Design of PID Controller with Set-point Filter Based on Time Response Specifications for Fractional Order Systems
Year 2024,
Volume: 13 Issue: 3, 123 - 135, 31.12.2024
Hasan Sarman
,
Tufan Doğruer
Abstract
This article addresses the development of a Proportional-Integral-Derivative (PID) controller design and set-point filter based on time response specifications for fractional-order systems. Fractional-order systems are challenging to control using traditional control methods due to the complexity of their dynamic behaviour. In this study, a set-point filter is integrated into the PID controller design to ensure the desired system performance and stability. During the design process, appropriate PID parameters and filter coefficients are determined by considering the system's time response specifications. The article first examines the mathematical models of fractional-order systems using integer-order approximation methods and then determines the PID controller parameters for these systems with an Improved-Grey Wolf Optimization-based optimization algorithm. The proposed approach aims to improve performance criteria such as overshoot, rise time, and settling time based on the desired system response. Simulation results demonstrate the effectiveness of the proposed method in improving system performance. This design approach offers significant potential to control complex systems commonly encountered in industrial applications.
References
- Ajmeri, M. (2023). Analytical design of enhanced PID controller with set-point filter for unstable processes with time delay. International Journal of Dynamics and Control, 11(2), 564-573.
- Åström, K. J., & Hägglund, T. (1995). PID controllers: theory, design, and tuning (Vol. 2). Instrument society of America Research Triangle Park, NC.
- Bingul, Z., & Karahan, O. (2018). A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355(13), 5534-5559.
- Carlson, G., & Halijak, C. (1964). Approximation of fractional capacitors (1/s)(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory, 11(2), 210-213.
- Charef, A., Sun, H., Tsao, Y., & Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 37(9), 1465-1470.
- Cohen, G. (1953). Theoretical consideration of retarded control. Trans. Asme, 75, 827-834.
- Cokmez, E., Atiç, S., Peker, F., & Kaya, I. (2018). Fractional-order PI controller design for integrating processes based on gain and phase margin specifications. IFAC-PapersOnLine, 51(4), 751-756.
- Dogruer, T., & Can, M. S. (2022). Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Transactions of the Institute of Measurement and Control, 44(9), 1862-1873.
- Dogruer, T., & Tan, N. (2018). Design of PI controller using optimization method in fractional order control systems. IFAC-PapersOnLine, 51(4), 841-846.
- Dogruer, T., & Tan, N. (2019). Lead and lag controller design in fractional-order control systems. Measurement and Control, 52(7-8), 1017-1028.
- Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS'95. Proceedings of the sixth international symposium on micro machine and human science,
- Hang, C. C., Åström, K. J., & Ho, W. K. (1991). Refinements of the Ziegler–Nichols tuning formula. IEE Proceedings D (Control Theory and Applications),
- Ho, W. K., Gan, O., Tay, E. B., & Ang, E. (1996). Performance and gain and phase margins of well-known PID tuning formulas. IEEE Transactions on Control Systems Technology, 4(4), 473-477.
- Holland John, H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
https://doi.org/10.1007/s10898-007-9149-x
- Li, X., & Gao, L. (2022). A simple frequency-domain tuning method of fractional-order PID controllers for fractional-order delay systems. International Journal of Control, Automation and Systems, 20(7), 2159-2168.
- Luo, Y., Chen, Y. Q., Wang, C. Y., & Pi, Y. G. (2010). Tuning fractional order proportional integral controllers for fractional order systems. Journal of Process Control, 20(7), 823-831.
- Machado, J. T., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus. Communications in nonlinear science and numerical simulation, 16(3), 1140-1153.
- Manabe, S. (1961). The noninteger integral and its application to control systems. English Translation Journal Japan, 6, 83-87.
- Matsuda, K., & Fujii, H. (1993). H (infinity) optimized wave-absorbing control-Analytical and experimental results. Journal of Guidance, Control, and Dynamics, 16(6), 1146-1153.
- Meng, F., Liu, S., Pang, A., & Liu, K. (2020). Fractional order PID parameter tuning for solar collector system based on frequency domain analysis. IEEE Access, 8, 148980-148988.
