Research Article
BibTex RIS Cite

Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi

Year 2021, Volume: 10 Issue: 3, 276 - 283, 31.12.2021

Abstract

Kuraklık, dünya çapında tarımsal verimliliği etkileyen önemli bir çevresel strestir. Bu çalışmada indol asetik asit uygulamasının kuraklık stresi altında şeker pancarı üzerine etkisi incelenmiştir. Denemede sulama seviyeleri tarla kapasitesinin % 33, % 66 ve % 100 seviyesinde tutulmuştur. Bitkilere indol asetik asitin 4 farklı dozu (0,5,10,20 µM) uygulanmıştır. Bitkiler iklim odasında Hoagland besin solüsyonuyla yetiştirilmiştir. Denemenin sonunda yaprak boyu, yaprak eni, yaprak oransal su içeriği, membran zararlanması ve malondialdehit (MDA) içeriği belirlenmiştir. Denemeden elde edilen sonuçlara göre, kuraklık stresi altında bitkilere uygulanan indol asetik asit, bitkinin vejetatif özelliklerini olumlu etkilerken, kuraklık bu özellikleri olumsuz etkilemiştir. Şeker pancarında kuraklık stresinin vejetatif kısımlardaki olumsuz etkisinin azaltılmasında indol asetik asit uygulamasının kritik bir rol oynayabileceği göz önünde bulundurularak dozlarının gözden geçirilerek çalışmanın tekrar edilmesi gerektiği düşünülmektedir.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi BAP birimi

Project Number

FHD-2017-1192

Thanks

Bu çalışmanın gerçekleştirilebilmesi için FHD-2017-1192 nolu proje ile destek veren Çanakkale Onsekiz Mart Üniversitesi BAP birimine verdikleri destekten dolayı teşekkür ederiz.

