Araştırma Makalesi
BibTex RIS Kaynak Göster

Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi

Yıl 2025, Cilt: 40 Sayı: 3, 1995 - 2012, 21.08.2025
https://doi.org/10.17341/gazimmfd.1552790

Öz

Sağlık sektöründe son yıllarda büyük veri kümelerinin artmasıyla birlikte, makine öğrenimi yöntemleri diyabet veri setlerinin keşfi, analizi ve tahmin süreçlerinde önemli bir rol oynamaya başlamıştır. Bu çalışmada, diyabetin erken teşhisine odaklanılmış ve çeşitli makine öğrenimi modellerinin performansı ile Açıklanabilir Yapay Zeka (XAI) tekniklerinin etkisi incelenmiştir. Diyabet veri seti üzerinde, K-En Yakın Komşular (KNN), Destek Vektör Makineleri (SVM), Naive Bayes, Yapay Sinir Ağları (YSA), Karar Ağaçları, Rastgele Orman ve XGBoost algoritmaları kullanılarak modellerin performansları karşılaştırılmıştır. Modellerin değerlendirilmesi, veri temizleme ve ön işleme aşamalarının ardından eğitim ve test süreçleriyle yapılmıştır. Bu değerlendirme sırasında doğruluk, F1 skoru, hassasiyet ve özgünlük gibi başarı kriterleri göz önünde bulundurulmuştur. En iyi sonuç veren modelin çıktılarına SHAP (Shapley Additive Explanations) ve LIME (Local Interpretable Model-Agnostic Explanations) gibi açıklanabilir yapay zeka yöntemleri uygulanarak, modelin verdiği kararların anlaşılabilirliği sağlanmıştır. Bu yöntemler, modelin en önemli özelliklerini belirleyip karar sürecini daha şeffaf hale getirir. Gerçek dünya uygulamalarında bu modellerin potansiyelini anlamak adına uzman görüşleriyle analiz sonuçları desteklenmiştir. KNN, SVM, Naive Bayes, YSA, Karar Ağaçları, Rastgele Orman ve XGBoost algoritmaları sırasıyla %81.18, %75.38, %75.49, %74.83, %76.91, %91.68 ve %98.91 doğruluk oranlarıyla değerlendirilmiştir.