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls: fundamentals and applications. Springer Science & Business Media.
- Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.
- O’Dwyer, A. (2012). An overview of tuning rules for the PI and PID continuous-time control of time-delayed single-input, single-output (SISO) processes. PID control in the third millennium: Lessons learned and new approaches, 3-44.
- Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25-39.
- Petráš, I. (2011). Fractional-order nonlinear systems: modeling, analysis and simulation. Springer Science & Business Media.
- Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. elsevier.
- Podlubny, I., Petráš, I., Vinagre, B. M., O'Leary, P., & Dorčák, Ľ. (2002). Analogue realizations of fractional-order controllers. Nonlinear dynamics, 29, 281-296.
- Sabatier, J., Agrawal, O. P., & Machado, J. T. (2007). Advances in fractional calculus (Vol. 4). Springer.
- Tustin, A., Allanson, J., Layton, J., & Jakeways, R. (1958). The design of systems for automatic control of the position of massive objects. Proceedings of the IEE-Part C: Monographs, 105(1S), 1-57.
- Xue, D., Zhao, C., & Chen, Y. (2006). A modified approximation method of fractional order system. 2006 international conference on mechatronics and automation,
- Zhao, C., Xue, D., & Chen, Y. (2005). A fractional order PID tuning algorithm for a class of fractional order plants. IEEE International Conference Mechatronics and Automation, 2005,
- Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Trans. Asme, 64(11).
Kesirli Dereceli Sistemler İçin Zaman Cevabı Özelliklerine Dayalı Ayar Noktası Filtreli PID Kontrolör Tasarımı
Year 2024,
Volume: 13 Issue: 3, 123 - 135, 31.12.2024
Hasan Sarman
,
Tufan Doğruer
Abstract
Bu makale, kesir dereceli sistemler için zaman tepkisi özelliklerine dayalı Orantılı-İntegral-Türev (PID) kontrolör tasarımı ve ayar noktası filtresinin geliştirilmesini ele almaktadır. Kesirli mertebeden sistemlerin dinamik davranışlarının karmaşıklığı nedeniyle geleneksel kontrol yöntemleri kullanılarak kontrol edilmesi zordur. Bu çalışmada, istenen sistem performansını ve kararlılığını sağlamak için PID kontrolör tasarımına bir ayar noktası filtresi entegre edilmiştir. Tasarım süreci sırasında, sistemin zaman tepkisi özellikleri dikkate alınarak uygun PID parametreleri ve filtre katsayıları belirlenir. Makalede ilk olarak tamsayı dereceli yaklaşım yöntemleri kullanılarak kesir dereceli sistemlerin matematiksel modelleri incelenmekte ve ardından Geliştirilmiş-Gri Kurt Optimizasyonu tabanlı bir optimizasyon algoritması ile bu sistemler için PID kontrolör parametreleri belirlenmektedir. Önerilen yaklaşım, istenen sistem tepkisine dayalı olarak aşma, yükselme süresi ve yerleşme süresi gibi performans kriterlerini iyileştirmeyi amaçlamaktadır. Simülasyon sonuçları, önerilen yöntemin sistem performansını iyileştirmedeki etkinliğini göstermektedir. Bu tasarım yaklaşımı, endüstriyel uygulamalarda sıklıkla karşılaşılan karmaşık sistemleri kontrol etmek için önemli bir potansiyel sunmaktadır.
References
- Ajmeri, M. (2023). Analytical design of enhanced PID controller with set-point filter for unstable processes with time delay. International Journal of Dynamics and Control, 11(2), 564-573.
- Åström, K. J., & Hägglund, T. (1995). PID controllers: theory, design, and tuning (Vol. 2). Instrument society of America Research Triangle Park, NC.
- Bingul, Z., & Karahan, O. (2018). A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355(13), 5534-5559.
- Carlson, G., & Halijak, C. (1964). Approximation of fractional capacitors (1/s)(1/n) by a regular Newton process. IEEE Transactions on Circuit Theory, 11(2), 210-213.
- Charef, A., Sun, H., Tsao, Y., & Onaral, B. (1992). Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, 37(9), 1465-1470.
- Cohen, G. (1953). Theoretical consideration of retarded control. Trans. Asme, 75, 827-834.
