Araştırma Makalesi
BibTex RIS Kaynak Göster

Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi

Yıl 2025, Cilt: 40 Sayı: 2, 1131 - 1146
https://doi.org/10.17341/gazimmfd.1430498

Öz

Hem lisansüstü çalışmaların etkili bir şekilde yürütülebilmesi hem de lisansüstü programların genel başarısı için uygun öğrenci-danışman atamalarının yapılması kritik öneme sahiptir. Bu çalışmada, Öğrenci-Danışman Atama (ÖDA) problemi için öğrenci ve danışman tercihlerine ek olarak; (i) danışman kapasitelerinin dikkate alınmadığı (ii) danışman kapasiteleri olarak bireysel danışman taleplerinin ve (iii) danışman kapasiteleri olarak ortalama danışman taleplerinin dikkate alındığı durum olmak üzere üç farklı problem kurgusu ele alınmıştır. Her bir problem kurgusunun çözümü için matematiksel programlama modelleri önerilmiştir. Önerilen yaklaşımın geçerliliğin test edilmesi amacıyla küçük ve büyük ölçekte olmak üzere iki farklı veri kümesi üretilmiştir. Bu veri kümeleri kullanılarak önerilen matematiksel programlar, öğrencilerin ve danışmanların tercihlerinin farklı ağırlıklandırma stratejileri için çözülmüştür. Farklı problem kurguları ve atama stratejileri için elde edilen öğrenci-danışman atamaları, öğrencilerin ve danışmanların memnuniyet düzeyleri cinsinden tanımlanan performans ölçütlerine göre analiz edilmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

119C152

Teşekkür

Bu çalışma sürecinde, Yazar1’e TÜBİTAK 2244 Sanayi Doktora Programı ve 119C152 numaralı, “Döküm Sektörünün Geleceğine Yönelik Çözümler Geliştirilmesi” projesi kapsamında verilen destekler için TÜBİTAK’a teşekkür ederiz.

