Ünye Cevizdere taşkın afetinin taşkın yayılım ve tehlike haritaları ile incelenmesi
Yıl 2025,
Cilt: 40 Sayı: 4, 2205 - 2218
Abdülbaki Hacı
,
İsmail Bilal Peker
,
Abdülkadir Uzun
,
Ecem Yıldız
,
Sezar Gülbaz
Öz
Bu çalışmada, Ordu ilinin Ünye ilçesinde bulunan Cevizdere’de meydana gelen taşkın afetinin incelenmesi ve farklı tekerrür periyotları için taşkın tehlike haritalarının oluşturulması amaçlanmaktadır. WMS, HEC–HMS ve HEC–RAS bilgisayar programları kullanılarak hidrolojik ve hidrolik modellemeler yapılmıştır. Öncelikle, afetin meydana geldiği Cevizdere Havzası’ndaki yağış-akış ilişkisi HEC–HMS kullanılarak saatlik zaman adımında gözlenen yağış değerleri ile modellenmiştir. Hidrolojik modelin kalibrasyonu 8–9 Ağustos 2018 tarihinde ve validasyonu 28–30 Mayıs 2016 tarihinde ölçülen yağış ve akış değerleri kullanılarak yapılmıştır. Nash–Sutcliffe (NS) verimlilik katsayısı kalibrasyon için 0,78 ve validasyon için 0,57 olarak hesaplanmıştır. Ardından, HEC-RAS kullanılarak, 8 Ağustos 2018 tarihinde yaşanan taşkın afeti modellenmiş, farklı tekerrür periyotlarında oluşabilecek taşkın yayılım alanları oluşturulmuş, taşkın tehlike haritaları hazırlanmış ve 500 yıllık tekerrür periyoduna sahip taşkın debisi için analizler yapılmıştır. 8 Ağustos 2018 tarihinde meydana gelen taşkında 3,51 km2 olduğu tahmin edilen yayılım alanının 500 yıllık taşkın durumunda 8,56 km2’ye ulaştığı görülmektedir. Ayrıca, taşkına için hız ve derinlik değerleri hesaplanarak taşkına ait etkilenebilir alanların tehlike sınıflarına göre taşkın tehlike haritaları oluşturulmuştur. Cevizdere’nin mansabındaki dere yatağının bölgedeki yapılaşma sonucu değişikliğe uğramasının taşkının afet boyutunu artırdığı gözlenmiştir. Sonuçta, 500 yıllık taşkının meydana getirebileceği zararların azaltılmasını amaçlayan yapısal bir tedbir önerisi sunulmuştur. Ayrıca, taşkın modelleme ve taşkın önleme çalışmalarında, eski dere yatağı güzergahlarının ve önceki yıllara ait yerleşim planlarının dikkate alınması gerektiği sonucuna varılmıştır.
Etik Beyan
Etik kurul izni gerekmemektedir.
Destekleyen Kurum
Proje desteği alınmamıştır.
Proje Numarası
Proje desteği alınmamıştır.
Teşekkür
Bu çalışmada kullanılan yağış ve akış verilerini sağlayan Meteoroloji Genel Müdürlüğü’ne ve Devlet Su İşleri Genel Müdürlüğü’ne teşekkür ederiz.
Kaynakça
-
1. Naughton O., McCormack T., Gill L., Johnston, P., Groundwater flood hazards and mechanisms in lowland karst terrains. Special Publication – Geological Society of London/Geological Society, London, Special Publications, 466 (1), 397–41, 2017.
-
2. Fischer S., Schumann A., Spatio–temporal consideration of the impact of flood event types on flood statistic, Stochastic Environmental Research and Risk Assessment, 34 (9), 1331–1351, 2019.
-
3. Şengül S., İspirli M.N., Predicting snowmelt runoff at the source of the mountainous Euphrates River basin in Turkey for water supply and flood control issues using HEC–HMS modeling, Water, 14 (3), 284, 2022.
-
4. Tollan A., Land–use change and floods: what do we need most, research or management?, Water Science & Technology, 45 (8), 183–190, 2002.
-
5. Tabari H. (2020). Climate change impact on flood and extreme precipitation increases with water availability, Scientific Reports, 10 (1), 13768, 2020.
-
6. Kundzewicz Z.W., Quo vadis, hydrology? Hydrological Sciences Journal, 63 (8), 1118–1132, 2018.
-
7. Stefanidis S., Stathis, D., Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP), Natural Hazards, 68 (2), 569–585, 2013.