- Cokmez, E., Atiç, S., Peker, F., & Kaya, I. (2018). Fractional-order PI controller design for integrating processes based on gain and phase margin specifications. IFAC-PapersOnLine, 51(4), 751-756.
- Dogruer, T., & Can, M. S. (2022). Design and robustness analysis of fuzzy PID controller for automatic voltage regulator system using genetic algorithm. Transactions of the Institute of Measurement and Control, 44(9), 1862-1873.
- Dogruer, T., & Tan, N. (2018). Design of PI controller using optimization method in fractional order control systems. IFAC-PapersOnLine, 51(4), 841-846.
- Dogruer, T., & Tan, N. (2019). Lead and lag controller design in fractional-order control systems. Measurement and Control, 52(7-8), 1017-1028.
- Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS'95. Proceedings of the sixth international symposium on micro machine and human science,
- Hang, C. C., Åström, K. J., & Ho, W. K. (1991). Refinements of the Ziegler–Nichols tuning formula. IEE Proceedings D (Control Theory and Applications),
- Ho, W. K., Gan, O., Tay, E. B., & Ang, E. (1996). Performance and gain and phase margins of well-known PID tuning formulas. IEEE Transactions on Control Systems Technology, 4(4), 473-477.
- Holland John, H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459-471.
https://doi.org/10.1007/s10898-007-9149-x
- Li, X., & Gao, L. (2022). A simple frequency-domain tuning method of fractional-order PID controllers for fractional-order delay systems. International Journal of Control, Automation and Systems, 20(7), 2159-2168.
- Luo, Y., Chen, Y. Q., Wang, C. Y., & Pi, Y. G. (2010). Tuning fractional order proportional integral controllers for fractional order systems. Journal of Process Control, 20(7), 823-831.
- Machado, J. T., Kiryakova, V., & Mainardi, F. (2011). Recent history of fractional calculus. Communications in nonlinear science and numerical simulation, 16(3), 1140-1153.
- Manabe, S. (1961). The noninteger integral and its application to control systems. English Translation Journal Japan, 6, 83-87.
- Matsuda, K., & Fujii, H. (1993). H (infinity) optimized wave-absorbing control-Analytical and experimental results. Journal of Guidance, Control, and Dynamics, 16(6), 1146-1153.
- Meng, F., Liu, S., Pang, A., & Liu, K. (2020). Fractional order PID parameter tuning for solar collector system based on frequency domain analysis. IEEE Access, 8, 148980-148988.
- Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
Monje, C. A., Chen, Y., Vinagre, B. M., Xue, D., & Feliu-Batlle, V. (2010). Fractional-order systems and controls: fundamentals and applications. Springer Science & Business Media.
- Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917.
- O’Dwyer, A. (2012). An overview of tuning rules for the PI and PID continuous-time control of time-delayed single-input, single-output (SISO) processes. PID control in the third millennium: Lessons learned and new approaches, 3-44.
- Oustaloup, A., Levron, F., Mathieu, B., & Nanot, F. M. (2000). Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(1), 25-39.
- Petráš, I. (2011). Fractional-order nonlinear systems: modeling, analysis and simulation. Springer Science & Business Media.
- Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. elsevier.
- Podlubny, I., Petráš, I., Vinagre, B. M., O'Leary, P., & Dorčák, Ľ. (2002). Analogue realizations of fractional-order controllers. Nonlinear dynamics, 29, 281-296.
- Sabatier, J., Agrawal, O. P., & Machado, J. T. (2007). Advances in fractional calculus (Vol. 4). Springer.
- Tustin, A., Allanson, J., Layton, J., & Jakeways, R. (1958). The design of systems for automatic control of the position of massive objects. Proceedings of the IEE-Part C: Monographs, 105(1S), 1-57.
- Xue, D., Zhao, C., & Chen, Y. (2006). A modified approximation method of fractional order system. 2006 international conference on mechatronics and automation,
- Zhao, C., Xue, D., & Chen, Y. (2005). A fractional order PID tuning algorithm for a class of fractional order plants. IEEE International Conference Mechatronics and Automation, 2005,
- Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Trans. Asme, 64(11).