Kaynakça

  • 1. Şimşek A.B., A decision support tool for the student–supervisor allocation problem of postgraduate programs, Expert Syst. Appl., 190, 116068, 2022.
  • 2. Zakaria M.A., Zainuddin, Z.M., Allocation of faculty supervisors for industrial and research training, Proceedings of Science and Mathematics, 16, 223-231, 2023.
  • 3. Ramotsisi, J., Kgomotso, M., Seboni, L., An optimization model for the student‐to‐project supervisor assignment problem‐the case of an engineering department, Journal of Optimization, 2022 (1), 9415210, 2022.
  • 4. Mosharraf M., Taghiyareh F., An Evolutionary-Based Educational Expert System to Maximize Student-Supervisor Compatibility, 2012 6th IEEE International Conference on E-Learning in Industrial Electronics (ICELIE), IEEE., Montreal, QC, Canada, 84-89, 25-28 October, 2012.
  • 5. Salami H.O., Mamman E.Y., A genetic algorithm for allocating project supervisors to students, International Journal of Intelligent Systems and Applications, 8 (10), 51, 2016.
  • 6. Sanchez-Anguix V., Chalumuri R., Aydoğan R., Julian V., A near Pareto optimal approach to student–supervisor allocation with two sided preferences and workload balance, Appl. Soft Comput., 76, 1-15, 2019.
  • 7. Sanchez-Anguix, V., Chalumuri, R., Alberola, J. M., Aydogan, R., Artificial intelligence tools for academic management: assigning students to academic supervisors, INTED2020 14th International Technology, Education and Development Conference, Valencia, Spain, 4638-4644, 2-4 March 2020.
  • 8. Serek, A., Zhaparov, M., Optimizing preference satisfaction with genetic algorithm in matching students to supervisors, Applied Mathematics & Information Sciences, 18 (1), 133-138, 2024.
  • 9. Kawagoe T., Matsubae T., Matching with Minimal Quota: Case Study of a Student-Supervisor Assignment in a Japanese University, Social Science Research Network (SSRN), 3429626, 1-51, 2020.
  • 10. Serek A., Zhaparov M., Algorithm comparison for student-supervisor matching in supervisorship system development: k-means vs. one-to-many gale-shapley, Information Sciences Letters, 12 (12), 2417-2425, 2023.
  • 11. Fan Y., Evangelista A., Harb H., An automated thesis supervisor allocation process using machine learning, Global Journal of Engineering Education, 23 (1), 20-30, 2021.
  • 12. Anghel, F.C., Popescu, E., Dynamic graduation project allocation based on student-teacher profile compatibility, 2022 International Conference on Advanced Learning Technologies (ICALT), Bucharest, Romania, 56-60, 1-4 July 2022.
  • 13. Ahmed A., ur Rehman, S., A machine learning approach for advisors to discover in higher education, 2022.
  • 14. Gale D., Shapley L.S., College admissions and the stability of marriage, The American Mathematical Monthly, 69 (1), 9-15, 1962.
  • 15. Dye J., A constraint logic programming approach to the stable marriage problem and its application to student-project allocation, BSc Honours Project Report, University of York, Department of Computer Science, 2001.
  • 16. Abraham D.J., Irving R.W., Manlove D.F., Two algorithms for the student-project allocation problem, J. Discrete Algoritms, 5 (1), 73-90, 2007.
  • 17. Manlove D.F., O'Malley G., Student-project allocation with preferences over projects, J. Discrete Algoritms, 6 (4), 553-560, 2008.
  • 18. Iwama K., Miyazaki S., Yanagisawa H., Improved approximation bounds for the student-project allocation problem with preferences over projects, J. Discrete Algoritms, 13, 59-66, 2012.
  • 19. Cooper F., Manlove D., A 3/2-Approximation Algorithm for The Student-Project Allocation Problem, 17th International Symposium on Experimental Algorithms, L'Aquila, Italy, 103, 8:1-8:13, 27-29 June, 2018.
  • 20. Manlove D., Milne D., Olaosebikan S., An Integer Programming Approach to The Student-Project Allocation Problem with Preferences Over Projects, International Symposium on Combinatorial Optimization, Springer, Cham, Marrakesh, Morocco, 313-325, 11-13 April, 2018.
  • 21. Olaosebikan S., Manlove D., Super-stability in the student-project allocation problem with ties, J. Comb. Optim., 1-37, 2020.
  • 22. Olaosebikan S., Manlove, D., An Algorithm for Strong Stability in the Student-Project Allocation Problem with Ties, Conference on Algorithms and Discrete Appl. Math., Springer, Cham, Hyderabad, India, 384-399, 13-15 February, 2020.
  • 23. Manlove D., Milne D., Olaosebikan S., Student-project allocation with preferences over projects: Algorithmic and experimental results, Discrete Appl. Math., 308, 220-234, 2022.
  • 24. Viet H.H., Tan L.V., Cao S.T., Finding Maximum Stable Matchings for The Student-Project Allocation Problem with Preferences Over Projects, International Conference on Future Data and Security Engineering, Springer, Quy Nhon, Vietnam, 411-422, 25-27 November, 2020.