Kaynakça

  • 1. Fetzer, J. H., Fetzer, J. H., What is Artificial Intelligence?, Springer Netherlands, 3-27, 1990.
  • 2. Song, C., Ristenpart, T., Shmatikov, V.,Machine learning models that remember too much. In Proceedings of the 2017 ACM SIGSAC Conference on computer and communications security, 587-601, 2017.
  • 3. Egan, A. M., Dinneen, S. F., What is diabetes?. Medicine, 47 (1), 1-4, 2019.
  • 4. Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-Parikka, P., ... Uusitupa, M., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England journal of medicine, 344 (18), 1343-1350, 2001.
  • 5. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G. Z., XAI-Explainable artificial intelligence. Science robotics, 4 (37), eaay7120, 2019.
  • 6. Nishat, M. M., Faisal, F., Mahbub, M. A., Mahbub, M. H., Islam, S., Hoque, M. A., Performance assessment of different machine learning algorithms in predicting diabetes mellitus. Biosc. Biotech. Res. Comm, 14 (1), 74-82, 2021.
  • 7. Kaleem, H., Liaqat, S., Hassan, M. T., Mehmood, A., Ahmad, U., Ditta, A., An Intelligent Healthcare system for detecting diabetes using machine learning algorithms. Lahore Garrison University Research Journal of Computer Science and Information Technology, 6 (03), 1-11, 2022.
  • 8. Shabtari, M. M., Shukla, V. K., Singh, H., Nanda, I., Analyzing PIMA Indian Diabetes Dataset through Data Mining Tool ‘RapidMiner’. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 560-574, IEEE, 2021.
  • 9. Azbeg, K., Boudhane, M., Ouchetto, O., Jai Andaloussi, S., Diabetes emergency cases identification based on a statistical predictive model. Journal of Big Data, 9 (1), 1-25, 2022.
  • 10. Lukmanto, R. B., Nugroho, A., Akbar, H., Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46-54, 2019.
  • 11. Zhu, C., Idemudia, C. U., Feng, W., Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17, 100179, 2019.
  • 12. Naz, H., & Ahuja, S., Deep learning approach for diabetes prediction using PIMA Indian dataset. Journal of Diabetes & Metabolic Disorders, 19, 391-403, 2020.
  • 13. Aamir, Z., Murtza, I., Pre-Diabetic Diagnosis from Habitual and Medical Features using Ensemble Classification. Journal of Computing & Biomedical Informatics, 5 (01), 283-294, 2023.
  • 14. Febrian, M. E., Ferdinan, F. X., Sendani, G. P., Suryanigrum, K. M., Yunanda, R., Diabetes prediction using supervised machine learning. Procedia Computer Science, 216, 21-30, 2023.
  • 15. Gollapalli, M., Alansari, A., Alkhorasani, H., Alsubaii, M., Sakloua, R., Alzahrani, R., ... Albaker, W., A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM. Computers in Biology and Medicine, 147, 105757, 2022.
  • 16. Dutta, A., Hasan, M. K., Ahmad, M., Awal, M. A., Islam, M. A., Masud, M., Meshref, H., Early prediction of diabetes using an ensemble of machine learning models. International Journal of Environmental Research and Public Health, 19 (19), 12378, 2022.
  • 17. Doğru, A., Buyrukoğlu, S., Arı, M., A hybrid super ensemble learning model for the early-stage prediction of diabetes risk. Medical & Biological Engineering & Computing, 61 (3), 785-797, 2023.
  • 18. Panda, M., Mishra, D. P., Patro, S. M., Salkuti, S. R., Prediction of diabetes disease using machine learning algorithms. IAES International Journal of Artificial Intelligence, 11 (1), 284, 2022.
  • 19. Theerthagiri, P., Ruby, A. U., Vidya, J., Diagnosis and classification of the diabetes using machine learning algorithms. SN Computer Science, 4 (1), 72, 2022.
  • 20. Mahesh, T. R., Vivek, V., Kumar, V. V., Natarajan, R., Sathya, S., Kanimozhi, S., A comparative performance analysis of machine learning approaches for the early prediction of diabetes disease. In 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), 1-6, IEEE, 2022.
  • 21. Sng, G. G. R., Tung, J. Y. M., Lim, D. Y. Z., Bee, Y. M., Potential and pitfalls of ChatGPT and natural-language artificial intelligence models for diabetes education. Diabetes Care, 46 (5), e103-e105, 2023.
  • 22. Mohanty, A., Mishra, S., A comprehensive study of explainable artificial intelligence in healthcare. In Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, Singapore: Springer Nature Singapore, 475-502, 2022.
  • 23. Payrovnaziri, S. N., Chen, Z., Rengifo-Moreno, P., Miller, T., Bian, J., Chen, J. H., ... He, Z., Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. Journal of the American Medical Informatics Association, 27 (7), 1173-1185, 2020.
  • 24. Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., ... Deveci, M., A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 2023.
  • 25. Lauritsen, S. M., Kristensen, M., Olsen, M. V., Larsen, M. S., Lauritsen, K. M., Jørgensen, M. J., ... Thiesson, B., Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nature communications, 11 (1), 3852, 2020.
  • 26. Zhang, Z., Ahmed, K. A., Hasan, M. R., Gedeon, T., Hossain, M. Z., A deep learning approach to diabetes diagnosis. In Asian Conference on Intelligent Information and Database Systems, Singapore: Springer Nature Singapore, 87-99, 2024.
  • 27. Imrie, F., Cebere, B., McKinney, E. F., van der Schaar, M., AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning. PLOS Digital Health, 2 (6), e0000276, 2023.
  • 28. García-Ordás, M. T., Benavides, C., Benítez-Andrades, J. A., Alaiz-Moretón, H., García-Rodríguez, I., Diabetes detection using deep learning techniques with oversampling and feature augmentation. Computer Methods and Programs in Biomedicine, 202, 105968, 2021.
