Research Article
BibTex RIS Cite

Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi

Year 2021, Volume: 41 Issue: 3, 1327 - 1358, 30.12.2021

Abstract

Küresel çaptaki COVID-19 salgınıyla birlikte öğretim faaliyetlerinin, sınıflarda yüz yüze yapılan etkinlikler olarak tasarlanan geleneksel kalıbından çıkarak ICT destekli yeni bir bağlama taşındığı söylenebilir. Fen başarısı yalnızca bir öğrencinin doğasında olan yeteneklerle değil, aynı zamanda çeşitli etki faktörleriyle de ilgilidir. Uluslararası Öğrenci Değerlendirme Programı (PISA) 2018, 15 yaşındaki çocukların fen başarısına ilişkin ulusal bir bakış açısı sağlar. Bu çalışmada, öğrenci düzeyinde BİT aşinalık faktörleri (on bir faktör) ile öğrencilerin fen başarısı arasındaki ilişkiyi araştırmak için IDB Analyzer kullanılarak çoklu doğrusal bir regresyon modeli oluşturulmuştur. Örneklem Türkiye'den 15 yaşındaki 6890 öğrenciyi kapsamaktadır. Araştırmanın sonuçları; derslerde konuyla ilgili BİT kullanımının, öğrencilerin BİT ile ilgili tutum faktörlerinin (BİT'e olan ilgileri, algılanan BİT yetkinliği ve BİT kullanımındaki algılanan özerklik), BİT'in evdeki mevcudiyetinin, okul dışında BİT kullanımının (eğlence amaçlı), genel olarak okulda BİT kullanımından, BİT'in okul dışında kullanımından (okul çalışmaları için) ve sosyal etkileşimde bir konu olarak BİT kullanımından ziyade, fen başarısını artırdığını göstermektedir. Son olarak, uygulayıcılar ve araştırmacılar için bazı önerilerde bulunulmuştur.

References

  • Atalay, N., & Anagün, Ş. S. (2014). Kırsal alanlarda görev yapan sınıf öğretmenlerinin bilgi ve iletişim teknolojilerinin kullanımına ilişkin görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 2(3), 9-27. doi:10.14689/issn.2148-2624.1.2c3s1m
  • Aypay, A. (2010). Information and communication technology (ICT) usage and achievement of Turkish students in PISA 2006. Turkish Online Journal of Educational Technology-TOJET, 9(2), 116-124. http://www.tojet.net/articles/v9i2/9213.pdf adresinden erişilmiştir.
  • Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of psychology, 52(1), 1-26. doi:10.1146/annurev.psych.52.1.1 Biagi, F., & Loi, M. (2013). Measuring ICT use and learning outcomes: Evidence from recent econometric studies. European Journal of Education, 48(1), 28-42. doi:10.1111/ejed.12016
  • Boudreau, J., & Rice, S. (2015). Bright, shiny objects and the future of HR. Harvard Business Review, 93(7), 72-78. Retrieved from http://aspirehrbp.org.uk/wp-content/uploads/sites/51/2016/11/Bright-Shiny-Objects-and-the-Future-of-HR.pdf
  • Bulut, O. & Cutumisu, M. (2018). When technology does not add up: ICT use negatively predicts mathematics and science achievement for Finnish and Turkish students in PISA 2012. Journal of Educational Multimedia and Hypermedia, 27(1), 25-42. Retrieved from https://www.learntechlib.org/p/178514
  • Byungura, J. C., Hansson, H., Muparasi, M., & Ruhinda, B. (2018). Familiarity with Technology among First-Year Students in Rwandan Tertiary Education. Electronic Journal of e-Learning, 16(1), 30-45. Retrieved from http://www.ejel.org/issue/download.html?idArticle=637
  • Conbere, J., & Heorhiadi, A. (2017). Escaping the Tower of Babble. OD practitioner, 49(1), 28-34. Retrieved from http://www.seaminstitute.org/uploads/5/2/3/7/52374523/escaping_the_tower_of_babble_odp_2017.pdf
  • Corti, L. (2008). Secondary analysis. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods Volumes 1 and 2 (801-803). Thousand Oaks, California: SAGE Publications, Inc.
  • Coxe, S., West, S. G., & Aiken, L. S. (2013). Generalized linear models. In T. D. Little (Ed.), The Oxford handbook of quantitative methods Volume 2: Statistical analysis (26-51). New York: Oxford University Press.