  • 25. Ismaili A., Yamaguchi T., Yokoo M., Student-Project-Resource Allocation: Complexity of The Symmetric Case, International Conference on Principles and Practice of Multi-Agent Systems, Springer, Cham, Tokyo, Japan, 226-241, 29 October - 2 November, 2018.
  • 26. Yahiro K., Yokoo M., Game Theoretic Analysis for Two-Sided Matching with Resource Allocation, Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland-New Zealand, 1548-1556, 9-13 May, 2020.
  • 27. Aderanti F.A., Amosa R.T., Oluwatobiloba A.A., Development of Student Project Allocation System Using Matching Algorithm, International Conference of Science, Engineering & Environmental Technology (ICONSEET), 1 (22), 153-160, 2016.
  • 28. Proll L.G., A simple method of assigning projects to students, J. Oper. Res. Soc., 23 (2), 195-201, 1972.
  • 29. Anwar A.A., Bahaj A.S., Student project allocation using integer programming, IEEE Trans. Educ., 46 (3), 359-367, 2003.
  • 30. Calvo-Serrano R., Guillén-Gosálbez G., Kohn S., Masters A., Mathematical programming approach for optimally allocating students' projects to academics in large cohorts, Educ. Chem. Eng., 20, 11-21, 2017.
  • 31. Pan L., Chu S.C., Han G., Huang J.Z., Multi-Criteria Student Project Allocation: A Case Study of Goal Programming Formulation with Dss Implementation, Eighth International Symposium on Operations Research and Its Applications (ISORA’09), Zhangjiajie, China, 75-82, 20-22 September, 2009.
  • 32. Cavdur F., Sebatli A., Kose-Kucuk M., Rodoplu C., A two-phase binary-goal programming-based approach for optimal project-team formation, J. Oper. Res. Soc., 70 (4), 689-706, 2019.
  • 33. Çavdur F., Sebatlı A., Köse-Küçük M., A group-decision making and goal programming-based solution approach for the student-project team formation problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1), 505-521, 2019.
  • 34. Baglarbasi-Mutlu M., Sebatli A., Cavdur F., Group Decision Making for Criteria Importance Determination in Student Project Team Formation Problems, 12th International Conference on New Challenges in Industrial Engineering and Operations Management, Ankara, Turkey, 141, 11-12 September, 2018.
  • 35. Daş G.S., Altınkaynak B., Göçken T., Türker A.K., A set partitioning based goal programming model for the team formation problem, Int. Tran. Oper. Res., 29 (1), 301-322, 2022.
  • 36. Chiarandini M., Fagerberg R., Gualandi S., Handling preferences in student-project allocation, Annals of Operations Research, 275 (1), 39-78, 2019.
  • 37. Cutshall R., Gavirneni S., Schultz K., Indiana University’s Kelley School of Business uses integer programming to form equitable, cohesive student teams, Interfaces, 37 (3), 265-276, 2007.
  • 38. Fitzpatrick E., Askin R., Goldberg J., Using Student Conative Behaviors and Technical Skills To Form Effective Project Teams, 31st Annual Frontiers in Education Conference, Impact on Engineering and Science Education, Conference Proceedings (Cat. No. 01CH37193), IEEE., Reno, NV, USA, Vol. 3, S2G-8-S2G-13, 10-13 October, 2001.
  • 39. Maashi M.S., Almanea G., Alqurashi R., Alharbi N., Alharkan R., Alsadhan F., Solving Student-Project Research Assignment Problems Using a Novel Greedy Linear Heuristic Algorithm: A Case Study at King Saud University, Riyadh Saudi Arabia, Biochem. Biophys. Res. Commun, 13 (3), 1168-1173, 2020.
  • 40. Binong J., Solving Student Project Allocation with Preference Through Weights, Proceedings of International Conference on Frontiers in Computing and Systems, Springer, Shillong, India, 423-430, September 29 - October 1, 2021.
  • 41. Harper P.R., de Senna V., Vieira I.T., Shahani A.K., A genetic algorithm for the project assignment problem, Comput. Oper. Res., 32 (5), 1255-1265, 2005.
  • 42. Agustin-Blas L.E., Salcedo-Sanz S., Ortiz-Garcia E.G., Portilla-Figueras, A., Perez-Bellido A.M., A hybrid grouping genetic algorithm for assigning students to preferred laboratory groups, Expert Syst. Appl., 36 (3), 7234-7241, 2009.
  • 43. Hübscher R., Assigning students to groups using general and context-specific criteria, IEEE Trans. Learn. Technol., 3 (3), 178-189, 2010.
  • 44. Chown A.H., Cook C.J., Wilding, N.B., A simulated annealing approach to the student-project allocation problem, Am. J. Phys., 86 (9), 701-708, 2018.
  • 45. Kenekayoro P., Fawei B., Meta-Heuristic Solutions to a Student Grouping Optimization Problem faced in Higher Education Institutions, Journal of Advances in Mathematics and Computer Science, 35 (7), 61-74, 2020.
  • 46. Sahin Y.G., A team building model for software engineering courses term projects, Computers & Education, 56 (3), 916-922, 2011.
  • 47. Alberola J.M., Val E.D., Sanchez-Anguix V., Julián V., A, General Framework for Testing Different Student Team Formation Strategies, Methodologies and Intelligent Systems for Technology Enhanced Learning, Springer, Cham, 23-31, 2016.