  • 29. Başer, B. Ö., Yangın, M., Sarıdaş, E. S., Makine öğrenmesi teknikleriyle diyabet hastalığının sınıflandırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (1), 112-120, 2021.
  • 30. Özkan, Y., Yürekli, B. S., Suner, A., Diyabet tanısının tahminlenmesinde denetimli makine öğrenme algoritmalarının performans karşılaştırması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12 (1), 211-226., 2022.
  • 31. Bilgin, G., Makine öğrenmesi algoritmaları kullanarak erken dönemde diyabet hastalığı riskinin araştırılması. Journal of Intelligent Systems: Theory and Applications, 4 (1), 55-64, 2021.
  • 32. Ramaha, N., Imad, S. Derin Öğrenmeye Karşı Makine Kullanarak Diyabetik Retinopati Teşhisi. Avrupa Bilim ve Teknoloji Dergisi, 51, 301-313, 2021.
  • 33. Daigavhane, M. K., Gundewar, S., Diabetes Prediction using Different Machine Learning Classifiers. In 2024 Parul International Conference on Engineering and Technology (PICET),1-6, IEEE, 2024.
  • 34. Shaukat, Z., Zafar, W., Ahmad, W., Haq, I. U., Husnain, G., Al-Adhaileh, M. H., ... Algarni, A., Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed. In Healthcare, 11 (21), 2864 MDPI, 2023.
  • 35. Albadri, R. F., Awad, S. M., Hameed, A. S., Mandeel, T. H., Jabbar, R. A., A Diabetes Prediction Model Using Hybrid Machine Learning Algorithm. Mathematical Modelling of Engineering Problems, 11 (8), 2024.
  • 36. Zhuhadar, L. P., Lytras, M. D., The application of AutoML techniques in diabetes diagnosis: current approaches, performance, and future directions. Sustainability, 15 (18), 13484, 2023.
  • 37. https://www.kaggle.com/datasets/nanditapore/healthcare-diabetes (Access Date: 10.01.2024)
  • 38. Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C. L., Iknn: Informative k-nearest neighbor pattern classification. In European conference on principles of data mining and knowledge discovery, Berlin, Heidelberg: Springer Berlin Heidelberg, 248-264, 2007.
  • 39. Gollapalli, M., Alansari, A., Alkhorasani, H., Alsubaii, M., Sakloua, R., Alzahrani, R., ... Albaker, W., A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM. Computers in Biology and Medicine, 147, 105757, 2022.
  • 40. Kadar, J. A., Agustono, D., Napitupulu, D., Optimization of candidate selection using naïve Bayes: case study in company X. In Journal of Physics: Conference Series, 954 (1), 012028, IOP Publishing, 2018.
  • 41. Quinlan, J. R., C4. 5: programs for machine learning. Elsevier, 2014.
  • 42. Hassan, M. M., Mollick, S., Yasmin, F., An unsupervised cluster-based feature grouping model for early diabetes detection. Healthcare Analytics, 2, 100112, 2022.
  • 43. Risdin, F., Mondal, P. K., Hassan, K. M., Convolutional neural networks for detecting fruit information using machine learning techniques. IOSR Journal of Computer Engineering (IOSR-JCE), 22 (2), 01-13, 2020.
  • 44. Dong, W., Huang, Y., Lehane, B., Ma, G., XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, 114, 103155, 2020.
  • 45. Ribeiro, M. T., Singh, S., Guestrin, C., "Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144, 2016.
  • 46. Antwarg, L., Miller, R. M., Shapira, B., Rokach, L., Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert systems with applications, 186, 115736, 2021.
  • 47. Rastogi, R., Bansal, M., Diabetes prediction model using data mining techniques. Measurement: Sensors, 25, 100605, 2023.
  • 48. Reddy, S. K., Krishnaveni, T., Nikitha, G., Vijaykanth, E., Diabetes prediction using different machine learning algorithms. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), 1261-1265, IEEE, 2021.
  • 49. Bansal, A., Singhrova, A., Performance analysis of supervised machine learning algorithms for diabetes and breast cancer dataset. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 137-143, IEEE, 2021.
  • 50. Nass, L., Swift, S., Al Dallal, A., Indepth analysis of medical dataset mining: a comparitive analysis on a diabetes dataset before and after preprocessing. KnE Social Sciences, 45-63, 2019.
  • 51. Khanam, J.J., Foo, S.Y., A comparison of machine learning algorithms for diabetes prediction. Ict Express, 7 (4), 432-439, 2021.
  • 52. Nahzat, S., Yağanoğlu, M., Diabetes prediction using machine learning classification algorithms. Avrupa Bilim ve Teknoloji Dergisi, 24, 53-59, 2021.
  • 53. Cıhan, P., Coşkun, H., Performance comparison of machine learning models for diabetes prediction. In 2021 29th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE, 2021.
  • 54. Modak, S. K. S., Jha, V. K., Diabetes prediction model using machine learning techniques. Multimedia Tools and Applications, 83 (13), 38523-38549, 2024
  • 55. Rahaman, M. J., Evaluate the Predictive Performance of Supervised Machine Learning Algorithms in Diabetes Dataset, 2022.
  • 56. Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., ... Howard, B. V., Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes care, 20 (4), 537-544, 1997.
  • 57. Tuomilehto, J., Lindstrom, J., Eriksson, J., Valle, T., Hamalainen, H., Ilanne-Parikka, P., ... Uusitupa, M., Finnish Diabetes Prevention Study. Group, 344, 1343-1350, 2001.
  • 58. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., Diabetes Prevention Program Research Group., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 346 (6), 393–403, 2002.
  • 59. Herman W. H., The cost-effectiveness of diabetes prevention: results from the Diabetes Prevention Program and the Diabetes Prevention Program Outcomes Study. Clinical diabetes and endocrinology, 1, 9, 2015.

