Research Article
BibTex RIS Cite

Motorlu araç muayene ve hata birliktelikleri tahmini

Year 2025, Volume: 40 Issue: 1, 455 - 466, 16.08.2024
https://doi.org/10.17341/gazimmfd.1036562

Abstract

Araç muayenesi trafikte yer alan motorlu ya da motorsuz araçlar için teknik yeterliliklerinin ölçüldüğü, yolcu ve trafik güvenliğinin sağlanıp sağlanmadığının tespit edildiği sistemdir. Karayolunda seyreden araçların teknik muayenelerini daha etkin ve sağlıklı bir şekilde yapmak ve karayolu trafik güvenliğini sağlamak amacıyla her yıl yaklaşık 6 milyona yakın aracın perdiyodik muayenesi gerçekleşmektedir. Bu araştırma çalışmasında araç muayene verileri ile makine öğrenmesi ve derin sinir ağları kullanılarak araç muayene sonucu tahmin ve kusur birliktelik analizi yapılmıştır. Birliktelik kuralları çıkarım yöntemlerinden apriori algoritması ile araçların muayene sonucunda birlikte görülen kusurların analizi gerçekleştirilmiştir ve araç kusurları arasında anlamlı ilişkiler bulunmuştur. Ayrıca makine öğrenmesi tahmin yöntemlerinden Lojistik Regresyon (LR), Naive Bayes (NB), Karar Ağaçları (DT), Rastgele Orman (RF), K-En Yakın Komşu (KNN), Gradyan Yükseltme (XGBoost), AdaBoost, Derin Sinir Ağı (DNN) ve Evrişimsel Sinir Ağı (CNN) kullanılmış olup her bir model AUC, ROC eğrisi, doğruluk, kesinlik, hatırlama ve F1 skor değerleri açısından karşılaştırılmıştır. Makine öğrenme yöntemleri ile hafif kusurlu, ağır kusurlu ve emniyetsiz olarak sınıflandırılan muayene sonucu tahmininin yüksek sayılabilecek doğrulukta, belirli kusurların da birlikte yüksek oranda görülebildiği sonucuna ulaşılmıştır.

References

  • Das S., Geedipally S. R., Dixon K., Sun X. ve Ma C., Measuring the Effectiveness of Vehicle Inspection Regulations in Different States of the U.S., Transportation Research Record 2019, 2673(5), 208–219, 2019.
  • Martín-delosReyes L.M., Lardelli-Claret P., García-Cuerva L., Rivera-Izquierdo M., Jiménez-Mejías E. ve Martínez-Ruiz V., Effect of Periodic Vehicle Inspection on Road Crashes and Injuries: A Systematic Review. Int. J. Environ. Res. Public Health, 18, 6476, 2021.
  • Talonen, J., Sirola, M. ve Sulkava, M., Network Visualization of Car Inspection Data using Graph Layout. The First International Conference on Data Analytics 39-42, 2012.
  • Gang H., Automobile Fault Diagnosis System Based on Improved Neural Network," 2016 International Conference on Smart City and Systems Engineering (ICSCSE), 494-497, 2016.
  • Dejun W., Tianliang X., Chengdong L. ve Lihua W., Fault diagnosis of automobile engine based on support vector machine. 2011 3rd International Conference on Advanced Computer Control, 320-324, 2011.
  • Bo Q., Fault diagnosis method of automobile engine based on least squares support vector machine. 2010 2nd International Conference on Signal Processing Systems, V3-43-V3-46, 2010.
  • Youjun Y., Xiang L. ve Qun Z., Developmentof automobile fault diagnosis expert system based on fault tree- Neural network ensamble. 2011 International Conference on Electronics, Communications and Control (ICECC), 2028-2031, 2011.
  • Kong L. F., Zhu S. S. ve Wang Z., Gradient genetic algorithm-based oil fault diagnosis model for automobile engine. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2127-2130, 2011.
  • Murphey Y. L. ve Chen Z., A Multi-Agent System for Complex Vehicle Fault Diagnostics and Health Monitoring. 15th IEEE International Conference on Engineering of Complex Computer Systems. 52(4),1076-1098, 2010.
  • Satoh S., Yakuwa F. ve Dote Y., Combination of radial basis function (RBF) and time delayed neural networks (TDNN) for fault diagnosis of automobile transmission gears using general parameter learning and adaptation. SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance, vol.2, 1457-1462, 2003.
  • Luckow A., Cook M., Ashcraft Weill, N. E., Djerekarov E. ve Vorster B., Deep learning in the automotive industry: Applications and tools. 2016 IEEE International Conference on Big Data (Big Data), 3759-3768, 2016.
  • Kong L. F., Zhu S. S. ve Wang Z., Gradient genetic algorithm-based oil fault diagnosis model for automobile engine. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2127-2130, 2011.
  • Lili Z., Jiangwei C. ve Bencun Z., Study of automobile electric controlled system fault diagnosis based on classification pattern recognition. The 2010 IEEE International Conference on Information and Automation, 2076-2081, 2010.
  • Zheng S., Han Z., Tang H. ve Zhang Y., Application of support vector machines to sensor fault diagnosis in ESP system. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol.6, 3334-3338, 2004.
  • Weijie W., Yuanfu K., Xuezheng Z. ve Wentao H., Study of automobile engine fault diagnosis based on wavelet neural networks. Fifth World, Congress on Intelligent Control and Automation Vol.2, 1766-1770, 2004.
  • Kher S. ve Chande P. K., Intelligent diagnosis of transparent faults in automobiles," Proceedings of the 35th SICE Annual Conference. International Session Papers, 1415-1420, 1996.
  • Gao X. Z., Ovaska S. J. ve Dote Y., Motor fault detection using Elman neural network with genetic algorithm-aided training. Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions', vol.4, 2386-2392, 2000.
  • Amancio DR, Comin CH, Casanova D, Travieso G, Bruno OM, A Systematic Comparison of Supervised Classifiers. PLOS ONE 9(4), 2014.
  • M. Scholz, T. Wimmer, A comparison of classification methods across different data complexity scenarios and datasets, Expert Systems with Applications, Volume 168, 2021.
  • Olgun S., Yazılım Projelerinin Yönetiminde Maliyet Tahmini için Derin Öğrenme Tabanlı Yeni Bir Yaklaşım. Doktora Tezi, İstanbul Üniversitesi Lisansüstü Eğitim Enstitüsü / Endüstri Mühendisliği Ana Bilim Dalı, 25. İstanbul, 2020.
  • Kotsiantias S. ve Kanellopoulos D., Association Rules Mining: A Recent Overview. GESTS International Transactions on Computer Science and Engineering, 32 (1), 71-82, 2006.
  • Elabiad Z., Web Tabanlı Anket Sistemi İle Elde Edilen Verilerin Veri Madenciliği Yöntemi ile Analizi, Yüksek Lisans Tezi, İstanbul Aydın Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 18, 2013.
Year 2025, Volume: 40 Issue: 1, 455 - 466, 16.08.2024
https://doi.org/10.17341/gazimmfd.1036562