Analyzing the effects of different problem settings on the satisfaction levels of students and supervisors in the student-supervisor allocation problem

Yıl 2025, Cilt: 40 Sayı: 2, 1131 - 1146
https://doi.org/10.17341/gazimmfd.1430498

Öz

Appropriate student-supervisor allocations are critical for the effective management of graduate studies as well as the overall success of graduate programs. In this study, three different problem settings are considered for the student-supervisor allocation (SSA) problem where, in addition to taking into account student and supervisor preferences, (i) supervisor capacities are not considered, (ii) individual supervisor demands are considered in terms of their capacities and (iii) average supervisor demands are considered in terms of their capacities. Mathematical programming models are proposed for the solution of each problem setting. In order to test the validity of the proposed approach, two different datasets, a small- and a large-scale one, are generated. Using these datasets, the proposed mathematical programs are solved for different weighting strategies of students' and advisors' preferences. The student-supervisor allocation results for different problem settings and allocation strategies are analyzed according to performance measures defined in terms of the satisfaction levels of students and supervisors.

Proje Numarası

119C152

Kaynakça

  • 1. Şimşek A.B., A decision support tool for the student–supervisor allocation problem of postgraduate programs, Expert Syst. Appl., 190, 116068, 2022.
  • 2. Zakaria M.A., Zainuddin, Z.M., Allocation of faculty supervisors for industrial and research training, Proceedings of Science and Mathematics, 16, 223-231, 2023.
  • 3. Ramotsisi, J., Kgomotso, M., Seboni, L., An optimization model for the student‐to‐project supervisor assignment problem‐the case of an engineering department, Journal of Optimization, 2022 (1), 9415210, 2022.
  • 4. Mosharraf M., Taghiyareh F., An Evolutionary-Based Educational Expert System to Maximize Student-Supervisor Compatibility, 2012 6th IEEE International Conference on E-Learning in Industrial Electronics (ICELIE), IEEE., Montreal, QC, Canada, 84-89, 25-28 October, 2012.
  • 5. Salami H.O., Mamman E.Y., A genetic algorithm for allocating project supervisors to students, International Journal of Intelligent Systems and Applications, 8 (10), 51, 2016.
  • 6. Sanchez-Anguix V., Chalumuri R., Aydoğan R., Julian V., A near Pareto optimal approach to student–supervisor allocation with two sided preferences and workload balance, Appl. Soft Comput., 76, 1-15, 2019.
  • 7. Sanchez-Anguix, V., Chalumuri, R., Alberola, J. M., Aydogan, R., Artificial intelligence tools for academic management: assigning students to academic supervisors, INTED2020 14th International Technology, Education and Development Conference, Valencia, Spain, 4638-4644, 2-4 March 2020.
  • 8. Serek, A., Zhaparov, M., Optimizing preference satisfaction with genetic algorithm in matching students to supervisors, Applied Mathematics & Information Sciences, 18 (1), 133-138, 2024.
  • 9. Kawagoe T., Matsubae T., Matching with Minimal Quota: Case Study of a Student-Supervisor Assignment in a Japanese University, Social Science Research Network (SSRN), 3429626, 1-51, 2020.
  • 10. Serek A., Zhaparov M., Algorithm comparison for student-supervisor matching in supervisorship system development: k-means vs. one-to-many gale-shapley, Information Sciences Letters, 12 (12), 2417-2425, 2023.
  • 11. Fan Y., Evangelista A., Harb H., An automated thesis supervisor allocation process using machine learning, Global Journal of Engineering Education, 23 (1), 20-30, 2021.
  • 12. Anghel, F.C., Popescu, E., Dynamic graduation project allocation based on student-teacher profile compatibility, 2022 International Conference on Advanced Learning Technologies (ICALT), Bucharest, Romania, 56-60, 1-4 July 2022.
  • 13. Ahmed A., ur Rehman, S., A machine learning approach for advisors to discover in higher education, 2022.
  • 14. Gale D., Shapley L.S., College admissions and the stability of marriage, The American Mathematical Monthly, 69 (1), 9-15, 1962.
  • 15. Dye J., A constraint logic programming approach to the stable marriage problem and its application to student-project allocation, BSc Honours Project Report, University of York, Department of Computer Science, 2001.
  • 16. Abraham D.J., Irving R.W., Manlove D.F., Two algorithms for the student-project allocation problem, J. Discrete Algoritms, 5 (1), 73-90, 2007.
  • 17. Manlove D.F., O'Malley G., Student-project allocation with preferences over projects, J. Discrete Algoritms, 6 (4), 553-560, 2008.
  • 18. Iwama K., Miyazaki S., Yanagisawa H., Improved approximation bounds for the student-project allocation problem with preferences over projects, J. Discrete Algoritms, 13, 59-66, 2012.
  • 19. Cooper F., Manlove D., A 3/2-Approximation Algorithm for The Student-Project Allocation Problem, 17th International Symposium on Experimental Algorithms, L'Aquila, Italy, 103, 8:1-8:13, 27-29 June, 2018.
  • 20. Manlove D., Milne D., Olaosebikan S., An Integer Programming Approach to The Student-Project Allocation Problem with Preferences Over Projects, International Symposium on Combinatorial Optimization, Springer, Cham, Marrakesh, Morocco, 313-325, 11-13 April, 2018.
  • 21. Olaosebikan S., Manlove D., Super-stability in the student-project allocation problem with ties, J. Comb. Optim., 1-37, 2020.