References

  • Aksu, G. and Altay, H. 2020. The Effects of Potassium Applications on Drought Stress in Sugar Beet. SugarTech. 1-11. 10.1007/s12355-020-00851-w.
  • Asgharipour, M.R. and Heidari, M. 2011. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content. Pak. J. Agri. Sci. 4893:197–204.
  • Ashraf, M. and Foolad, M.A. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ. Exp. Bot. 59:206–216.
  • Ashraf, M. 1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci., 13:17–42.
  • Ashraf, M.Y., Azhar, N. and Hussain, M. 2006. Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress conditions. Plant Growth Regul 50, 85.
  • Bajji, M., Kinet, J.M. and Lutts, S. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36:61–70.
  • Barr, H.D. and Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol.Sci. 15, 413–428.
  • Bashmakov, D.I., Pynenkova, N.A., Sazanova, K.A. and Lukatkin, A.S. 2012. Effect of the Synthetic Growth Regulator Cytodef and Heavy Metals on Oxidative Status in Cucumber Plants. Russian Journal of Plant Physiology, 59 (1): 59-64.
  • Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaibi, W. and Djebali, W. 2010. Effects of Exogenous Salicylic Acid Pre-Treatment on Cadmium Toxicity and Leaf Lipid Content in Linum usitatissimum L.. Ecotoxicology and Environmental Safety, 73: 1004–1011.
  • Blum, A. 1986. Breeding crop varieties for stress environments. Crit. Rev. Plant Sci., 2: 199–23.
  • Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Mare, C., Tondelli, A. and Stanca, A.M. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res.;105:1–14.
  • Chen, J.J. and Yu, B.P. 1994. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology and Medicine 17(5):411–418.
  • Choudharya, S.P., Bhardwaj, R., Guptac, B.D., Duttc, P., Guptac, R.K., Biondi, S. and Kanwarb, M. 2010. Epibrassinolide Induces Changes in Indole-3-Acetic Acid, Abscisic Acid and Polyamine Concentrations and Enhances Antioxidant Potential of Radish Seedlings Under Copper Stress. Physiologia Plantarum, 140: 280–296.
  • Dlugokecka, E. and Kacperska-palacz, A. 1978. Re-examination of electrical conductivity method for estimation of drought injuries. Biologia Plantarum, 20 (4):262–267.
  • Dudal, R. 1976. Inventory of major soils of the world with special reference to mineral stress. Cornell Univ. Agric. Exp. Stn, Ithaca.
  • Er, C. ve Uranbey, S. 1998. Nişasta Şeker Bitkileri ve Islahı. Ankara Üniversitesi Ziraat fakültesi Yayınları.
  • Ezzat-Ollah, E., Shakiba, M.R. and Mahboob, S.A. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Int. J. Food Agri. Environ. 5:149-153.
  • Fayez, A.K. and Bazaid, A.S. 2014. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13:45–55.
  • Gadallah, M.A.A. 2000. Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. Journal of Arid Environments 44: 451–467.
  • Ghoulam, C., Foursy, A. and Fores, K. 2002. Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Enviromental and Exp. Botany. 47: 39–50.
  • Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in pots under drought. Plant Science 169, 313-321.
  • Hameed, A., Bibi, N. Akhter, J. and Iqbal, N. 2011. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol. Biochem. 49:178–185.
  • Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram R. and Vam, R.P. 2009. Drought Stress in Plants A Review On morphological characteristics and pigments composition. Int. J. Agric. Biol., 11:100-105.
  • Jenks, M.A. and Hasegawa, P.M. 2005. Plant Abiotic Stress. First Press, Blackwell, UK, 270s.
  • Jungklang, J., Saengnil, K. and Uthaibutra, J. 2017. Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep cv. Chiang Mai Pink. Saudi Journal of Biological Sciences 24:1505–1512.
  • Kızıl, U., Aksu, S. ve Camoglu G. 2018. Kontrollü ortamda bitkisel yetiştiricilik için arduino uyumlu bir toprak nemi izleme sistemi tasarımı. Comü Ziraat Fakültesi Dergisi, vol.6:131-139.
  • Kovacik, J., Gruz, J., Hedbavny, J., Klejdus, B. and Strnad, M. 2009. Cadmium and Nickel Uptake are Differentially Modulated by Salicylic Acid in Matricaria chamomilla Plants. J. Agric. Food Chem., 57: 9848–9855.
  • Kriedemann, P.E. and Barrs, H.D. 1981. Citrus orchards. In: Kozlowski TT (ed) Water deficits and plant growth. Vol 6, pp 325–417. Academic Press, New York.
  • Larcher, W. 2003. Physiological Plant Ecology. 4. Baskı, Springer, 513 s.
  • Lawlor, D.W., and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.
  • Lutts, S., Kinet, J.M. and Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
  • Martinez, J.P., Silva, H., Ledent, J.F. and Pinto, M. 2007. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal Agronomy 26: 30–38.
  • Møller, I.M., Jensen, P.E. and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol.58:459-81.
  • Molnar, I., Gaspar, L., Stehli, L., Dulai, S., Sarvari, E., Kirali, I., Galiba, G. and Molnar-Lang, M. 2002. The effect of drought stress on the photosynthetic processes of wheat and Aegilops biuncialis genotypes originating from various habitats. Acta Biologica Szegediensis 46 (3–4):115–6.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239–250.
  • Öktüren, F. ve Sönmez, S., 2005. Bitki Besin Maddeleri ile Bazı Bitki Büyüme Düzenleyicileri (Hormonlar) Arasındaki İlişkiler. Derim, 22 (2).
  • Sairam, R.K. and Srivastava, G.C. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162:897–904.
  • Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R. and Panneerselvam, R. 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. Under water limited conditions. Biointerfaces, 62:125–129.
  • Silva, M.A., Jifon, J.L., Silva, J.A.G. and Sharma, V. 2007.Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol.; 19(3):193–201.
  • Terzi, R. ve Kadioglu, A. 2006, Drought stress tolerance and the antioxidant enzyme system in ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica, 48(2):89–96.
  • Wang, H., Shan, X., Wen, B., Owens, G., Fang, J. and Zhang, S. 2007. Effect of Indole-3-Acetic Acid on Lead Accumulation in Maize (Zea Mays L.) Seedlings and the Relevant Antioxidant Response. Environmental and Experimental Botany, 61: 246–253.
  • Wang, Z.L. and Huang, B.R. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 44:1729–1736.
  • Yang, Y., Wang, Q.L., Geng, M.J., Guo, Z.H. and Zhao, Z. 2011. Effect of Indole-3-Acetic Acid on Aluminum-Induced Efflux of Malic Acid from Wheat (Triticum aestivum L.). Plant Soil, 346: 215–230.
  • Zou, C., Sang, L., Gai, Z., Wang, Y. and Li, C. 2018. Morphological and physiological responses of sugar beet to alkaline stress. Sugar Tech 20(2):202–211.

The Effect of Indole Acetic Acid on Sugar Beet (Beta vulgaris L.) under Drought Stress

Year 2021, Volume: 10 Issue: 3, 276 - 283, 31.12.2021

Abstract

Drought is a major environmental stress affecting agricultural productivity around the world. In this research, the effect of indole acetic acid applications under drought stress on some sugar beet was investigated. In the experiment, irrigation levels were kept at 33%, 66% and 100% of field capacity. Four different doses (0,5,10,20 µM) of indole acetic acid were applied to the plants. The plants were grown with Hoagland nutrient solution in the growth chamber. At the end of the experiment, leaf length, leaf width, leaf proportional water content, membrane damage and malondialdehyde (MDA) content were determined. According to the results obtained from the experiment the indole acetic acid applied to plants under drought stress positively affected the vegetative properties of the plant while drought negatively affected. Considering that indole acetic acid application may play a key role in decreasing the negative effect of drought on vegetative parts in sugar beet, it is thought that the study should be repeated by reviewing the doses.

