Zamana bağlı akış alanının açık kaynak programlar ile aerodinamik incelemesi
Yıl 2025,
Cilt: 40 Sayı: 2, 1299 - 1310, 03.02.2025
Baha Zafer
,
Mehmet Fatih Ekinci
Öz
Bu çalışmada, son yıllarda sıklıkla araştırma konusu olmuş rüzgâr türbini kanat profili NREL S826’ nın açık kaynak kodlu hesaplamalı akışkanlar dinamiği (HAD) yazılımı OpenFOAM ile aerodinamik incelemesi yapılmıştır. İki boyutlu akış alanının çözümünde k-ω SST ve Langtry-Menter’ in Transitional SST (γ-〖R ̃e〗_θt) modeli kullanılırken, üç boyutlu analizlerde Transition SST (γ-〖R ̃e〗_θt) türbülans modeli kullanılmıştır. Yapılan bütün analizler zamana bağlı olup basınca dayalı yarı kapalı hibrit bir çözücü olan pimpleCentralFoam ile çözülmüştür. Elde edilen veriler deneysel çalışmalarla karşılaştırılarak detaylı bir şekilde incelenmiştir.
Kaynakça
- 1. Ledo, L., Kosasih, P. B., Cooper, P., Roof mounting site analysis for micro-wind turbines, Renewable Energy, 36 (5), 1379-1391, 2011.
- 2. Herbert, G. J., Iniyan, S., Sreevalsan, E., Rajapandian, S., A review of wind energy Technologies, Renewable and Sustainable Energy Reviews, 11 (6), 1117-1145, 2007.
- 3. Eriksson, S., Bernhoff, H., Leijon, M., Evaluation of different turbine concepts for wind power, Renewable and Sustainable Energy reviews, 12 (5), 1419-1434, 2008.
- 4. Schreck, S. J., Robinson, M. C., Horizontal axis wind turbine blade aerodynamics in experiments and modeling, IEEE Transactions on Energy Conversion, 22 (1), 61-70, 2007.
- 5. Karthikeyan, N., Murugavel, K. K., Kumar, S. A., Rajakumar, S., Review of aerodynamic developments on small horizontal axis wind turbine blade, Renewable and Sustainable Energy Reviews, 42, 801-822, 2015.
- 6. Lissaman, P. B. S., Low-Reynolds-number airfoils, Annual Review of Fluid Mechanics, 15 (1), 223-239, 1983.
- 7. Canlioglu I.E., Kara E., Computational fluid dynamics study of lift enhancement on a NACA0012 airfoil using a synthetic jet actuator, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1821-1838, 2023.
- 8. Zafer B., Coşgun F., Aeroacoustics investigation of unsteady incompressible cavity flow, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 665-675, 2016.
- 9. Göv İ., Doğru M. H., Korkmaz Ü., Improvement of the aerodynamic performance of NACA 4412 using the adjustable airfoil profile during the flight, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 1109-1126, 2019.
- 10. Zafer B., Haskaraman F., Numerical investigation of headwind and crosswind conditions of Ahmed body, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 215-230, 2017.
- 11. Tangler, J. L., Somers, D. M., NREL airfoil families for HAWTs (No. NREL/TP-442-7109), National Renewable Energy Lab., Golden, CO (United States), 1995.
- 12. Somers, D. M., The S825 and S826 Airfoils NREL, SR-500-36344, 2005.
- 13. Sarlak, H., Mikkelsen, R., Sarmast, S., Sørensen, J. N., Aerodynamic behaviour of NREL S826 airfoil at Re= 100,000, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012027, 2014.
- 14. Sarmast, S., Numerical study on instability and interaction of wind turbine wakes Doctoral dissertation, KTH Royal Institute of Technology, 2014.
- 15. Ostovan, Y., Amiri, H., Uzol, O., Aerodynamic Characterization of NREL S826 Airfoil at Low Reynolds Numbers, In RUZGEM Conference on Wind Energy Science and Technology, METU Ankara Campus, 3-4, 2013.
- 16. Bartl, J., Sagmo, K. F., Bracchi, T., Sætran, L., Performance of the NREL S826 airfoil at low to moderate Reynolds numbers—A reference experiment for CFD models, European Journal of Mechanics-B/Fluids, 75, 180-192, 2019.
- 17. Yalçın, Ö., Cengiz, K., Özyörük, Y., High-order detached eddy simulation of unsteady flow around NREL S826 airfoil, Journal of Wind Engineering and Industrial Aerodynamics, 179, 125-134, 2018.
- 18. Cakmakcioglu, S. C., Sert, I. O., Tugluk, O., Sezer-Uzol, N., 2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers, In Journal of Physics: Conference Series, IOP Publishing, 524 (1), 012028, 2014.
- 19. Liu, Y., Li, P., Jiang, K., Comparative assessment of transitional turbulence models for airfoil aerodynamics in the low Reynolds number range, Journal of Wind Engineering and Industrial Aerodynamics, 217, 104726, 2021.
- 20. Fernández F. J. F., CFD simulations of a pitching aerofoil for the study of dynamic stall, 2022.
- 21. Kraposhin, M. V., Banholzer, M., Pfitzner, M., Marchevsky, I. K., A hybrid pressure‐based solver for nonideal single‐phase fluid flows at all speeds, International Journal for Numerical Methods in Fluids, 88 (2), 79-99, 2018.
- 22. Kurganov, A., Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations, Journal of Computational Physics, 160 (1), 241-282, 2000.
- 23. Kurganov, A., Noelle, S., Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton--Jacobi equations, SIAM Journal on Scientific Computing, 23 (3), 707-740, 2001.
- 24. Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, 32 (8), 1598-1605, 1994.
- 25. Langtry, R. B., Menter, F. R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA journal, 47 (12), 2894-2906, 2009.
- 26. Courant, R., Friedrichs, K., Lewy, H., Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische annalen, 100 (1), 32-74, 1928.