Research Article
BibTex RIS Cite
Year 2023, Volume: 12 Issue: 1, 37 - 45, 30.06.2023

Abstract

References

  • [1 ] Akdoğan, Z., Yakar, A., Demirci, M. 2019. Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation, 1–10, 350.
  • [2 ] B.P., Bairamov E. ve Ugurlu, E. 2013. Eigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditions. Journal of Mathematical Analysis and Applications, 401(1):388–396, DOI: 10.1016/j.jmaa.2012.12.020.
  • [3] B.P. ve Tuna, H. 2019. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electronic Journal of Differential Equations, 2019(3):1–10.
  • [4] Aydemir, K., Olğar, H., Mukhtarov, O. Sh. ve Muhtarov, F. S. 2018. Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 32:3 (2018), 921–931.
  • [5 ] Cannon, J.R. ve Meyer, G.H. 1971. On diffusion in a fractured medium. SIAM Journal on Applied Mathematics, 20(3):434–448, .DOI: 10.1137/0120047.
  • [6] Duhamel, J.M.C. 1843. Mémoire sur les vibrations d’une corde flexible, chargée d’unou de plusieurs curseurs. J. de lÉtcole Polytechnique.
  • [7 ] Ergün, A. ve Amirov, R. 2020. Half inverse problem for diffusion operators with jump conditions dependent on the spectral parameter. Numerical Methods for Partial Differential Equations, DOI: 10.1002/num.22666.
  • [8] Gaskell, R.E. 1942. A problem in heat conduction and an expansion theorem. American Journal of Mathematics, 64(1):447–455, DOI: 10.2307/2371696.
  • [9] Grace, S.R. ve El-Morshedy, H.A. 2000. Oscillation criteria of comparison type for second order difference equations. Journal of Applied Analysis, 6(1):87–102, DOI: 10.1515/JAA.2000.87.
  • [10 ] Kandemir, M. ve Mukhtarov, O.Sh. 2017. Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions. Electronic Journal of Differential Equations, 2017(11):1–12, 2017.
  • [11 ] Langer, R. E. 1932. A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tohoku Mathematical Journal, First Series, 35:260–275.
  • [12 ] Mukhtarov, O. S., Olğar, H., Aydemir, K., & Jabbarov, I. S. (2018). Operator-pencil realization of one Sturm- Liouville problem with transmission conditions. Applied and Computational Mathematics, 17(2), 284-294.
  • [1 3] Mukhtarov, O., Olğar, H., & Aydemir, K. (2020). Eigenvalue problems with interface conditions. Konuralp 2 Journal of Mathematics, 8(2), 284-286. 3
  • [1 4] Olğar, H., Mukhtarov, O. Sh., Aydemir, K. 2018. Some properties of eigenvalues and generalized 5 eigenvectors of one boundary value problem, Filomat, 32:3, 911-920. 6
  • [15] Şen, E. 2018. Computation of eigenvalues and eigenfunctions of a Schrödinger-type boundary-value-8 transmission problem with retarded argument. Mathematical Methods in the Applied Sciences, 41(16):6604–9 6610, DOI: 10.1002/mma.5178. 10
  • [1 6] Sturm, C. 1836. Mémoire sur les équations différentielles linéaires du second ordre. Journal de Mathématiques 12 Pures et Appliquées, 1:106–186. 13
  • [1 7] Yakar, A., Akdogan, Z. 2017. On the fundamental solutions of a discontinuous fractional boundary value 15 problem, Adv Differ Equ 2017, 378

İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri

Year 2023, Volume: 12 Issue: 1, 37 - 45, 30.06.2023

Abstract

Bu çalışmanın esas amacı yeni tipten bir Sturm-Lioville probleminin bazı karşılaştırma ve salınım özelliklerinin incelenmesidir. Araştırdığımız problemin klasik Stum-Liouville probleminden esas farkı ortak sınırı olan iki tane ayrık aralıkta tanımlı olması ve ortak sınırda geçiş şartları olarak adlandırılan iki tane ek şart içermesidir. Klasik yöntemlerin yeni bir modifikasyonunu (biçimini) geliştirerek yeni karşılaştırma ve salınım teoremleri ispat ettik. Bizim sonuçlar karşılaştırma ve salınım hakkındaki bazı klasik sonuçları genelleştiriyor.

