Research Article
BibTex RIS Cite
Year 2021, Volume: 10 Issue: 1, 153 - 161, 17.05.2021

Abstract

References

  • Atkinson, C.J., L. Taylor, and G. Kingswell. 2001. The importance of temperature differences, directly after anthesis, in determining growth and cellular development of Malus fruits. J. The Journal of Horticultural Science & Biotechnology,76: 721–731.
  • Berberoglu, E., Altuntas, E., Dulger, E., 2014. Development of Adequate Mathematical Models to Predict the Mass of Potato Varieties From Their Some Physical Attributes. Journal of Agricultural Faculty of Gaziosmanpasa University, 31(3): 1-9.
  • Cepeda, E., and M.C. Villaran. 1999. Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, 41: 103–107.
  • Gorji Chakespari A, Rajabipour A and Mobli H (2010). Mass modeling of two apple varieties by geometrical attributes. Australian Jurnal of Agricultural Engineering, 1(3): 112-118.
  • Harada, T., Kurahashi, W., Yanai, M., 2005. Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malusspecies.ScientiaHorticulturae 105: 447–456.
  • Jahromi, M.K., Jafari, A., Rafiee, S., Mirasheh, R., Mohtasebi, S.S., 2008. Mass modeling of date fruit (cv. Zahedi) with some physical characteristics. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(1): 127-131.
  • Jahromi, M.K., Rafiee, S., Mirasheh, R., Jafari, A., Mohtasebi, S.S., Ghasemi Varnamkhasti M., 2007. Mass and Surface Area Modeling of Bergamot (Citrus medica) Fruit with Some Physical Attributes. Agricultural Engineering International: the CIGR Ejournal. Manuscript FP 07 029. Vol. IX. October, 2007.
  • Jaliliantabar, F., Lorestani, A.N., 2014. Mass modeling of kumquat fruit (cv. Nagami) with some physical attributes. International Journal of Biosciences, 5(1): 82-88.
  • Keramat Jahromi, M., Jafari, A., Rafiee, S., Keyhani, A.R., Mirasheh, R., Mohtasebi, S.S., 2008. Mass modeling of date fruit (cv. Zahedi) with some physical characteristics. American-Eurasian Journal of Agriculture and Environment Science 3(1): 127-131.
  • Khezri, S.L., Rashidi, M., Gholami, M., 2012. Modeling of Peach Mass Based on Geometrical Attributes Using Linear Regression Models. American-Eurasian J. Agric. & Environ. Sci., 12 (7): 991-995.
  • Khodabakhshian, R., Emadi, B., 2016. Mass model of date fruit (cv. Mazafati ) based on its physiological properties. International Food Research Journal 23(5): 2070-2075.
  • Lorestani, A.N., Tabatabaeefar, A., 2006. Modelling the mass of kiwi fruit by geometrical attributes. Int. Agrophysics, 20: 135-139.
  • Mahawar, M.K., Bibwe, B., Jalgaonkar, K., Ghodki, B.M., 2019. Mass modeling of kinnow mandarin based on some physical attributes. Journal of Food Process Engineering 42 (5): DOI: 10.1111/jfpe.13079.
  • Mirzabe, A.H., Khazaei, J. Chegini, G.R., Gholami, O., 2013. Some physical properties of almond nut and kernel and modeling dimensional properties. Agric Eng Int: CIGR Journal, 15(2): 256-265.
  • Pathak, S.S., Pradhan, R.C., Mishra, S., 2019. Physical characterization and mass modeling of dried Terminalia chebula fruit. J Food Process Eng., e12992.
  • Rashidi, M., Seyfi, K., 2007. Classification of fruit shape in cantaloupe using the analysis of geometrical attributes. World Applied Sciences Journal, 3: 735-740.
  • Rashidi, M., Seyfi, K., 2008a. Determination of kiwifruit volume using image processing. World Applied Sciences Journal, 3: 184-190.
  • Rashidi, M., Seyfi, K., 2008b. Modeling of kiwifruit mass based on outer dimensions and projected areas. American-Eurasian Journal of Agricultural and Environmental Sciences, 3: 14-17.
  • Sadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., Mostofi, Y., 2007. Classification and analysis of fruit shapes in long type watermelon using image processing. International Journal of Agriculture and Biology, 9: 68-70.
  • Sasikumar, R., Vivek, K., Chakkaravarthi, S., Deka, S.C., 2020. Physicochemical Characterization and Mass Modeling of Blood Fruit (Haematocarpus Validus) – An Underutilized Fruit of Northeastern India, International Journal of Fruit Science, DOI: 10.1080/15538362.2020.1848752
  • Shahbazi, F., Rahmati, S., 2013. Mass modeling of fig (Ficuscarica L.) fruit with some physical characteristics. Food Science & Nutrition, 1(2): 125-129.
  • Sharifi, M., Rafiee, S., Keyhani, A., Jafari, A., Mobli, H., Rajabipour A., Akram A., 2007. Some physical properties of orange (var. Tompson). Int. Agrophysics, 21: 391-397.
  • Stanley, C.J., Stokes, J.R., Tustin, D.S., 2001. Early precision of apple fruit size using environmental indicators. Acta Horticulturae (ISHS), 557: 441–446.
  • Tabatabaeefar, A., 2002. Size and shape of potato tubers. Int. Agrophysics, 16: 301–305.
  • Tabatabaeefar A., Rajabipour A., 2005. Modeling the mass of apples by geometrical attributes. Scientia Horticulture Journal, 105: 373–382.
  • Vivek, K., Mishra, S., Pradhan R.C., 2018. Physicochemical characterization and mass modelling of Sohiong (Prunusnepalensis L.) fruit. Journal of Food Measurement and Characterization. 12: 923–936.
  • Wilhelm, L.R., Suter D.A., Brusewitz, G.H., 2005. Physical Properties of Food Materials. Food and Process Engineering Technology. ASAE, St. Joseph, Michigan, USA.
  • Zainal A’Bidin, F.N., Shamsudin, R., Mohd Basri, M.S., Mohd Dom, Z., 2020. Mass Modelling and Effects of Fruit Positionon Firmness and Adhesiveness of Banana Variety Nipah. International Journal of Food Engineering, e2019019. https://doi.org/10.1515/ijfe-2019-0199.

Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini

Year 2021, Volume: 10 Issue: 1, 153 - 161, 17.05.2021

Abstract

Bu çalışmada, fiziksel özelliklerden boyutlar (büyük çap, orta çap ve küçük çap), geometrik ortalama çap, projeksiyon alanları, kriter alanı ve hacimlere göre Japon elmasının kütle tahmin modeli için toplamda 19 lineer regresyon modeli belirlenmiştir. Modellemede boyutlar, projeksiyon alanları ve hacimler dikkate alınmıştır. Çalışmanın istatistiksel sonuçlarına göre Japon elmasının meyve boyutlarına göre kütle tahmininde büyük çap + orta çap + küçük çapa dayalı üç değişkenli kütle modelinin (R2= 0.925) önerilebileceği görülmüştür. Projeksiyon alanlarına göre kütle tahmininde iki değişkenli birinci projeksiyon alanı + üçüncü projeksiyon alanına dayalı [(PA1 + PA3)] bir kütle modeli (R2= 0.940) önerilmiştir. Ayrıca Japon elması için yassı küre ve elipsoit hacimlere dayalı (Vob+Vell) olarak belirlenen doğrusal regresyon kütle modelinin (R2= 0.944) meyvelerin kütle tahmininde kullanılabileceği sonucuna varılmıştır. Çalışmada hasattan sonra Japon elmasını işleyen teknolojilerin tasarımı ve geliştirilmesi açısından önemli kütle modelleri ortaya konulmuştur