In-depth analysis of machine learning models and explainable artificial intelligence methods in diabetes diagnosis

Yıl 2025, Cilt: 40 Sayı: 3, 1995 - 2012, 21.08.2025
https://doi.org/10.17341/gazimmfd.1552790

Öz

With the increase in large datasets in the healthcare sector in recent years, machine learning methods have started to play an important role in the discovery, analysis and prediction processes of diabetes datasets. This study focused on the early diagnosis of diabetes and examined the performance of various machine learning models and the effect of Explainable Artificial Intelligence (XAI) techniques. The performances of the models were compared using K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Naive Bayes, Artificial Neural Networks (ANN), Decision Trees, Random Forest and XGBoost algorithms on the diabetes dataset. The evaluation of the models was carried out with training and testing processes after the data cleaning and preprocessing stages. During this evaluation, success criteria such as accuracy, F1 score, sensitivity and originality were taken into consideration. Explainable artificial intelligence methods such as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) were applied to the outputs of the model that gave the best results, and the understandability of the decisions made by the model was ensured. These methods determine the most important features of the model and make the decision process more transparent. In order to understand the potential of these models in real-world applications, the analysis results were supported by expert opinions. KNN, SVM, Naive Bayes, ANN, Decision Trees, Random Forest and XGBoost algorithms were evaluated with 81.18%, 75.38%, 75.49%, 74.83%, 76.91%, 91.68% and 98.91% accuracy rates, respectively.