  • 22. Olaosebikan S., Manlove, D., An Algorithm for Strong Stability in the Student-Project Allocation Problem with Ties, Conference on Algorithms and Discrete Appl. Math., Springer, Cham, Hyderabad, India, 384-399, 13-15 February, 2020.
  • 23. Manlove D., Milne D., Olaosebikan S., Student-project allocation with preferences over projects: Algorithmic and experimental results, Discrete Appl. Math., 308, 220-234, 2022.
  • 24. Viet H.H., Tan L.V., Cao S.T., Finding Maximum Stable Matchings for The Student-Project Allocation Problem with Preferences Over Projects, International Conference on Future Data and Security Engineering, Springer, Quy Nhon, Vietnam, 411-422, 25-27 November, 2020.
  • 25. Ismaili A., Yamaguchi T., Yokoo M., Student-Project-Resource Allocation: Complexity of The Symmetric Case, International Conference on Principles and Practice of Multi-Agent Systems, Springer, Cham, Tokyo, Japan, 226-241, 29 October - 2 November, 2018.
  • 26. Yahiro K., Yokoo M., Game Theoretic Analysis for Two-Sided Matching with Resource Allocation, Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland-New Zealand, 1548-1556, 9-13 May, 2020.
  • 27. Aderanti F.A., Amosa R.T., Oluwatobiloba A.A., Development of Student Project Allocation System Using Matching Algorithm, International Conference of Science, Engineering & Environmental Technology (ICONSEET), 1 (22), 153-160, 2016.
  • 28. Proll L.G., A simple method of assigning projects to students, J. Oper. Res. Soc., 23 (2), 195-201, 1972.
  • 29. Anwar A.A., Bahaj A.S., Student project allocation using integer programming, IEEE Trans. Educ., 46 (3), 359-367, 2003.
  • 30. Calvo-Serrano R., Guillén-Gosálbez G., Kohn S., Masters A., Mathematical programming approach for optimally allocating students' projects to academics in large cohorts, Educ. Chem. Eng., 20, 11-21, 2017.
  • 31. Pan L., Chu S.C., Han G., Huang J.Z., Multi-Criteria Student Project Allocation: A Case Study of Goal Programming Formulation with Dss Implementation, Eighth International Symposium on Operations Research and Its Applications (ISORA’09), Zhangjiajie, China, 75-82, 20-22 September, 2009.
  • 32. Cavdur F., Sebatli A., Kose-Kucuk M., Rodoplu C., A two-phase binary-goal programming-based approach for optimal project-team formation, J. Oper. Res. Soc., 70 (4), 689-706, 2019.
  • 33. Çavdur F., Sebatlı A., Köse-Küçük M., A group-decision making and goal programming-based solution approach for the student-project team formation problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1), 505-521, 2019.
  • 34. Baglarbasi-Mutlu M., Sebatli A., Cavdur F., Group Decision Making for Criteria Importance Determination in Student Project Team Formation Problems, 12th International Conference on New Challenges in Industrial Engineering and Operations Management, Ankara, Turkey, 141, 11-12 September, 2018.
  • 35. Daş G.S., Altınkaynak B., Göçken T., Türker A.K., A set partitioning based goal programming model for the team formation problem, Int. Tran. Oper. Res., 29 (1), 301-322, 2022.
  • 36. Chiarandini M., Fagerberg R., Gualandi S., Handling preferences in student-project allocation, Annals of Operations Research, 275 (1), 39-78, 2019.
  • 37. Cutshall R., Gavirneni S., Schultz K., Indiana University’s Kelley School of Business uses integer programming to form equitable, cohesive student teams, Interfaces, 37 (3), 265-276, 2007.
  • 38. Fitzpatrick E., Askin R., Goldberg J., Using Student Conative Behaviors and Technical Skills To Form Effective Project Teams, 31st Annual Frontiers in Education Conference, Impact on Engineering and Science Education, Conference Proceedings (Cat. No. 01CH37193), IEEE., Reno, NV, USA, Vol. 3, S2G-8-S2G-13, 10-13 October, 2001.
  • 39. Maashi M.S., Almanea G., Alqurashi R., Alharbi N., Alharkan R., Alsadhan F., Solving Student-Project Research Assignment Problems Using a Novel Greedy Linear Heuristic Algorithm: A Case Study at King Saud University, Riyadh Saudi Arabia, Biochem. Biophys. Res. Commun, 13 (3), 1168-1173, 2020.
  • 40. Binong J., Solving Student Project Allocation with Preference Through Weights, Proceedings of International Conference on Frontiers in Computing and Systems, Springer, Shillong, India, 423-430, September 29 - October 1, 2021.
  • 41. Harper P.R., de Senna V., Vieira I.T., Shahani A.K., A genetic algorithm for the project assignment problem, Comput. Oper. Res., 32 (5), 1255-1265, 2005.
  • 42. Agustin-Blas L.E., Salcedo-Sanz S., Ortiz-Garcia E.G., Portilla-Figueras, A., Perez-Bellido A.M., A hybrid grouping genetic algorithm for assigning students to preferred laboratory groups, Expert Syst. Appl., 36 (3), 7234-7241, 2009.
  • 43. Hübscher R., Assigning students to groups using general and context-specific criteria, IEEE Trans. Learn. Technol., 3 (3), 178-189, 2010.
  • 44. Chown A.H., Cook C.J., Wilding, N.B., A simulated annealing approach to the student-project allocation problem, Am. J. Phys., 86 (9), 701-708, 2018.
  • 45. Kenekayoro P., Fawei B., Meta-Heuristic Solutions to a Student Grouping Optimization Problem faced in Higher Education Institutions, Journal of Advances in Mathematics and Computer Science, 35 (7), 61-74, 2020.
  • 46. Sahin Y.G., A team building model for software engineering courses term projects, Computers & Education, 56 (3), 916-922, 2011.
  • 47. Alberola J.M., Val E.D., Sanchez-Anguix V., Julián V., A, General Framework for Testing Different Student Team Formation Strategies, Methodologies and Intelligent Systems for Technology Enhanced Learning, Springer, Cham, 23-31, 2016.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Makaleler
Yazarlar