-
8. Moon, H., Kim, J., Chen, J., Yoon, S., & Moon, Y., Mitigating urban flood hazards: hybrid Strategy of structural measures, International Journal of Disaster Risk Reduction, 108, 104542, 2024.
-
9. Kelesoglu M.K., Temur R., Gülbaz S., Apaydin N.M., Kazezyılmaz–Alhan C. M., Bozbey I., Site assessment and evaluation of the structural damages after the flood disaster in the Western Black Sea Basin on August 11, 2021, Natural Hazards, 116 (1), 587–618, 2022.
-
10. Koçyiğit M.B., Akay H., Estimation of potential flash flood risk in a basin using morphometric parameters: A case study of Akçay Basin, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1321-1332, 2018.
-
11. İhlas Haber Ajansı, Doğu Karadeniz'in 90 yıllık afet bilançosu (in Turkish). https://m.haberturk.com/trabzon–haberleri/69920824–dogukaradenizin–90–yillik–afet–bilancosu–644–oludogu–karadenizde–90–yilda–644–kisi–sel. Yayın tarihi Haziran 20, 2019. Erişim tarihi Temmuz 25, 2024.
-
12. Ocak F., Bahadır M., Creating the Sample Flood Risk Model and Flood Risk Analysis of Rivers in Unye, The Journal of Academic Social Science Studies, 13 (80), 499–524, 2020.
-
13. Dutta D., Herath S., Musiake K., A mathematical model for flood loss estimation, Journal of Hydrology, 277 (1-2), 24-49, 2003.
-
14. Peker İ.B., Gülbaz S., Demir V., Orhan O., Beden N., Integration of HEC–RAS and HEC–HMS with GIS in Flood Modeling and Flood Hazard Mapping, Sustainability, 16 (3), 1226, 2024.
-
15. Knebl M.R., Yang Z., Hutchison K., Maidment D.R., Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC–HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event, Journal of Environmental Management, 75 (4), 325–336, 2005.
-
16. Grimaldi S., Schumann G.J., Shokri A., Walker J.P., Pauwels V.R.N., Challenges, opportunities, and pitfalls for global coupled Hydrologic–Hydraulic modeling of floods, Water Resources Research, 55 (7), 5277–5300, 2019.
-
17. Erturk A., Gurel M., Baloch M.A., Dikerler T., Varol E., Akbulut N., Tanik A., Application of Watershed Modeling System (WMS) for integrated management of a watershed in Turkey, Journal of Environmental Science and Health. Part a, Toxic/Hazardous Substances & Environmental Engineering, 41 (9), 2045–2056, 2006.
-
18. Cosgun T., Peker İ.B., Sayin B., Gülbaz S., Durgut R., Assessment of flood event based on numerical models and legal statute: A case of Eşkinoz Stream in Istanbul, Turkey, Arabian Journal of Geosciences, 15 (7), 585, 2022.
19. Al–Hussein A.A.M., Khan S., Ncibi K., Hamdi N., Hamed Y., Flood analysis using HEC–RAS and HEC–HMS: A case study of Khazir River (Middle East–Northern Iraq), Water, 14 (22), 3779, 2022.
-
20. Thakur B., Parajuli R., Kalra A., Ahmad S., Gupta R., Coupling HEC–RAS and HEC–HMS in precipitation runoff modelling and evaluating flood plain inundation map, World Environmental and Water Resources Congress, Sacramento, California, 240–251, 21–25 Mayıs, 2017.
-
21. Devi N.N., Sridharan B., Kuiry S.N., Impact of urban sprawl on future flooding in Chennai city, India, Journal of Hydrology, 574, 486–496, 2019.
-
22. Abdelal Q., Al–Rawabdeh A., Qudah K.A., Hamarneh C., Abu–Jaber N., Hydrological assessment and management implications for the ancient Nabataean flood control system in Petra, Jordan, Journal of Hydrology, 601, 126583, 2021.
-
23. Gülbaz S., Developing Flood Extent Map by using Numerical Models and Determination of Areas under Flood Risk: Türkköse Stream Case, Journal of Natural Hazards and Environment, 5 (2), 335–349, 2019.