Kaynakça

  • 1. Fetzer, J. H., Fetzer, J. H., What is Artificial Intelligence?, Springer Netherlands, 3-27, 1990.
  • 2. Song, C., Ristenpart, T., Shmatikov, V.,Machine learning models that remember too much. In Proceedings of the 2017 ACM SIGSAC Conference on computer and communications security, 587-601, 2017.
  • 3. Egan, A. M., Dinneen, S. F., What is diabetes?. Medicine, 47 (1), 1-4, 2019.
  • 4. Tuomilehto, J., Lindström, J., Eriksson, J. G., Valle, T. T., Hämäläinen, H., Ilanne-Parikka, P., ... Uusitupa, M., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England journal of medicine, 344 (18), 1343-1350, 2001.
  • 5. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G. Z., XAI-Explainable artificial intelligence. Science robotics, 4 (37), eaay7120, 2019.
  • 6. Nishat, M. M., Faisal, F., Mahbub, M. A., Mahbub, M. H., Islam, S., Hoque, M. A., Performance assessment of different machine learning algorithms in predicting diabetes mellitus. Biosc. Biotech. Res. Comm, 14 (1), 74-82, 2021.
  • 7. Kaleem, H., Liaqat, S., Hassan, M. T., Mehmood, A., Ahmad, U., Ditta, A., An Intelligent Healthcare system for detecting diabetes using machine learning algorithms. Lahore Garrison University Research Journal of Computer Science and Information Technology, 6 (03), 1-11, 2022.
  • 8. Shabtari, M. M., Shukla, V. K., Singh, H., Nanda, I., Analyzing PIMA Indian Diabetes Dataset through Data Mining Tool ‘RapidMiner’. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 560-574, IEEE, 2021.
  • 9. Azbeg, K., Boudhane, M., Ouchetto, O., Jai Andaloussi, S., Diabetes emergency cases identification based on a statistical predictive model. Journal of Big Data, 9 (1), 1-25, 2022.
  • 10. Lukmanto, R. B., Nugroho, A., Akbar, H., Early detection of diabetes mellitus using feature selection and fuzzy support vector machine. Procedia Computer Science, 157, 46-54, 2019.
  • 11. Zhu, C., Idemudia, C. U., Feng, W., Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17, 100179, 2019.
  • 12. Naz, H., & Ahuja, S., Deep learning approach for diabetes prediction using PIMA Indian dataset. Journal of Diabetes & Metabolic Disorders, 19, 391-403, 2020.
  • 13. Aamir, Z., Murtza, I., Pre-Diabetic Diagnosis from Habitual and Medical Features using Ensemble Classification. Journal of Computing & Biomedical Informatics, 5 (01), 283-294, 2023.
  • 14. Febrian, M. E., Ferdinan, F. X., Sendani, G. P., Suryanigrum, K. M., Yunanda, R., Diabetes prediction using supervised machine learning. Procedia Computer Science, 216, 21-30, 2023.
  • 15. Gollapalli, M., Alansari, A., Alkhorasani, H., Alsubaii, M., Sakloua, R., Alzahrani, R., ... Albaker, W., A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM. Computers in Biology and Medicine, 147, 105757, 2022.
  • 16. Dutta, A., Hasan, M. K., Ahmad, M., Awal, M. A., Islam, M. A., Masud, M., Meshref, H., Early prediction of diabetes using an ensemble of machine learning models. International Journal of Environmental Research and Public Health, 19 (19), 12378, 2022.
  • 17. Doğru, A., Buyrukoğlu, S., Arı, M., A hybrid super ensemble learning model for the early-stage prediction of diabetes risk. Medical & Biological Engineering & Computing, 61 (3), 785-797, 2023.
  • 18. Panda, M., Mishra, D. P., Patro, S. M., Salkuti, S. R., Prediction of diabetes disease using machine learning algorithms. IAES International Journal of Artificial Intelligence, 11 (1), 284, 2022.
  • 19. Theerthagiri, P., Ruby, A. U., Vidya, J., Diagnosis and classification of the diabetes using machine learning algorithms. SN Computer Science, 4 (1), 72, 2022.
  • 20. Mahesh, T. R., Vivek, V., Kumar, V. V., Natarajan, R., Sathya, S., Kanimozhi, S., A comparative performance analysis of machine learning approaches for the early prediction of diabetes disease. In 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), 1-6, IEEE, 2022.
  • 21. Sng, G. G. R., Tung, J. Y. M., Lim, D. Y. Z., Bee, Y. M., Potential and pitfalls of ChatGPT and natural-language artificial intelligence models for diabetes education. Diabetes Care, 46 (5), e103-e105, 2023.
  • 22. Mohanty, A., Mishra, S., A comprehensive study of explainable artificial intelligence in healthcare. In Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, Singapore: Springer Nature Singapore, 475-502, 2022.
  • 23. Payrovnaziri, S. N., Chen, Z., Rengifo-Moreno, P., Miller, T., Bian, J., Chen, J. H., ... He, Z., Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. Journal of the American Medical Informatics Association, 27 (7), 1173-1185, 2020.
  • 24. Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., ... Deveci, M., A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 2023.
  • 25. Lauritsen, S. M., Kristensen, M., Olsen, M. V., Larsen, M. S., Lauritsen, K. M., Jørgensen, M. J., ... Thiesson, B., Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nature communications, 11 (1), 3852, 2020.
  • 26. Zhang, Z., Ahmed, K. A., Hasan, M. R., Gedeon, T., Hossain, M. Z., A deep learning approach to diabetes diagnosis. In Asian Conference on Intelligent Information and Database Systems, Singapore: Springer Nature Singapore, 87-99, 2024.
  • 27. Imrie, F., Cebere, B., McKinney, E. F., van der Schaar, M., AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning. PLOS Digital Health, 2 (6), e0000276, 2023.
  • 28. García-Ordás, M. T., Benavides, C., Benítez-Andrades, J. A., Alaiz-Moretón, H., García-Rodríguez, I., Diabetes detection using deep learning techniques with oversampling and feature augmentation. Computer Methods and Programs in Biomedicine, 202, 105968, 2021.