References

  • Atkinson, C.J., L. Taylor, and G. Kingswell. 2001. The importance of temperature differences, directly after anthesis, in determining growth and cellular development of Malus fruits. J. The Journal of Horticultural Science & Biotechnology,76: 721–731.
  • Berberoglu, E., Altuntas, E., Dulger, E., 2014. Development of Adequate Mathematical Models to Predict the Mass of Potato Varieties From Their Some Physical Attributes. Journal of Agricultural Faculty of Gaziosmanpasa University, 31(3): 1-9.
  • Cepeda, E., and M.C. Villaran. 1999. Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, 41: 103–107.
  • Gorji Chakespari A, Rajabipour A and Mobli H (2010). Mass modeling of two apple varieties by geometrical attributes. Australian Jurnal of Agricultural Engineering, 1(3): 112-118.
  • Harada, T., Kurahashi, W., Yanai, M., 2005. Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malusspecies.ScientiaHorticulturae 105: 447–456.
  • Jahromi, M.K., Jafari, A., Rafiee, S., Mirasheh, R., Mohtasebi, S.S., 2008. Mass modeling of date fruit (cv. Zahedi) with some physical characteristics. American-Eurasian Journal of Agricultural & Environmental Sciences, 3(1): 127-131.
  • Jahromi, M.K., Rafiee, S., Mirasheh, R., Jafari, A., Mohtasebi, S.S., Ghasemi Varnamkhasti M., 2007. Mass and Surface Area Modeling of Bergamot (Citrus medica) Fruit with Some Physical Attributes. Agricultural Engineering International: the CIGR Ejournal. Manuscript FP 07 029. Vol. IX. October, 2007.
  • Jaliliantabar, F., Lorestani, A.N., 2014. Mass modeling of kumquat fruit (cv. Nagami) with some physical attributes. International Journal of Biosciences, 5(1): 82-88.
  • Keramat Jahromi, M., Jafari, A., Rafiee, S., Keyhani, A.R., Mirasheh, R., Mohtasebi, S.S., 2008. Mass modeling of date fruit (cv. Zahedi) with some physical characteristics. American-Eurasian Journal of Agriculture and Environment Science 3(1): 127-131.
  • Khezri, S.L., Rashidi, M., Gholami, M., 2012. Modeling of Peach Mass Based on Geometrical Attributes Using Linear Regression Models. American-Eurasian J. Agric. & Environ. Sci., 12 (7): 991-995.
  • Khodabakhshian, R., Emadi, B., 2016. Mass model of date fruit (cv. Mazafati ) based on its physiological properties. International Food Research Journal 23(5): 2070-2075.
  • Lorestani, A.N., Tabatabaeefar, A., 2006. Modelling the mass of kiwi fruit by geometrical attributes. Int. Agrophysics, 20: 135-139.
  • Mahawar, M.K., Bibwe, B., Jalgaonkar, K., Ghodki, B.M., 2019. Mass modeling of kinnow mandarin based on some physical attributes. Journal of Food Process Engineering 42 (5): DOI: 10.1111/jfpe.13079.
  • Mirzabe, A.H., Khazaei, J. Chegini, G.R., Gholami, O., 2013. Some physical properties of almond nut and kernel and modeling dimensional properties. Agric Eng Int: CIGR Journal, 15(2): 256-265.
  • Pathak, S.S., Pradhan, R.C., Mishra, S., 2019. Physical characterization and mass modeling of dried Terminalia chebula fruit. J Food Process Eng., e12992.
  • Rashidi, M., Seyfi, K., 2007. Classification of fruit shape in cantaloupe using the analysis of geometrical attributes. World Applied Sciences Journal, 3: 735-740.
  • Rashidi, M., Seyfi, K., 2008a. Determination of kiwifruit volume using image processing. World Applied Sciences Journal, 3: 184-190.
  • Rashidi, M., Seyfi, K., 2008b. Modeling of kiwifruit mass based on outer dimensions and projected areas. American-Eurasian Journal of Agricultural and Environmental Sciences, 3: 14-17.
  • Sadrnia, H., Rajabipour, A., Jafary, A., Javadi, A., Mostofi, Y., 2007. Classification and analysis of fruit shapes in long type watermelon using image processing. International Journal of Agriculture and Biology, 9: 68-70.
  • Sasikumar, R., Vivek, K., Chakkaravarthi, S., Deka, S.C., 2020. Physicochemical Characterization and Mass Modeling of Blood Fruit (Haematocarpus Validus) – An Underutilized Fruit of Northeastern India, International Journal of Fruit Science, DOI: 10.1080/15538362.2020.1848752
  • Shahbazi, F., Rahmati, S., 2013. Mass modeling of fig (Ficuscarica L.) fruit with some physical characteristics. Food Science & Nutrition, 1(2): 125-129.
  • Sharifi, M., Rafiee, S., Keyhani, A., Jafari, A., Mobli, H., Rajabipour A., Akram A., 2007. Some physical properties of orange (var. Tompson). Int. Agrophysics, 21: 391-397.
  • Stanley, C.J., Stokes, J.R., Tustin, D.S., 2001. Early precision of apple fruit size using environmental indicators. Acta Horticulturae (ISHS), 557: 441–446.
  • Tabatabaeefar, A., 2002. Size and shape of potato tubers. Int. Agrophysics, 16: 301–305.
  • Tabatabaeefar A., Rajabipour A., 2005. Modeling the mass of apples by geometrical attributes. Scientia Horticulture Journal, 105: 373–382.
  • Vivek, K., Mishra, S., Pradhan R.C., 2018. Physicochemical characterization and mass modelling of Sohiong (Prunusnepalensis L.) fruit. Journal of Food Measurement and Characterization. 12: 923–936.
  • Wilhelm, L.R., Suter D.A., Brusewitz, G.H., 2005. Physical Properties of Food Materials. Food and Process Engineering Technology. ASAE, St. Joseph, Michigan, USA.
  • Zainal A’Bidin, F.N., Shamsudin, R., Mohd Basri, M.S., Mohd Dom, Z., 2020. Mass Modelling and Effects of Fruit Positionon Firmness and Adhesiveness of Banana Variety Nipah. International Journal of Food Engineering, e2019019. https://doi.org/10.1515/ijfe-2019-0199.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Ebubekir Altuntaş

Publication Date May 17, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Altuntaş, E. (2021). Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 10(1), 153-161.
AMA Altuntaş E. Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini. GBAD. May 2021;10(1):153-161.
Chicago Altuntaş, Ebubekir. “Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri Ile Kütle Tahmini”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10, no. 1 (May 2021): 153-61.
EndNote Altuntaş E (May 1, 2021) Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10 1 153–161.
IEEE E. Altuntaş, “Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini”, GBAD, vol. 10, no. 1, pp. 153–161, 2021.
ISNAD Altuntaş, Ebubekir. “Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri Ile Kütle Tahmini”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10/1 (May 2021), 153-161.
JAMA Altuntaş E. Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini. GBAD. 2021;10:153–161.
MLA Altuntaş, Ebubekir. “Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri Ile Kütle Tahmini”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 10, no. 1, 2021, pp. 153-61.
Vancouver Altuntaş E. Japon Elmasının Fiziksel Özelliklerine Göre Doğrusal Regresyon Modelleri ile Kütle Tahmini. GBAD. 2021;10(1):153-61.