  • Deaney, R., Ruthven, K., & Hennessy, S. (2003). Pupil perspectives on the contribution of information and communication technology to teaching and learning in the secondary school. Research Papers in Education, 18(2), 141-165. doi:10.1080/0267152032000081913
  • Delen, E., & Bulut, O. (2011). The Relationship between Students' Exposure to Technology and Their Achievement in Science and Math. Turkish Online Journal of Educational Technology-TOJET, 10(3), 311-317. Retrieved from http://www.tojet.net/articles/v10i3/10336.pdf adresinden erişilmiştir.
  • Durgun, Ö. (2011). Türkiye’de yoksulluk ve çocuk yoksulluğu üzerine bir inceleme. Bilgi Ekonomisi ve Yönetimi Dergisi, 6(1), 143-154. http://beykon.org/dergi/2011/spring/o.durgun.pdf adresinden erişilmiştir.
  • Eurydice. (2004). Key data on information and communication technology in schools in Europe 2004 Edition. Brussels: Eurydice.
  • Farina, P., San Martín, E., Preiss, D. D., Claro, M., & Jara, I. (2015). Measuring the relation between computer use and reading literacy in the presence of endogeneity. Computers & Education, 80, 176–186. doi:10.1016/j.compedu.2014.08.010.
  • Gümüş, S., & Atalmış, E. H. (2011). Exploring the relationship between purpose of computer usage and reading skills of Turkish students: evidence from PISA 2006. Turkish Online Journal Of Educational Technology-TOJET, 10(3), 129-140. https://files.eric.ed.gov/fulltext/EJ944951.pdf adresinden erişilmiştir.
  • Hajjar, S. T. E. (2018). Statistical analysis: Internal-consistency reliability and construct validity. International Journal of Quantitative and Qualitative Research Methods, 6(1), 46-57. Retrieved from http://www.eajournals.org/wp-content/uploads/Statistical-Analysis-Internal-Consistency-Reliability-and-Construct-Validity-1.pdf
  • Hogarth, S., Bennett, J., Lubben, F., Campbell, B., & Robinson, A. (2006). ICT in science teaching: the effect of ICT teaching activities in science lessons on students’ understanding of science ideas. Research Evidence in Education Library. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
  • Hu, X., Gong, Y., Lai, C., & Leung, F. K. (2018). The relationship between ICT and student literacy in mathematics, reading, and science across 44 countries: A multilevel analysis. Computers & Education, 125, 1-13. doi:10.1016/j.compedu.2018.05.021.
  • Jacobsen, W. C., & Forste, R. (2011). The wired generation: Academic and social outcomes of electronic media use among university students. Cyberpsychology, Behavior, and Social Networking, 14(5), 275-280. doi:10.1089/cyber.2010.0135.
  • Johnston, M. P. (2017). Secondary data analysis: A method of which the time has come. Qualitative and Quantitative Methods in Libraries, 3(3), 619-626. Retrieved from http://www.qqml-journal.net/index.php/qqml/article/view/169/170.
  • Karaman, M. K., & Kurfallı, H. (2008). Sınıf öğretmenlerinin bilgi ve iletişim teknolojilerini öğretim amaçlı kullanım düzeyleri. Kuramsal Eğitimbilim Dergisi, 1(2), 43-56. https://keg.aku.edu.tr/arsiv/c1s2/c1s2m4.pdf adresinden erişilmiştir.
  • Karanja, M. (2018). Role of ICT in dissemination of information in secondary schools in Kenya: A literature based review. Journal of Information and Technology, 2(1), 28-38. Retrieved from https://stratfordjournals.org/journals/index.php/Journal-of-Information-and-Techn/article/view/156.
  • Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558-569. doi:10.4097/kja.19087
  • Kubiatko, M., & Vlckova, K. (2010). The relationship between ICT use and science knowledge for Czech students: A secondary analysis of PISA 2006. International Journal of Science and Mathematics Education, 8(3), 523-543. doi:10.1007/s10763-010-9195-6.
  • Kuhlemeier, H., & Hemker, B. (2007). The impact of computer use at home on students’ Internet skills. Computers & Education, 49(2), 460-480. doi:10.1016/j.compedu.2005.10.004
  • Laukaityte, I., & Wiberg, M. (2017). Using plausible values in secondary analysis in large-scale assessments. Communications in statistics-Theory and Methods, 46(22), 11341-11357. doi:10.1080/03610926.2016.1267764
  • Leedy, P. D., Ormrod, J. E., & Johnson, L. R. (2021). Practical research: Planning and design (Twelfth Edition Global Edition). Essex, UK: Pearson Education Limited.
  • Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23(1), 151-169. doi:10.1146/annurev.publhealth.23.100901.140546.
  • Luu, K., & Freeman, J. G. (2011). An analysis of the relationship between information and communication technology (ICT) and scientific literacy in Canada and Australia. Computers & Education, 56(4), 1072-1082. doi:10.1016/j.compedu.2010.11.008.
  • Meng, L., Qiu, C., & Boyd‐Wilson, B. (2019). Measurement invariance of the ICT engagement construct and its association with students’ performance in China and Germany: Evidence from PISA 2015 data. British Journal of Educational Technology, 50(6), 3233-3251. doi:10.1111/bjet.12729.
  • Midi, H., Sarkar, S. K., & Rana, S. (2010). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3), 253-267. https://doi.org/10.1080/09720502.2010.10700699.
  • Mirazchiyski, P. (2014). Analyzing the TALIS data using the IEA IDB Analyzer. In A. Becker (Ed.), TALIS user guide for the international database (28-72). Paris: OECD Publishing.
  • Monseur, C., & Adams, R. (2009). Plausible values: How to deal with their limitations. Journal of applied measurement, 10(3), 320-334. Retrieved from https://orbi.uliege.be/bitstream/2268/120934/1/JAM_Monseur_Adams.pdf
  • Nimon, K. (2010). Regression commonality analysis: Demonstration of an SPSS solution. Multiple Linear Regression Viewpoints, 36(1), 10-17. Retrieved from http://www.glmj.org/archives/MLRV_2010_36_1.pdf#page=11
  • Odell, B., Galovan, A. M., & Cutumisu, M. (2020). The relation between ICT and science in PISA 2015 for Bulgarian and Finnish students. EURASIA Journal of Mathematics, Science and Technology Education, 16(6), 1-15. doi:10.29333/ejmste/7805
  • OECD. (2005). PISA 2003 technical report. Paris: OECD Publishing. doi.org/10.1787/9789264010543-en
  • OECD. (2009). PISA data analysis manual: SPSS (Second Edition). Paris: OECD Publishing. doi:10.1787/9789264056275-en
  • OECD. (2017). PISA 2015 technical report. Paris: OECD Publishing. Retrieved from https://www.oecd.org/pisa/sitedocument/PISA-2015-technical-report-final.pdf
  • OECD. (2019). PISA 2018 results (VolumeI): What students know and can do. Paris: OECD Publishing. doi:10.1787/5f07c754-en
  • Oliver, R. (2002). The role of ICT in higher education for the 21st century: ICT as a change agent for education. Paper presented at the Higher education for the 21st century conference, Curtin. Retrieved from https://www.qualityes.org/wp-content/uploads/2018/06/The_role_of_ICT_in_higher_education_for_the_21st_c-2.pdf.
  • Özkan, U. B. (2020). Öğrencilerde eudaimonianın ve akademik başarının yordayıcısı olarak ekonomik, sosyal ve kültürel düzey. Yaşadıkça Eğitim, 34(2), 344-359. doi:10.33308/26674874.2020342208
  • Papanastasiou, E. C., Zembylas, M., & Vrasidas, C. (2005). An examination of the PISA database to explore the relationship between computer use and science achievement. Educational Research and Evaluation, 11(6), 529–543. doi:10.1080/13803610500254824.
  • Park, S., & Weng, W.(2020). The relationship between ICT-related factors and student academic achievement and the moderating effect of country economic indexes across 39 countries: Using multilevel structural equation modelling. Educational Technology & Society, 23(3), 1–15. Retrieved from https://drive.google.com/file/d/1-6OxvF1EiTJr51lWiMfDDpXl-Exnh0CT/view
  • Petko, D., Cantieni, A., & Prasse, D. (2017). Perceived Quality of Educational Technology Matters: A Secondary Analysis of Students’ ICT Use, ICT-Related Attitudes, and PISA 2012 Test Scores. Journal of Educational Computing Research, 54(8), 1070–1091. doi:10.1177/0735633116649373
  • Ranguelov, S., Horvath, A., Dalferth, S., & Noorani, S. (2011). Key data on learning and innovation through ICT at school in Europe 2011. Brussels: Education, Audiovisual and Culture Executive Agency. doi:10.2797/61068
  • Renshaw, C. E., & Taylor, H. A. (2000). The educational effectiveness of computer-based instruction. Computers & Geosciences, 26(6), 677-682. doi:10.1016/S0098-3004(99)00103-X
  • Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142-151. doi:10.3102/0013189X10363170
  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68-78. doi:10.1037110003-066X.55.1.68
  • Sarıer, Y. (2010). Ortaöğretime Giriş Sınavları (OKS-SBS) ve PISA sonuçları ışığında eğitimde fırsat eşitliğinin değerlendirilmesi. Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 11(3), 107-129. http://www.acarindex.com/dosyalar/makale/acarindex-1423907692.pdf adresinden erişilmiştir.