Abstract

References

  • Das S., Geedipally S. R., Dixon K., Sun X. ve Ma C., Measuring the Effectiveness of Vehicle Inspection Regulations in Different States of the U.S., Transportation Research Record 2019, 2673(5), 208–219, 2019.
  • Martín-delosReyes L.M., Lardelli-Claret P., García-Cuerva L., Rivera-Izquierdo M., Jiménez-Mejías E. ve Martínez-Ruiz V., Effect of Periodic Vehicle Inspection on Road Crashes and Injuries: A Systematic Review. Int. J. Environ. Res. Public Health, 18, 6476, 2021.
  • Talonen, J., Sirola, M. ve Sulkava, M., Network Visualization of Car Inspection Data using Graph Layout. The First International Conference on Data Analytics 39-42, 2012.
  • Gang H., Automobile Fault Diagnosis System Based on Improved Neural Network," 2016 International Conference on Smart City and Systems Engineering (ICSCSE), 494-497, 2016.
  • Dejun W., Tianliang X., Chengdong L. ve Lihua W., Fault diagnosis of automobile engine based on support vector machine. 2011 3rd International Conference on Advanced Computer Control, 320-324, 2011.
  • Bo Q., Fault diagnosis method of automobile engine based on least squares support vector machine. 2010 2nd International Conference on Signal Processing Systems, V3-43-V3-46, 2010.
  • Youjun Y., Xiang L. ve Qun Z., Developmentof automobile fault diagnosis expert system based on fault tree- Neural network ensamble. 2011 International Conference on Electronics, Communications and Control (ICECC), 2028-2031, 2011.
  • Kong L. F., Zhu S. S. ve Wang Z., Gradient genetic algorithm-based oil fault diagnosis model for automobile engine. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2127-2130, 2011.
  • Murphey Y. L. ve Chen Z., A Multi-Agent System for Complex Vehicle Fault Diagnostics and Health Monitoring. 15th IEEE International Conference on Engineering of Complex Computer Systems. 52(4),1076-1098, 2010.
  • Satoh S., Yakuwa F. ve Dote Y., Combination of radial basis function (RBF) and time delayed neural networks (TDNN) for fault diagnosis of automobile transmission gears using general parameter learning and adaptation. SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance, vol.2, 1457-1462, 2003.
  • Luckow A., Cook M., Ashcraft Weill, N. E., Djerekarov E. ve Vorster B., Deep learning in the automotive industry: Applications and tools. 2016 IEEE International Conference on Big Data (Big Data), 3759-3768, 2016.
  • Kong L. F., Zhu S. S. ve Wang Z., Gradient genetic algorithm-based oil fault diagnosis model for automobile engine. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2127-2130, 2011.
  • Lili Z., Jiangwei C. ve Bencun Z., Study of automobile electric controlled system fault diagnosis based on classification pattern recognition. The 2010 IEEE International Conference on Information and Automation, 2076-2081, 2010.
  • Zheng S., Han Z., Tang H. ve Zhang Y., Application of support vector machines to sensor fault diagnosis in ESP system. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, vol.6, 3334-3338, 2004.
  • Weijie W., Yuanfu K., Xuezheng Z. ve Wentao H., Study of automobile engine fault diagnosis based on wavelet neural networks. Fifth World, Congress on Intelligent Control and Automation Vol.2, 1766-1770, 2004.