  • 29. Başer, B. Ö., Yangın, M., Sarıdaş, E. S., Makine öğrenmesi teknikleriyle diyabet hastalığının sınıflandırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25 (1), 112-120, 2021.
  • 30. Özkan, Y., Yürekli, B. S., Suner, A., Diyabet tanısının tahminlenmesinde denetimli makine öğrenme algoritmalarının performans karşılaştırması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12 (1), 211-226., 2022.
  • 31. Bilgin, G., Makine öğrenmesi algoritmaları kullanarak erken dönemde diyabet hastalığı riskinin araştırılması. Journal of Intelligent Systems: Theory and Applications, 4 (1), 55-64, 2021.
  • 32. Ramaha, N., Imad, S. Derin Öğrenmeye Karşı Makine Kullanarak Diyabetik Retinopati Teşhisi. Avrupa Bilim ve Teknoloji Dergisi, 51, 301-313, 2021.
  • 33. Daigavhane, M. K., Gundewar, S., Diabetes Prediction using Different Machine Learning Classifiers. In 2024 Parul International Conference on Engineering and Technology (PICET),1-6, IEEE, 2024.
  • 34. Shaukat, Z., Zafar, W., Ahmad, W., Haq, I. U., Husnain, G., Al-Adhaileh, M. H., ... Algarni, A., Revolutionizing Diabetes Diagnosis: Machine Learning Techniques Unleashed. In Healthcare, 11 (21), 2864 MDPI, 2023.
  • 35. Albadri, R. F., Awad, S. M., Hameed, A. S., Mandeel, T. H., Jabbar, R. A., A Diabetes Prediction Model Using Hybrid Machine Learning Algorithm. Mathematical Modelling of Engineering Problems, 11 (8), 2024.
  • 36. Zhuhadar, L. P., Lytras, M. D., The application of AutoML techniques in diabetes diagnosis: current approaches, performance, and future directions. Sustainability, 15 (18), 13484, 2023.
  • 37. https://www.kaggle.com/datasets/nanditapore/healthcare-diabetes (Access Date: 10.01.2024)
  • 38. Song, Y., Huang, J., Zhou, D., Zha, H., Giles, C. L., Iknn: Informative k-nearest neighbor pattern classification. In European conference on principles of data mining and knowledge discovery, Berlin, Heidelberg: Springer Berlin Heidelberg, 248-264, 2007.
  • 39. Gollapalli, M., Alansari, A., Alkhorasani, H., Alsubaii, M., Sakloua, R., Alzahrani, R., ... Albaker, W., A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM. Computers in Biology and Medicine, 147, 105757, 2022.
  • 40. Kadar, J. A., Agustono, D., Napitupulu, D., Optimization of candidate selection using naïve Bayes: case study in company X. In Journal of Physics: Conference Series, 954 (1), 012028, IOP Publishing, 2018.
  • 41. Quinlan, J. R., C4. 5: programs for machine learning. Elsevier, 2014.
  • 42. Hassan, M. M., Mollick, S., Yasmin, F., An unsupervised cluster-based feature grouping model for early diabetes detection. Healthcare Analytics, 2, 100112, 2022.
  • 43. Risdin, F., Mondal, P. K., Hassan, K. M., Convolutional neural networks for detecting fruit information using machine learning techniques. IOSR Journal of Computer Engineering (IOSR-JCE), 22 (2), 01-13, 2020.
  • 44. Dong, W., Huang, Y., Lehane, B., Ma, G., XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, 114, 103155, 2020.
  • 45. Ribeiro, M. T., Singh, S., Guestrin, C., "Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144, 2016.
  • 46. Antwarg, L., Miller, R. M., Shapira, B., Rokach, L., Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert systems with applications, 186, 115736, 2021.
  • 47. Rastogi, R., Bansal, M., Diabetes prediction model using data mining techniques. Measurement: Sensors, 25, 100605, 2023.
  • 48. Reddy, S. K., Krishnaveni, T., Nikitha, G., Vijaykanth, E., Diabetes prediction using different machine learning algorithms. In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), 1261-1265, IEEE, 2021.
  • 49. Bansal, A., Singhrova, A., Performance analysis of supervised machine learning algorithms for diabetes and breast cancer dataset. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 137-143, IEEE, 2021.
  • 50. Nass, L., Swift, S., Al Dallal, A., Indepth analysis of medical dataset mining: a comparitive analysis on a diabetes dataset before and after preprocessing. KnE Social Sciences, 45-63, 2019.
  • 51. Khanam, J.J., Foo, S.Y., A comparison of machine learning algorithms for diabetes prediction. Ict Express, 7 (4), 432-439, 2021.
  • 52. Nahzat, S., Yağanoğlu, M., Diabetes prediction using machine learning classification algorithms. Avrupa Bilim ve Teknoloji Dergisi, 24, 53-59, 2021.
  • 53. Cıhan, P., Coşkun, H., Performance comparison of machine learning models for diabetes prediction. In 2021 29th Signal Processing and Communications Applications Conference (SIU), 1-4, IEEE, 2021.
  • 54. Modak, S. K. S., Jha, V. K., Diabetes prediction model using machine learning techniques. Multimedia Tools and Applications, 83 (13), 38523-38549, 2024
  • 55. Rahaman, M. J., Evaluate the Predictive Performance of Supervised Machine Learning Algorithms in Diabetes Dataset, 2022.
  • 56. Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., ... Howard, B. V., Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study. Diabetes care, 20 (4), 537-544, 1997.
  • 57. Tuomilehto, J., Lindstrom, J., Eriksson, J., Valle, T., Hamalainen, H., Ilanne-Parikka, P., ... Uusitupa, M., Finnish Diabetes Prevention Study. Group, 344, 1343-1350, 2001.
  • 58. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., Nathan, D. M., Diabetes Prevention Program Research Group., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine, 346 (6), 393–403, 2002.
  • 59. Herman W. H., The cost-effectiveness of diabetes prevention: results from the Diabetes Prevention Program and the Diabetes Prevention Program Outcomes Study. Clinical diabetes and endocrinology, 1, 9, 2015.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer)
Bölüm Makaleler
Yazarlar