  • Shatskikh, S.Y., & Melkumova, L. E. (2016). Normality assumption in statistical data analysis. Proceedings from ITNT-2016: International Conference Information Technology and Nanotechnology. Samara, Russia: CEUR-Workshop. Retrieved from http://ceur-ws.org/Vol-1638/Paper90.pdf
  • Sherif, V. (2018). Evaluating preexisting qualitative research data for secondary analysis. Forum: Qualitative Social Research, 19(2), 26-42. Retrieved from http://eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=1&sid=e01f0146-8b97-48b5-8f55-8ddfe680f5e6%40sessionmgr101
  • Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development level and usage influence student achievement in reading, mathematics, and science. Computers & Education, 85, 49-58. doi:10.1016/j.compedu.2015.02.004
  • Šorgo, A., Verčkovnik, T., & Kocijančič, S. (2010). Information and communication technologies (ICT) in biology teaching in Slovenian secondary schools. Eurasia Journal of Mathematics, Science and Technology Education, 6(1), 37-46. doi:10.12973/ejmste/75225
  • Srijamdee, K., & Pholphirul, P. (2020). Does ICT familiarity always help promote educational outcomes? Empirical evidence from PISA-Thailand. Education and Information Technologies, 25, 2933-2970. doi:10.1007/s10639-019-10089-z10.1080/10723030802533853
  • Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 80(1), 99-103. doi:10.1207/S15327752JPA8001_18
  • Suna, H. E., Tanberkan, H., Taş, U. E., Eroğlu, E., & Altun, Ü. (2019). PISA 2018 Türkiye ön raporu. Ankara: T.C. Millî Eğitim Bakanlığı
  • Şen, A. & Akdeniz, S. (2012). Sayısal uçurumla başetmek: OECD trendleri ve Türkiye. Bilgi Ekonomisi ve Yönetimi Dergisi, 7(1), 53-75.
  • Thamarana, S. (2015). The role of information and communication technologies in achieving standards in English language teaching. The Criterion: An International Journal in English, 6(4), 227-232. Retrieved from https://www.the-criterion.com/V6/n4/034.pdf
  • Tomul, E. (2007). Türkiye’de eğitime katılım üzerinde gelirin etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 2(22), 122-131. http://pauegitimdergi.pau.edu.tr/Makaleler/1579726597_Ekber%20Tomul1.pdf adresinden erişilmiştir.
  • Toso, S., Atlı, Ş. M., & Mardikyan, S. (2015). Türkiye’nin bölgeleri arasında sayısal uçurum. Bilgi Ekonomisi ve Yönetimi Dergisi, 10(1), 41-49.
  • Turner, P. D. (1997, March, 24-28). Secondary analysis of qualitative data. Annual Meeting of the American Educational Research Association, Chicago, IL, USA. https://files.eric.ed.gov/fulltext/ED412231.pdf adresinden erişilmiştir.
