10764-10771, 2012.
  • 28. Richard M.D., Lippmann R.P. Neural network classifiers estimate Bayesian a posteriori probabilities, Neural computation, 3 (4), 461-483, 1991.
  • 29. Degirmenci M., Ozdemir M.A., Sadighzadeh R., Akan, A. Emotion recognition from EEG signals by using empirical mode decomposition. In 2018 Medical Technologies National Congress (TIPTEKNO), IEEE, 1-4, 2018.
  • 30. Tzallas A.T., Tsipouras M.G., Fotiadis D.I., Epileptic seizure detection in EEGs using time–frequency analysis, IEEE Transactions on Information Technology in Biomedicine ,13 (5), 703-710, 2009.
  • 31. Cura O.K., Akan A., Analysis of epileptic EEG signals by using dynamic mode decomposition and spectrum. Biocybernetics and Biomedical Engineering, 41 (1), 28-44, 2021.
  • 32. Lotte F., Baugrain L., Cichocki A., Clerc M., Congedo M., Rakotomamonjy A., Yger F., A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update, Journal of Neural Engineering, 15 (3), 031005, 2018.
  • 33. Vapnik V., The nature of statistical learning theory, Springer Science & Business Media, 1999.
  • 34. Chakrabarti S., Roy S., Soundalgekar M.V., Fast and accurate text classification via multiple linear discriminant projections, The VLDB journal, 12 (2), 170-185, 2003.
  • 35. Liu C., Wechsler H., Enhanced fisher linear discriminant models for face recognition, In Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), IEEE, 2, 1368-1372, 1998.
  • 36. Sayilgan E., Yuce Y.K., Isler Y., Evaluation of wavelet features selected via statistical evidence from steady-state visually-evoked potentials to predict the stimulating frequency, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (2), 593-605, 2021.
  • 37. Isler Y., Narin A., Ozer O., Perc M., Multi-stage classification of congestive heart failure based on shortterm heart rate variability, Chaos, Solitons & Fractals, 118, 145-151, 2019.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mürşide Değirmenci 0000-0003-0978-9653

Yilmaz Yüce 0000-0001-5291-0565

Yalçın İşler 0000-0002-2150-4756

Erken Görünüm Tarihi 19 Ocak 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 24 Ocak 2023
Kabul Tarihi 24 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Değirmenci, M., Yüce, Y., & İşler, Y. (2024). İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1597-1610. https://doi.org/10.17341/gazimmfd.1241334
AMA Değirmenci M, Yüce Y, İşler Y. İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması. GUMMFD. Mayıs 2024;39(3):1597-1610. doi:10.17341/gazimmfd.1241334
Chicago Değirmenci, Mürşide, Yilmaz Yüce, ve Yalçın İşler. “İstatistiksel Anlamlı Zaman Alanı EEG özniteliklerinden El Parmak Hareketlerinin sınıflandırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1597-1610. https://doi.org/10.17341/gazimmfd.1241334.
EndNote Değirmenci M, Yüce Y, İşler Y (01 Mayıs 2024) İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1597–1610.
IEEE M. Değirmenci, Y. Yüce, ve Y. İşler, “İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması”, GUMMFD, c. 39, sy. 3, ss. 1597–1610, 2024, doi: 10.17341/gazimmfd.1241334.
ISNAD Değirmenci, Mürşide vd. “İstatistiksel Anlamlı Zaman Alanı EEG özniteliklerinden El Parmak Hareketlerinin sınıflandırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1597-1610. https://doi.org/10.17341/gazimmfd.1241334.
JAMA Değirmenci M, Yüce Y, İşler Y. İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması. GUMMFD. 2024;39:1597–1610.
MLA Değirmenci, Mürşide vd. “İstatistiksel Anlamlı Zaman Alanı EEG özniteliklerinden El Parmak Hareketlerinin sınıflandırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1597-10, doi:10.17341/gazimmfd.1241334.
Vancouver Değirmenci M, Yüce Y, İşler Y. İstatistiksel anlamlı zaman alanı EEG özniteliklerinden el parmak hareketlerinin sınıflandırılması. GUMMFD. 2024;39(3):1597-610.