Research Article
BibTex RIS Cite

Juglone Effects by Dual Way on mTOR Gene Expression, Which Plays Central Role in Cell Growth, Survival and Metabolism, in PANC-1 and BxPC-3 Pancreatic Cancer Cell Lines

Year 2023, , 353 - 359, 31.08.2023
https://doi.org/10.54005/geneltip.1294642

Abstract

Background/Aims: Juglone, as a naphthoquinone, has been shown to have cytotoxic and apoptotic effects in various cancer cells and besides this effects it was reported to have anti-invasive and anti-metastatic effects in PANC-1 and BxPC-3 cells in our previous studies. In this study, we investigated the effects of juglone on GRP75, TFAM and mTOR genes encoding key proteins associated with mitochondrial biogenesis and activation in PANC-1 and BxPC-3 pancreatic cancer cells since mitochondria has central roles in cancer cell survival, metastasis and therapeutic resistance.
Methods: In our study; 5, 10, 15 and 20 μM juglone doses were selected as the application doses considering the IC50 value determined after MTT test results and the expressions of the target genes were analyzed by qPCR method after application of juglone doses for 24 hours.
Results: Our study results revealed that juglone had an opposite and strong effects on mTOR expression in both cell lines.
Conclusion: Our findings suggest that juglone has a developable potential and is a promising theurapeutic agent to develop new strategies for the battle with cancer with those effects on mTOR gene which plays a central role in cellular homeostasis and several cellular events including cell growth, survival and metabolism.

Supporting Institution

Selçuk Üniversitesi

Project Number

21202128

Thanks

This study was produced from the MSc thesis of Emine Merve Demirbaş-Büyüktüt and supported by the Selcuk University Scientific Research Projects Coordinatorship (Project no: 21202128)

References

  • Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research. 2014;74:2913-21.
  • Del Chiaro M, Rangelova E, Halimi A, et al. Pancreatectomy with arterial resection is superior to palliation in patients with borderline resectable or locally advanced pancreatic cancer. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2019;21:219-25.
  • Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer letters. 2016;381:244-51.
  • Siegel R, Miller KD, Sauer A. Cancer facts & figures 2020. CA Cancer J Clin. 2020;70:7-30.
  • Oldfield LE, Connor AA, Gallinger S. Molecular Events in the Natural History of Pancreatic Cancer. Trends in cancer. 2017;3:336-46.
  • Sarvepalli D, Rashid MU, Rahman AU, et al. Gemcitabine: A Review of Chemoresistance in Pancreatic Cancer. Critical reviews in oncogenesis. 2019;24:199-212.
  • Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel, Switzerland). 2019;8.
  • Bhargava UC, Westfall BA. Antitumor activity of Juglans niga (black walnut) extractives. Journal of pharmaceutical sciences. 1968;57:1674-7.
  • Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arnér ES. Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. The Journal of biological chemistry. 2006;281:5593-603.
  • Xu H, Yu X, Qu S, Sui D. Juglone, isolated from Juglans mandshurica Maxim, induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells. Bioorganic & medicinal chemistry letters. 2013;23:3631-4.
  • Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555-66.
  • Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell research. 2018;28:265-80.
  • Avcı E, Arıkoğlu H, Erkoç Kaya D. Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells. Gene. 2016;588:74-8.
  • Gokturk F, Erkoc-Kaya D, Arikoglu H. Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling. Bratislavske lekarske listy. 2021;122:132-7.
  • Dai Y, Li F, Jiao Y, et al. Mortalin/glucose-regulated protein 75 promotes the cisplatin-resistance of gastric cancer via regulating anti-oxidation/apoptosis and metabolic reprogramming. Cell death discovery. 2021;7:140.
  • Makker A, Goel MM, Mahdi AA, et al. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas. The Indian journal of medical research. 2016;143:S112-s9.
  • Lee WR, Na H, Lee SW, et al. Transcriptomic analysis of mitochondrial TFAM depletion changing cell morphology and proliferation. Scientific reports. 2017;7:17841.
  • Hsu CC, Lin TW, Chang WW, et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecologic oncology. 2005;96:415-22.
  • Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med. 2020;24:4892-9.
  • Sun L, Suo C, Li S-t, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2018;1870:51-66.
  • Golpich M, Amini E, Mohamed Z, et al. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther. 2017;23:5-22.
  • Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. Febs j. 2017;284:183-95.
  • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337:1062-5.
  • Grandemange S, Herzig S, Martinou J-C, editors. Mitochondrial dynamics and cancer. Seminars in cancer biology; 2009: Elsevier.
  • Cardanho-Ramos C, Morais VA. Mitochondrial Biogenesis in Neurons: How and Where. Int J Mol Sci. 2021;22.
  • Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones. 2006;11:116-28.
  • Prudent J, McBride HM. The mitochondria–endoplasmic reticulum contact sites: a signalling platform for cell death. Current opinion in cell biology. 2017;47:52-63.
  • Carroll WL, Evensen NA. Targeting a major hub of cell fate decisions - the mitochondrial-associated membrane. Haematologica. 2019;104:419-21.
  • Szabadkai G, Bianchi K, Várnai P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175:901-11.
  • Tosatto A, Sommaggio R, Kummerow C, et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF‐1α. EMBO molecular medicine. 2016;8:569-85.
  • Gueguinou M, Crottès D, Chantôme A, et al. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene. 2017;36:3640-7.
  • Simoes ICM, Morciano G, Lebiedzinska-Arciszewska M, et al. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020;1866:165834.
  • MIZUKOSHI E, SUZUKI M, LOUPATOV A, et al. Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal. 1999;343:461-6.
  • Kang D, Hamasaki N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: overview of its multiple roles. Annals of the New York Academy of Sciences. 2005;1042:101-8.
  • Yoshida Y, Izumi H, Torigoe T, et al. p53 Physically Interacts with Mitochondrial Transcription Factor A and Differentially Regulates Binding to Damaged DNA1. Cancer research. 2003;63:3729-34.
  • Xie D, Wu X, Lan L, et al. Downregulation of TFAM inhibits the tumorigenesis of non-small cell lung cancer by activating ROS-mediated JNK/p38MAPK signaling and reducing cellular bioenergetics. Oncotarget. 2016;7.
  • Yamauchi M, Nakayama Y, Minagawa N, et al. Mitochondrial Transcription Factor A Worsens the Clinical Course of Patients With Pancreatic Cancer Through Inhibition of Apoptosis of Cancer Cells. Pancreas. 2014;43:405-10.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93.
  • Dancey J. mTOR signaling and drug development in cancer. Nature Reviews Clinical Oncology. 2010;7:209-19.
  • de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Frontiers in oncology. 2019;9:1373.
  • Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer research. 2009;69:1821-7.
  • Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proceedings of the National Academy of Sciences. 2002;99:4319-24.
  • Larsson O, Morita M, Topisirovic I, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences. 2012;109:8977-82.
  • Lu C-L, Qin L, Liu H-C, et al. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition-a Warburg-reversing effect. PloS one. 2015;10:e0121046.
  • Roberts D, Tan-Sah V, Ding E, Smith J, Miyamoto S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Molecular cell. 2014;53:521-33.
  • Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer metastasis reviews. 2018;37:643-53.
  • Laplante M, Sabatini DM. mTOR signaling at a glance. Journal of cell science. 2009;122:3589-94.
  • Hassan Z, Schneeweis C, Wirth M, et al. MTOR inhibitor-based combination therapies for pancreatic cancer. British journal of cancer. 2018;118:366-77.
  • Iriana S, Ahmed S, Gong J, et al. Targeting mTOR in Pancreatic Ductal Adenocarcinoma. Frontiers in oncology. 2016;6:99.
  • Jia S, Xu X, Zhou S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell death & disease. 2019;10:1-15.
  • Gremke N, Polo P, Dort A, et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nature Communications. 2020;11:4684.