  • Volman, M., Van Eck, E., Heemskerk, I., & Kuiper, E. (2005). New technologies, new differences. Gender and ethnic differences in pupils' use of ICT in primary and secondary education. Computers & Education, 45(1), 35-55. doi:10.1016/j.compedu.2004.03.001
  • Wu, M. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31(2-3), 114-128. doi:10.1016/j.stueduc.2005.05.005
  • Ziden, A. A., Ismail, I., Spian, R., & Kumutha, K. (2011). The Effects of ICT Use in Teaching and Learning on Students' Achievement in Science Subject in a Primary School in Malaysia. Malaysian Journal of Distance Education, 13(2), 19-32. Retrieved from http://mjde.usm.my/vol13_2_2011/mjde13_2_3.pdf
Year 2021, Volume: 41 Issue: 3, 1327 - 1358, 30.12.2021

Abstract

References

  • Atalay, N., & Anagün, Ş. S. (2014). Kırsal alanlarda görev yapan sınıf öğretmenlerinin bilgi ve iletişim teknolojilerinin kullanımına ilişkin görüşleri. Eğitimde Nitel Araştırmalar Dergisi, 2(3), 9-27. doi:10.14689/issn.2148-2624.1.2c3s1m
  • Aypay, A. (2010). Information and communication technology (ICT) usage and achievement of Turkish students in PISA 2006. Turkish Online Journal of Educational Technology-TOJET, 9(2), 116-124. http://www.tojet.net/articles/v9i2/9213.pdf adresinden erişilmiştir.
  • Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of psychology, 52(1), 1-26. doi:10.1146/annurev.psych.52.1.1 Biagi, F., & Loi, M. (2013). Measuring ICT use and learning outcomes: Evidence from recent econometric studies. European Journal of Education, 48(1), 28-42. doi:10.1111/ejed.12016
  • Boudreau, J., & Rice, S. (2015). Bright, shiny objects and the future of HR. Harvard Business Review, 93(7), 72-78. Retrieved from http://aspirehrbp.org.uk/wp-content/uploads/sites/51/2016/11/Bright-Shiny-Objects-and-the-Future-of-HR.pdf
  • Bulut, O. & Cutumisu, M. (2018). When technology does not add up: ICT use negatively predicts mathematics and science achievement for Finnish and Turkish students in PISA 2012. Journal of Educational Multimedia and Hypermedia, 27(1), 25-42. Retrieved from https://www.learntechlib.org/p/178514
  • Byungura, J. C., Hansson, H., Muparasi, M., & Ruhinda, B. (2018). Familiarity with Technology among First-Year Students in Rwandan Tertiary Education. Electronic Journal of e-Learning, 16(1), 30-45. Retrieved from http://www.ejel.org/issue/download.html?idArticle=637
  • Conbere, J., & Heorhiadi, A. (2017). Escaping the Tower of Babble. OD practitioner, 49(1), 28-34. Retrieved from http://www.seaminstitute.org/uploads/5/2/3/7/52374523/escaping_the_tower_of_babble_odp_2017.pdf
  • Corti, L. (2008). Secondary analysis. In L. M. Given (Ed.), The Sage encyclopedia of qualitative research methods Volumes 1 and 2 (801-803). Thousand Oaks, California: SAGE Publications, Inc.
  • Coxe, S., West, S. G., & Aiken, L. S. (2013). Generalized linear models. In T. D. Little (Ed.), The Oxford handbook of quantitative methods Volume 2: Statistical analysis (26-51). New York: Oxford University Press.
  • Deaney, R., Ruthven, K., & Hennessy, S. (2003). Pupil perspectives on the contribution of information and communication technology to teaching and learning in the secondary school. Research Papers in Education, 18(2), 141-165. doi:10.1080/0267152032000081913
  • Delen, E., & Bulut, O. (2011). The Relationship between Students' Exposure to Technology and Their Achievement in Science and Math. Turkish Online Journal of Educational Technology-TOJET, 10(3), 311-317. Retrieved from http://www.tojet.net/articles/v10i3/10336.pdf adresinden erişilmiştir.
  • Durgun, Ö. (2011). Türkiye’de yoksulluk ve çocuk yoksulluğu üzerine bir inceleme. Bilgi Ekonomisi ve Yönetimi Dergisi, 6(1), 143-154. http://beykon.org/dergi/2011/spring/o.durgun.pdf adresinden erişilmiştir.
  • Eurydice. (2004). Key data on information and communication technology in schools in Europe 2004 Edition. Brussels: Eurydice.
  • Farina, P., San Martín, E., Preiss, D. D., Claro, M., & Jara, I. (2015). Measuring the relation between computer use and reading literacy in the presence of endogeneity. Computers & Education, 80, 176–186. doi:10.1016/j.compedu.2014.08.010.
  • Gümüş, S., & Atalmış, E. H. (2011). Exploring the relationship between purpose of computer usage and reading skills of Turkish students: evidence from PISA 2006. Turkish Online Journal Of Educational Technology-TOJET, 10(3), 129-140. https://files.eric.ed.gov/fulltext/EJ944951.pdf adresinden erişilmiştir.