Gülveren Tabansız Göç 0000-0003-4204-1364

Aslı Sebatlı Sağlam 0000-0002-9445-6740

Fatih Çavdur 0000-0001-8054-5606

Proje Numarası 119C152
Erken Görünüm Tarihi 19 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 2 Şubat 2024
Kabul Tarihi 15 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 2

Kaynak Göster

APA Tabansız Göç, G., Sebatlı Sağlam, A., & Çavdur, F. (2024). Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(2), 1131-1146. https://doi.org/10.17341/gazimmfd.1430498
AMA Tabansız Göç G, Sebatlı Sağlam A, Çavdur F. Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi. GUMMFD. Kasım 2024;40(2):1131-1146. doi:10.17341/gazimmfd.1430498
Chicago Tabansız Göç, Gülveren, Aslı Sebatlı Sağlam, ve Fatih Çavdur. “Öğrenci-danışman Atama Problemindeki Farklı Problem kurgularının öğrenci Ve danışman Memnuniyet düzeylerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 2 (Kasım 2024): 1131-46. https://doi.org/10.17341/gazimmfd.1430498.
EndNote Tabansız Göç G, Sebatlı Sağlam A, Çavdur F (01 Kasım 2024) Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 2 1131–1146.
IEEE G. Tabansız Göç, A. Sebatlı Sağlam, ve F. Çavdur, “Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi”, GUMMFD, c. 40, sy. 2, ss. 1131–1146, 2024, doi: 10.17341/gazimmfd.1430498.
ISNAD Tabansız Göç, Gülveren vd. “Öğrenci-danışman Atama Problemindeki Farklı Problem kurgularının öğrenci Ve danışman Memnuniyet düzeylerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/2 (Kasım 2024), 1131-1146. https://doi.org/10.17341/gazimmfd.1430498.
JAMA Tabansız Göç G, Sebatlı Sağlam A, Çavdur F. Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi. GUMMFD. 2024;40:1131–1146.
MLA Tabansız Göç, Gülveren vd. “Öğrenci-danışman Atama Problemindeki Farklı Problem kurgularının öğrenci Ve danışman Memnuniyet düzeylerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 2, 2024, ss. 1131-46, doi:10.17341/gazimmfd.1430498.
Vancouver Tabansız Göç G, Sebatlı Sağlam A, Çavdur F. Öğrenci-danışman atama problemindeki farklı problem kurgularının öğrenci ve danışman memnuniyet düzeylerine etkisinin incelenmesi. GUMMFD. 2024;40(2):1131-46.