Hakan Güler 0000-0002-7599-5431

Derya Avcı 0000-0002-5204-0501

Mustafa Ulaş 0000-0002-0096-9693

Tülay Omma 0000-0002-2557-9499

Erken Görünüm Tarihi 8 Ağustos 2025
Yayımlanma Tarihi 21 Ağustos 2025
Gönderilme Tarihi 19 Eylül 2024
Kabul Tarihi 8 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Güler, H., Avcı, D., Ulaş, M., Omma, T. (2025). Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1995-2012. https://doi.org/10.17341/gazimmfd.1552790
AMA Güler H, Avcı D, Ulaş M, Omma T. Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi. GUMMFD. Ağustos 2025;40(3):1995-2012. doi:10.17341/gazimmfd.1552790
Chicago Güler, Hakan, Derya Avcı, Mustafa Ulaş, ve Tülay Omma. “Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 3 (Ağustos 2025): 1995-2012. https://doi.org/10.17341/gazimmfd.1552790.
EndNote Güler H, Avcı D, Ulaş M, Omma T (01 Ağustos 2025) Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1995–2012.
IEEE H. Güler, D. Avcı, M. Ulaş, ve T. Omma, “Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi”, GUMMFD, c. 40, sy. 3, ss. 1995–2012, 2025, doi: 10.17341/gazimmfd.1552790.
ISNAD Güler, Hakan vd. “Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (Ağustos2025), 1995-2012. https://doi.org/10.17341/gazimmfd.1552790.
JAMA Güler H, Avcı D, Ulaş M, Omma T. Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi. GUMMFD. 2025;40:1995–2012.
MLA Güler, Hakan vd. “Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 3, 2025, ss. 1995-12, doi:10.17341/gazimmfd.1552790.
Vancouver Güler H, Avcı D, Ulaş M, Omma T. Diyabet hastalığı teşhisinde makine öğrenimi modelleri ile açıklanabilir yapay zeka yöntemlerinin analizi. GUMMFD. 2025;40(3):1995-2012.