  • Hajjar, S. T. E. (2018). Statistical analysis: Internal-consistency reliability and construct validity. International Journal of Quantitative and Qualitative Research Methods, 6(1), 46-57. Retrieved from http://www.eajournals.org/wp-content/uploads/Statistical-Analysis-Internal-Consistency-Reliability-and-Construct-Validity-1.pdf
  • Hogarth, S., Bennett, J., Lubben, F., Campbell, B., & Robinson, A. (2006). ICT in science teaching: the effect of ICT teaching activities in science lessons on students’ understanding of science ideas. Research Evidence in Education Library. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
  • Hu, X., Gong, Y., Lai, C., & Leung, F. K. (2018). The relationship between ICT and student literacy in mathematics, reading, and science across 44 countries: A multilevel analysis. Computers & Education, 125, 1-13. doi:10.1016/j.compedu.2018.05.021.
  • Jacobsen, W. C., & Forste, R. (2011). The wired generation: Academic and social outcomes of electronic media use among university students. Cyberpsychology, Behavior, and Social Networking, 14(5), 275-280. doi:10.1089/cyber.2010.0135.
  • Johnston, M. P. (2017). Secondary data analysis: A method of which the time has come. Qualitative and Quantitative Methods in Libraries, 3(3), 619-626. Retrieved from http://www.qqml-journal.net/index.php/qqml/article/view/169/170.
  • Karaman, M. K., & Kurfallı, H. (2008). Sınıf öğretmenlerinin bilgi ve iletişim teknolojilerini öğretim amaçlı kullanım düzeyleri. Kuramsal Eğitimbilim Dergisi, 1(2), 43-56. https://keg.aku.edu.tr/arsiv/c1s2/c1s2m4.pdf adresinden erişilmiştir.
  • Karanja, M. (2018). Role of ICT in dissemination of information in secondary schools in Kenya: A literature based review. Journal of Information and Technology, 2(1), 28-38. Retrieved from https://stratfordjournals.org/journals/index.php/Journal-of-Information-and-Techn/article/view/156.
  • Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558-569. doi:10.4097/kja.19087
  • Kubiatko, M., & Vlckova, K. (2010). The relationship between ICT use and science knowledge for Czech students: A secondary analysis of PISA 2006. International Journal of Science and Mathematics Education, 8(3), 523-543. doi:10.1007/s10763-010-9195-6.
  • Kuhlemeier, H., & Hemker, B. (2007). The impact of computer use at home on students’ Internet skills. Computers & Education, 49(2), 460-480. doi:10.1016/j.compedu.2005.10.004
  • Laukaityte, I., & Wiberg, M. (2017). Using plausible values in secondary analysis in large-scale assessments. Communications in statistics-Theory and Methods, 46(22), 11341-11357. doi:10.1080/03610926.2016.1267764
  • Leedy, P. D., Ormrod, J. E., & Johnson, L. R. (2021). Practical research: Planning and design (Twelfth Edition Global Edition). Essex, UK: Pearson Education Limited.
  • Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual Review of Public Health, 23(1), 151-169. doi:10.1146/annurev.publhealth.23.100901.140546.
  • Luu, K., & Freeman, J. G. (2011). An analysis of the relationship between information and communication technology (ICT) and scientific literacy in Canada and Australia. Computers & Education, 56(4), 1072-1082. doi:10.1016/j.compedu.2010.11.008.
  • Meng, L., Qiu, C., & Boyd‐Wilson, B. (2019). Measurement invariance of the ICT engagement construct and its association with students’ performance in China and Germany: Evidence from PISA 2015 data. British Journal of Educational Technology, 50(6), 3233-3251. doi:10.1111/bjet.12729.
  • Midi, H., Sarkar, S. K., & Rana, S. (2010). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3), 253-267. https://doi.org/10.1080/09720502.2010.10700699.
  • Mirazchiyski, P. (2014). Analyzing the TALIS data using the IEA IDB Analyzer. In A. Becker (Ed.), TALIS user guide for the international database (28-72). Paris: OECD Publishing.