References

  • [1 ] Akdoğan, Z., Yakar, A., Demirci, M. 2019. Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation, 1–10, 350.
  • [2 ] B.P., Bairamov E. ve Ugurlu, E. 2013. Eigenparameter dependent Sturm–Liouville problems in boundary conditions with transmission conditions. Journal of Mathematical Analysis and Applications, 401(1):388–396, DOI: 10.1016/j.jmaa.2012.12.020.
  • [3] B.P. ve Tuna, H. 2019. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electronic Journal of Differential Equations, 2019(3):1–10.
  • [4] Aydemir, K., Olğar, H., Mukhtarov, O. Sh. ve Muhtarov, F. S. 2018. Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 32:3 (2018), 921–931.
  • [5 ] Cannon, J.R. ve Meyer, G.H. 1971. On diffusion in a fractured medium. SIAM Journal on Applied Mathematics, 20(3):434–448, .DOI: 10.1137/0120047.
  • [6] Duhamel, J.M.C. 1843. Mémoire sur les vibrations d’une corde flexible, chargée d’unou de plusieurs curseurs. J. de lÉtcole Polytechnique.
  • [7 ] Ergün, A. ve Amirov, R. 2020. Half inverse problem for diffusion operators with jump conditions dependent on the spectral parameter. Numerical Methods for Partial Differential Equations, DOI: 10.1002/num.22666.
  • [8] Gaskell, R.E. 1942. A problem in heat conduction and an expansion theorem. American Journal of Mathematics, 64(1):447–455, DOI: 10.2307/2371696.
  • [9] Grace, S.R. ve El-Morshedy, H.A. 2000. Oscillation criteria of comparison type for second order difference equations. Journal of Applied Analysis, 6(1):87–102, DOI: 10.1515/JAA.2000.87.
  • [10 ] Kandemir, M. ve Mukhtarov, O.Sh. 2017. Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions. Electronic Journal of Differential Equations, 2017(11):1–12, 2017.
  • [11 ] Langer, R. E. 1932. A problem in diffusion or in the flow of heat for a solid in contact with a fluid. Tohoku Mathematical Journal, First Series, 35:260–275.
  • [12 ] Mukhtarov, O. S., Olğar, H., Aydemir, K., & Jabbarov, I. S. (2018). Operator-pencil realization of one Sturm- Liouville problem with transmission conditions. Applied and Computational Mathematics, 17(2), 284-294.
  • [1 3] Mukhtarov, O., Olğar, H., & Aydemir, K. (2020). Eigenvalue problems with interface conditions. Konuralp 2 Journal of Mathematics, 8(2), 284-286. 3
  • [1 4] Olğar, H., Mukhtarov, O. Sh., Aydemir, K. 2018. Some properties of eigenvalues and generalized 5 eigenvectors of one boundary value problem, Filomat, 32:3, 911-920. 6
  • [15] Şen, E. 2018. Computation of eigenvalues and eigenfunctions of a Schrödinger-type boundary-value-8 transmission problem with retarded argument. Mathematical Methods in the Applied Sciences, 41(16):6604–9 6610, DOI: 10.1002/mma.5178. 10
  • [1 6] Sturm, C. 1836. Mémoire sur les équations différentielles linéaires du second ordre. Journal de Mathématiques 12 Pures et Appliquées, 1:106–186. 13
  • [1 7] Yakar, A., Akdogan, Z. 2017. On the fundamental solutions of a discontinuous fractional boundary value 15 problem, Adv Differ Equ 2017, 378
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makaleleri
Authors

Sevda Nur Öztürk 0000-0001-5722-3393

Oktay Mukhtarov

Early Pub Date June 23, 2023
Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Öztürk, S. N., & Mukhtarov, O. (2023). İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 12(1), 37-45.
AMA Öztürk SN, Mukhtarov O. İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri. GBAD. June 2023;12(1):37-45.
Chicago Öztürk, Sevda Nur, and Oktay Mukhtarov. “İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım Ve Ayırma Özellikleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12, no. 1 (June 2023): 37-45.
EndNote Öztürk SN, Mukhtarov O (June 1, 2023) İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12 1 37–45.
IEEE S. N. Öztürk and O. Mukhtarov, “İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri”, GBAD, vol. 12, no. 1, pp. 37–45, 2023.
ISNAD Öztürk, Sevda Nur - Mukhtarov, Oktay. “İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım Ve Ayırma Özellikleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi 12/1 (June 2023), 37-45.
JAMA Öztürk SN, Mukhtarov O. İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri. GBAD. 2023;12:37–45.
MLA Öztürk, Sevda Nur and Oktay Mukhtarov. “İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım Ve Ayırma Özellikleri”. Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 12, no. 1, 2023, pp. 37-45.
Vancouver Öztürk SN, Mukhtarov O. İki Aralıklı Sturm-Liouville Denklemlerinin Çözümlerinin Salınım ve Ayırma Özellikleri. GBAD. 2023;12(1):37-45.