-
24. Brunner G.W., Warner J.C., Wolfe B.C., Piper S.S., Marston P., HEC River Analysis System (HEC–RAS) (2016) HEC–RAS: river analysis system. Hydraulic Reference Manual Version 5.0 user’s manual. Report number CPD–70. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, 2016.
-
25. Gülbaz S., Kazezyılmaz–Alhan C.M., Calibrated hydrodynamic model for Sazlıdere Watershed in Istanbul and investigation of urbanization effects, Journal of Hydrologic Engineering, 18 (1), 75–8, 2013.
-
26. Turkish State Meteorological Service (MGM). Official Statistics of Seasonal Normals of Ordu Province, https://www.mgm.gov.tr/veridegerlendirme/il–ve–ilceler–istatistik.aspx?m=ORDU. Erişim tarihi Temmuz 25, 2024.
-
27. Beden N., Flood analysis of the Cevizdere basin with numerical modeling systems and the assessment of the flood damages, PhD Thesis, Ondokuz Mayıs University, Institute of Science, Samsun, Türkiye, 2019.
-
28. Aquaveo. WMS – The All–in–one Watershed Solution. https://www.aquaveo.com/software/wms–watershed–modeling–system–introduction. Erişim tarihi Temmuz 25, 2024.
-
29. Scharffenberg W.A., Fleming J.M., Hydrologic modeling system HEC–HMS user’s manual version 3.5. Report no: CPD–74A, US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA., USA. SCS (1975) Urban hydrology for small watersheds, tech. Rel. No. 55, U.S. Dept. of Agriculture, Washington D.C, 2010.
-
30. Green W.H., Ampt G.A., Studies in Soil Physics, Part 1, the Flow of Air and Water through Soils, The Journal of Agriculture Science, 4, 11–24. 1911.
-
31. Chow V.T., Open Channel Hydraulics, McGraw–Hill, The Blackburn Press, New York, 1959.
-
32. Smith G.P., Davey E.K., Cox R.J., Flood Hazard, WRL Technical Report 2014/07, Water Research Laboratory, Australia, 2014.
-
33. Moriasi N.D.N., Arnold N.J.G., Van Liew N.M.W., Bingner N.R.L., Harmel N.R.D., Veith N.T.L., Model Evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900, 2007.
-
34. Turgut Ü., A Comparative Study on the Investigation of Synoptic Models Causing Flood Disaster in the Eastern Black Sea Region in Terms of Forecasting Technique (in Turkish), TMMOB Disaster Symposium, Ankara-Türkiye, 133-141, 5-7 December, 2007.
-
35. Yüksek Ö., Babacan H. T., Yüksek O., Flood Causes, Damages and Flood Management Studies in Eastern Black Sea Basin, Turkish Journal of Hydraulic, 6 (2), 36-46, 2022.
-
36. Piton, G., Recking, A., Design of Sediment Traps with Open Check Dams. I: Hydraulic and Deposition Processes. Journal of Hydraulic Engineering, 142 (2), 2015.
-
37. Yazdi J., Moghaddam, M.S., Saghafian B. Optimal design of check dams in mountainous watersheds for flood mitigation. Water Resources Management, 32 (14), 4793–4811, 2018.
-
38. Turkelboom F., Demeyer R., Vranken L., De Becker L., Raymaekers F., De Smet L., How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium. Ambio, 50, 1431–1445, 2021.
-
39. Ferreira S.C., Mourato S., Kasanin-Grubin, M., Ferreira A.J., Destouni G., Kalantari Z., Effectiveness of Nature-Based solutions in mitigating flood hazard in a Mediterranean Peri-Urban catchment. Water, 12 (10), 2893, 2020.
-
40. Kiepert R., Karte von Kleinasien, Map Unije/Unie (1915), 1908. https://www.loc.gov/item/2012586598/. Erişim tarihi Temmuz 25, 2024.
-
41. Google Earth, Ünye, Türkiye. Airbus 2024, Maxar Technologies 2024, 41°05’47.50” N, 37°19’56.48” E, 7 Kasım 2023. http://www.earth.google.com. Erişim tarihi Temmuz 25, 2024.
-
42. Nacar S., Şan M., Kankal M., Okkan U., Trends and amount changes of temperature and precipitation under future projections in high–low groups and intra-period for the Eastern Black Sea, the Wettest Basin in Türkiye, Natural Hazards, https://doi.org/10.1007/s11069-024-06588-z, 2024 (Early Access).