  • Monseur, C., & Adams, R. (2009). Plausible values: How to deal with their limitations. Journal of applied measurement, 10(3), 320-334. Retrieved from https://orbi.uliege.be/bitstream/2268/120934/1/JAM_Monseur_Adams.pdf
  • Nimon, K. (2010). Regression commonality analysis: Demonstration of an SPSS solution. Multiple Linear Regression Viewpoints, 36(1), 10-17. Retrieved from http://www.glmj.org/archives/MLRV_2010_36_1.pdf#page=11
  • Odell, B., Galovan, A. M., & Cutumisu, M. (2020). The relation between ICT and science in PISA 2015 for Bulgarian and Finnish students. EURASIA Journal of Mathematics, Science and Technology Education, 16(6), 1-15. doi:10.29333/ejmste/7805
  • OECD. (2005). PISA 2003 technical report. Paris: OECD Publishing. doi.org/10.1787/9789264010543-en
  • OECD. (2009). PISA data analysis manual: SPSS (Second Edition). Paris: OECD Publishing. doi:10.1787/9789264056275-en
  • OECD. (2017). PISA 2015 technical report. Paris: OECD Publishing. Retrieved from https://www.oecd.org/pisa/sitedocument/PISA-2015-technical-report-final.pdf
  • OECD. (2019). PISA 2018 results (VolumeI): What students know and can do. Paris: OECD Publishing. doi:10.1787/5f07c754-en
  • Oliver, R. (2002). The role of ICT in higher education for the 21st century: ICT as a change agent for education. Paper presented at the Higher education for the 21st century conference, Curtin. Retrieved from https://www.qualityes.org/wp-content/uploads/2018/06/The_role_of_ICT_in_higher_education_for_the_21st_c-2.pdf.
  • Özkan, U. B. (2020). Öğrencilerde eudaimonianın ve akademik başarının yordayıcısı olarak ekonomik, sosyal ve kültürel düzey. Yaşadıkça Eğitim, 34(2), 344-359. doi:10.33308/26674874.2020342208
  • Papanastasiou, E. C., Zembylas, M., & Vrasidas, C. (2005). An examination of the PISA database to explore the relationship between computer use and science achievement. Educational Research and Evaluation, 11(6), 529–543. doi:10.1080/13803610500254824.
  • Park, S., & Weng, W.(2020). The relationship between ICT-related factors and student academic achievement and the moderating effect of country economic indexes across 39 countries: Using multilevel structural equation modelling. Educational Technology & Society, 23(3), 1–15. Retrieved from https://drive.google.com/file/d/1-6OxvF1EiTJr51lWiMfDDpXl-Exnh0CT/view
  • Petko, D., Cantieni, A., & Prasse, D. (2017). Perceived Quality of Educational Technology Matters: A Secondary Analysis of Students’ ICT Use, ICT-Related Attitudes, and PISA 2012 Test Scores. Journal of Educational Computing Research, 54(8), 1070–1091. doi:10.1177/0735633116649373
  • Ranguelov, S., Horvath, A., Dalferth, S., & Noorani, S. (2011). Key data on learning and innovation through ICT at school in Europe 2011. Brussels: Education, Audiovisual and Culture Executive Agency. doi:10.2797/61068
  • Renshaw, C. E., & Taylor, H. A. (2000). The educational effectiveness of computer-based instruction. Computers & Geosciences, 26(6), 677-682. doi:10.1016/S0098-3004(99)00103-X
  • Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142-151. doi:10.3102/0013189X10363170
  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68-78. doi:10.1037110003-066X.55.1.68
  • Sarıer, Y. (2010). Ortaöğretime Giriş Sınavları (OKS-SBS) ve PISA sonuçları ışığında eğitimde fırsat eşitliğinin değerlendirilmesi. Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 11(3), 107-129. http://www.acarindex.com/dosyalar/makale/acarindex-1423907692.pdf adresinden erişilmiştir.