Project Number

FHD-2017-1192

References

  • Aksu, G. and Altay, H. 2020. The Effects of Potassium Applications on Drought Stress in Sugar Beet. SugarTech. 1-11. 10.1007/s12355-020-00851-w.
  • Asgharipour, M.R. and Heidari, M. 2011. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content. Pak. J. Agri. Sci. 4893:197–204.
  • Ashraf, M. and Foolad, M.A. 2007. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environ. Exp. Bot. 59:206–216.
  • Ashraf, M. 1994. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci., 13:17–42.
  • Ashraf, M.Y., Azhar, N. and Hussain, M. 2006. Indole acetic acid (IAA) induced changes in growth, relative water contents and gas exchange attributes of barley (Hordeum vulgare L.) grown under water stress conditions. Plant Growth Regul 50, 85.
  • Bajji, M., Kinet, J.M. and Lutts, S. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36:61–70.
  • Barr, H.D. and Weatherley, P.E. 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol.Sci. 15, 413–428.
  • Bashmakov, D.I., Pynenkova, N.A., Sazanova, K.A. and Lukatkin, A.S. 2012. Effect of the Synthetic Growth Regulator Cytodef and Heavy Metals on Oxidative Status in Cucumber Plants. Russian Journal of Plant Physiology, 59 (1): 59-64.
  • Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaibi, W. and Djebali, W. 2010. Effects of Exogenous Salicylic Acid Pre-Treatment on Cadmium Toxicity and Leaf Lipid Content in Linum usitatissimum L.. Ecotoxicology and Environmental Safety, 73: 1004–1011.
  • Blum, A. 1986. Breeding crop varieties for stress environments. Crit. Rev. Plant Sci., 2: 199–23.
  • Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Mare, C., Tondelli, A. and Stanca, A.M. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res.;105:1–14.
  • Chen, J.J. and Yu, B.P. 1994. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology and Medicine 17(5):411–418.
  • Choudharya, S.P., Bhardwaj, R., Guptac, B.D., Duttc, P., Guptac, R.K., Biondi, S. and Kanwarb, M. 2010. Epibrassinolide Induces Changes in Indole-3-Acetic Acid, Abscisic Acid and Polyamine Concentrations and Enhances Antioxidant Potential of Radish Seedlings Under Copper Stress. Physiologia Plantarum, 140: 280–296.
  • Dlugokecka, E. and Kacperska-palacz, A. 1978. Re-examination of electrical conductivity method for estimation of drought injuries. Biologia Plantarum, 20 (4):262–267.
  • Dudal, R. 1976. Inventory of major soils of the world with special reference to mineral stress. Cornell Univ. Agric. Exp. Stn, Ithaca.
  • Er, C. ve Uranbey, S. 1998. Nişasta Şeker Bitkileri ve Islahı. Ankara Üniversitesi Ziraat fakültesi Yayınları.
  • Ezzat-Ollah, E., Shakiba, M.R. and Mahboob, S.A. 2007. Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. Int. J. Food Agri. Environ. 5:149-153.
  • Fayez, A.K. and Bazaid, A.S. 2014. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences, 13:45–55.
  • Gadallah, M.A.A. 2000. Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. Journal of Arid Environments 44: 451–467.
  • Ghoulam, C., Foursy, A. and Fores, K. 2002. Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Enviromental and Exp. Botany. 47: 39–50.
  • Gong, H., Zhu, X., Chen, K., Wang, S. and Zhang, C. 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in pots under drought. Plant Science 169, 313-321.
  • Hameed, A., Bibi, N. Akhter, J. and Iqbal, N. 2011. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol. Biochem. 49:178–185.
  • Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram R. and Vam, R.P. 2009. Drought Stress in Plants A Review On morphological characteristics and pigments composition. Int. J. Agric. Biol., 11:100-105.
  • Jenks, M.A. and Hasegawa, P.M. 2005. Plant Abiotic Stress. First Press, Blackwell, UK, 270s.
  • Jungklang, J., Saengnil, K. and Uthaibutra, J. 2017. Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep cv. Chiang Mai Pink. Saudi Journal of Biological Sciences 24:1505–1512.
  • Kızıl, U., Aksu, S. ve Camoglu G. 2018. Kontrollü ortamda bitkisel yetiştiricilik için arduino uyumlu bir toprak nemi izleme sistemi tasarımı. Comü Ziraat Fakültesi Dergisi, vol.6:131-139.