  • Kher S. ve Chande P. K., Intelligent diagnosis of transparent faults in automobiles," Proceedings of the 35th SICE Annual Conference. International Session Papers, 1415-1420, 1996.
  • Gao X. Z., Ovaska S. J. ve Dote Y., Motor fault detection using Elman neural network with genetic algorithm-aided training. Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions', vol.4, 2386-2392, 2000.
  • Amancio DR, Comin CH, Casanova D, Travieso G, Bruno OM, A Systematic Comparison of Supervised Classifiers. PLOS ONE 9(4), 2014.
  • M. Scholz, T. Wimmer, A comparison of classification methods across different data complexity scenarios and datasets, Expert Systems with Applications, Volume 168, 2021.
  • Olgun S., Yazılım Projelerinin Yönetiminde Maliyet Tahmini için Derin Öğrenme Tabanlı Yeni Bir Yaklaşım. Doktora Tezi, İstanbul Üniversitesi Lisansüstü Eğitim Enstitüsü / Endüstri Mühendisliği Ana Bilim Dalı, 25. İstanbul, 2020.
  • Kotsiantias S. ve Kanellopoulos D., Association Rules Mining: A Recent Overview. GESTS International Transactions on Computer Science and Engineering, 32 (1), 71-82, 2006.
  • Elabiad Z., Web Tabanlı Anket Sistemi İle Elde Edilen Verilerin Veri Madenciliği Yöntemi ile Analizi, Yüksek Lisans Tezi, İstanbul Aydın Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 18, 2013.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gizem Çetin 0000-0003-0486-8758

Ömer Özgür Tanrıöver 0000-0003-0833-3494

Early Pub Date July 1, 2024
Publication Date August 16, 2024
Submission Date December 14, 2021
Acceptance Date March 23, 2024
Published in Issue Year 2025 Volume: 40 Issue: 1

Cite

APA Çetin, G., & Tanrıöver, Ö. Ö. (2024). Motorlu araç muayene ve hata birliktelikleri tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 455-466. https://doi.org/10.17341/gazimmfd.1036562
AMA Çetin G, Tanrıöver ÖÖ. Motorlu araç muayene ve hata birliktelikleri tahmini. GUMMFD. August 2024;40(1):455-466. doi:10.17341/gazimmfd.1036562
Chicago Çetin, Gizem, and Ömer Özgür Tanrıöver. “Motorlu Araç Muayene Ve Hata Birliktelikleri Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, no. 1 (August 2024): 455-66. https://doi.org/10.17341/gazimmfd.1036562.
EndNote Çetin G, Tanrıöver ÖÖ (August 1, 2024) Motorlu araç muayene ve hata birliktelikleri tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 455–466.
IEEE G. Çetin and Ö. Ö. Tanrıöver, “Motorlu araç muayene ve hata birliktelikleri tahmini”, GUMMFD, vol. 40, no. 1, pp. 455–466, 2024, doi: 10.17341/gazimmfd.1036562.
ISNAD Çetin, Gizem - Tanrıöver, Ömer Özgür. “Motorlu Araç Muayene Ve Hata Birliktelikleri Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (August 2024), 455-466. https://doi.org/10.17341/gazimmfd.1036562.
JAMA Çetin G, Tanrıöver ÖÖ. Motorlu araç muayene ve hata birliktelikleri tahmini. GUMMFD. 2024;40:455–466.
MLA Çetin, Gizem and Ömer Özgür Tanrıöver. “Motorlu Araç Muayene Ve Hata Birliktelikleri Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 40, no. 1, 2024, pp. 455-66, doi:10.17341/gazimmfd.1036562.
Vancouver Çetin G, Tanrıöver ÖÖ. Motorlu araç muayene ve hata birliktelikleri tahmini. GUMMFD. 2024;40(1):455-66.