  • Shatskikh, S.Y., & Melkumova, L. E. (2016). Normality assumption in statistical data analysis. Proceedings from ITNT-2016: International Conference Information Technology and Nanotechnology. Samara, Russia: CEUR-Workshop. Retrieved from http://ceur-ws.org/Vol-1638/Paper90.pdf
  • Sherif, V. (2018). Evaluating preexisting qualitative research data for secondary analysis. Forum: Qualitative Social Research, 19(2), 26-42. Retrieved from http://eds.b.ebscohost.com/eds/pdfviewer/pdfviewer?vid=1&sid=e01f0146-8b97-48b5-8f55-8ddfe680f5e6%40sessionmgr101
  • Skryabin, M., Zhang, J., Liu, L., & Zhang, D. (2015). How the ICT development level and usage influence student achievement in reading, mathematics, and science. Computers & Education, 85, 49-58. doi:10.1016/j.compedu.2015.02.004
  • Šorgo, A., Verčkovnik, T., & Kocijančič, S. (2010). Information and communication technologies (ICT) in biology teaching in Slovenian secondary schools. Eurasia Journal of Mathematics, Science and Technology Education, 6(1), 37-46. doi:10.12973/ejmste/75225
  • Srijamdee, K., & Pholphirul, P. (2020). Does ICT familiarity always help promote educational outcomes? Empirical evidence from PISA-Thailand. Education and Information Technologies, 25, 2933-2970. doi:10.1007/s10639-019-10089-z10.1080/10723030802533853
  • Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of personality assessment, 80(1), 99-103. doi:10.1207/S15327752JPA8001_18
  • Suna, H. E., Tanberkan, H., Taş, U. E., Eroğlu, E., & Altun, Ü. (2019). PISA 2018 Türkiye ön raporu. Ankara: T.C. Millî Eğitim Bakanlığı
  • Şen, A. & Akdeniz, S. (2012). Sayısal uçurumla başetmek: OECD trendleri ve Türkiye. Bilgi Ekonomisi ve Yönetimi Dergisi, 7(1), 53-75.
  • Thamarana, S. (2015). The role of information and communication technologies in achieving standards in English language teaching. The Criterion: An International Journal in English, 6(4), 227-232. Retrieved from https://www.the-criterion.com/V6/n4/034.pdf
  • Tomul, E. (2007). Türkiye’de eğitime katılım üzerinde gelirin etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 2(22), 122-131. http://pauegitimdergi.pau.edu.tr/Makaleler/1579726597_Ekber%20Tomul1.pdf adresinden erişilmiştir.
  • Toso, S., Atlı, Ş. M., & Mardikyan, S. (2015). Türkiye’nin bölgeleri arasında sayısal uçurum. Bilgi Ekonomisi ve Yönetimi Dergisi, 10(1), 41-49.
  • Turner, P. D. (1997, March, 24-28). Secondary analysis of qualitative data. Annual Meeting of the American Educational Research Association, Chicago, IL, USA. https://files.eric.ed.gov/fulltext/ED412231.pdf adresinden erişilmiştir.
  • Volman, M., Van Eck, E., Heemskerk, I., & Kuiper, E. (2005). New technologies, new differences. Gender and ethnic differences in pupils' use of ICT in primary and secondary education. Computers & Education, 45(1), 35-55. doi:10.1016/j.compedu.2004.03.001
  • Wu, M. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31(2-3), 114-128. doi:10.1016/j.stueduc.2005.05.005
  • Ziden, A. A., Ismail, I., Spian, R., & Kumutha, K. (2011). The Effects of ICT Use in Teaching and Learning on Students' Achievement in Science Subject in a Primary School in Malaysia. Malaysian Journal of Distance Education, 13(2), 19-32. Retrieved from http://mjde.usm.my/vol13_2_2011/mjde13_2_3.pdf
There are 64 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Umut Birkan Özkan 0000-0001-8978-3213

Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 41 Issue: 3

Cite

APA Özkan, U. B. (2021). Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 41(3), 1327-1358.
AMA Özkan UB. Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi. GUJGEF. December 2021;41(3):1327-1358.
Chicago Özkan, Umut Birkan. “Türkiye’deki Öğrencilerin Fen Başarısında Bilgi Ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 41, no. 3 (December 2021): 1327-58.
EndNote Özkan UB (December 1, 2021) Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 41 3 1327–1358.
IEEE U. B. Özkan, “Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi”, GUJGEF, vol. 41, no. 3, pp. 1327–1358, 2021.
ISNAD Özkan, Umut Birkan. “Türkiye’deki Öğrencilerin Fen Başarısında Bilgi Ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi 41/3 (December 2021), 1327-1358.
JAMA Özkan UB. Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi. GUJGEF. 2021;41:1327–1358.
MLA Özkan, Umut Birkan. “Türkiye’deki Öğrencilerin Fen Başarısında Bilgi Ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi”. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, vol. 41, no. 3, 2021, pp. 1327-58.
Vancouver Özkan UB. Türkiye’deki Öğrencilerin Fen Başarısında Bilgi ve İletişim Teknolojilerine Aşinalık Faktörlerinin Etkisi. GUJGEF. 2021;41(3):1327-58.