  • Kovacik, J., Gruz, J., Hedbavny, J., Klejdus, B. and Strnad, M. 2009. Cadmium and Nickel Uptake are Differentially Modulated by Salicylic Acid in Matricaria chamomilla Plants. J. Agric. Food Chem., 57: 9848–9855.
  • Kriedemann, P.E. and Barrs, H.D. 1981. Citrus orchards. In: Kozlowski TT (ed) Water deficits and plant growth. Vol 6, pp 325–417. Academic Press, New York.
  • Larcher, W. 2003. Physiological Plant Ecology. 4. Baskı, Springer, 513 s.
  • Lawlor, D.W., and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.
  • Lutts, S., Kinet, J.M. and Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
  • Martinez, J.P., Silva, H., Ledent, J.F. and Pinto, M. 2007. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal Agronomy 26: 30–38.
  • Møller, I.M., Jensen, P.E. and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol.58:459-81.
  • Molnar, I., Gaspar, L., Stehli, L., Dulai, S., Sarvari, E., Kirali, I., Galiba, G. and Molnar-Lang, M. 2002. The effect of drought stress on the photosynthetic processes of wheat and Aegilops biuncialis genotypes originating from various habitats. Acta Biologica Szegediensis 46 (3–4):115–6.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239–250.
  • Öktüren, F. ve Sönmez, S., 2005. Bitki Besin Maddeleri ile Bazı Bitki Büyüme Düzenleyicileri (Hormonlar) Arasındaki İlişkiler. Derim, 22 (2).
  • Sairam, R.K. and Srivastava, G.C. 2002. Changes in antioxidant activity in subcellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162:897–904.
  • Sankar, B., Jaleel, C.A., Manivannan, P., Kishorekumar, A., Somasundaram, R. and Panneerselvam, R. 2008. Relative efficacy of water use in five varieties of Abelmoschus esculentus (L.) Moench. Under water limited conditions. Biointerfaces, 62:125–129.
  • Silva, M.A., Jifon, J.L., Silva, J.A.G. and Sharma, V. 2007.Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol.; 19(3):193–201.
  • Terzi, R. ve Kadioglu, A. 2006, Drought stress tolerance and the antioxidant enzyme system in ctenanthe setosa. Acta Biologica Cracoviensia Series Botanica, 48(2):89–96.
  • Wang, H., Shan, X., Wen, B., Owens, G., Fang, J. and Zhang, S. 2007. Effect of Indole-3-Acetic Acid on Lead Accumulation in Maize (Zea Mays L.) Seedlings and the Relevant Antioxidant Response. Environmental and Experimental Botany, 61: 246–253.
  • Wang, Z.L. and Huang, B.R. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 44:1729–1736.
  • Yang, Y., Wang, Q.L., Geng, M.J., Guo, Z.H. and Zhao, Z. 2011. Effect of Indole-3-Acetic Acid on Aluminum-Induced Efflux of Malic Acid from Wheat (Triticum aestivum L.). Plant Soil, 346: 215–230.
  • Zou, C., Sang, L., Gai, Z., Wang, Y. and Li, C. 2018. Morphological and physiological responses of sugar beet to alkaline stress. Sugar Tech 20(2):202–211.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Araştırma Makaleleri
Authors

Gizem Aksu

Hamit Altay

Project Number FHD-2017-1192
Early Pub Date December 31, 2021
Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 3

Cite

APA Aksu, G., & Altay, H. (2021). Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 10(3), 276-283.
AMA Aksu G, Altay H. Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi. GBAD. December 2021;10(3):276-283.
Chicago Aksu, Gizem, and Hamit Altay. “Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta Vulgaris L.) Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10, no. 3 (December 2021): 276-83.
EndNote Aksu G, Altay H (December 1, 2021) Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10 3 276–283.
IEEE G. Aksu and H. Altay, “Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi”, GBAD, vol. 10, no. 3, pp. 276–283, 2021.
ISNAD Aksu, Gizem - Altay, Hamit. “Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta Vulgaris L.) Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 10/3 (December 2021), 276-283.
JAMA Aksu G, Altay H. Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi. GBAD. 2021;10:276–283.
MLA Aksu, Gizem and Hamit Altay. “Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta Vulgaris L.) Etkisi”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 10, no. 3, 2021, pp. 276-83.
Vancouver Aksu G, Altay H. Kuraklık Stresi Altında İndol Asetik Asitin Şeker Pancarına (Beta vulgaris L.) Etkisi. GBAD. 2021;10(3):276-83.