Juglon, PANC-1 ve BxPC-3 Pankreas Kanser Hücre Hatlarında Hücre Büyümesi, Hayatta Kalma ve Metabolizmada Merkezi Rol Oynayan mTOR Gen İfadesine İki Yönlü Etki Eder

Year 2023, , 353 - 359, 31.08.2023
https://doi.org/10.54005/geneltip.1294642

Abstract

Arkaplan/Hedefler: Bir naftakinon olarak juglonun çeşitli kanser hücrelerinde sitotoksik ve apoptotik etkisi gösterilmiş, daha önceki araştırmalarımızda PANC-1 ve BxPC-3 hücrelerinde bu etkilerinin yanı sıra anti-invaziv ve anti-metastatik etki gösterdiği rapor edilmiştir. Bu çalışmada kanser hücrelerinin sağkalımı, metastaz ve tedaviye direnç gelişmesi süreçlerinde merkezi rolü olan mitokondrial biyogenez ve aktivasyon ile ilişkili anahtar proteinleri kodlayan GRP75, TFAM ve mTOR genleri üzerine juglonun etkileri PANC-1 ve BxPC-3 pankreas kanseri hücre hatlarında araştırılmıştır.
Metodlar: Çalışmamızda MTT testi sonuçlarından elde edilen IC50 değeri dikkate alınarak 5, 10, 15 ve 20 μM juglon dozları uygulama dozu olarak seçilmiş ve juglonun belirlenen dozlardaki 24 saatlik uygulamasından sonra hedef genlerin ifadeleri qPCR yöntemiyle incelenmiştir.
Bulgular: Çalışma sonuçlarımız, juglonun her iki hücre hattında da mTOR ekspresyonu üzerinde zıt ve güçlü bir etkiye sahip olduğunu ortaya koydu.
Sonuç: Çalışma bulgularımız, hücresel homeostazda, hücre büyümesi, hayatta kalması ve metabolizması dahil olmak üzere bir dizi hücresel olayda merkezi rol oynayan mTOR ifadesi üzerindeki bu etkileri ile juglonun geliştirilebilir bir potansiyele sahip olduğu ve pankreas kanseri ile savaşta yeni stratejiler için umut vaad eden bir teröpotik ajan olduğu düşüncemizi desteklemektedir.

Project Number

21202128

References

  • Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer research. 2014;74:2913-21.
  • Del Chiaro M, Rangelova E, Halimi A, et al. Pancreatectomy with arterial resection is superior to palliation in patients with borderline resectable or locally advanced pancreatic cancer. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2019;21:219-25.
  • Foley K, Kim V, Jaffee E, Zheng L. Current progress in immunotherapy for pancreatic cancer. Cancer letters. 2016;381:244-51.
  • Siegel R, Miller KD, Sauer A. Cancer facts & figures 2020. CA Cancer J Clin. 2020;70:7-30.
  • Oldfield LE, Connor AA, Gallinger S. Molecular Events in the Natural History of Pancreatic Cancer. Trends in cancer. 2017;3:336-46.
  • Sarvepalli D, Rashid MU, Rahman AU, et al. Gemcitabine: A Review of Chemoresistance in Pancreatic Cancer. Critical reviews in oncogenesis. 2019;24:199-212.
  • Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel, Switzerland). 2019;8.
  • Bhargava UC, Westfall BA. Antitumor activity of Juglans niga (black walnut) extractives. Journal of pharmaceutical sciences. 1968;57:1674-7.
  • Cenas N, Prast S, Nivinskas H, Sarlauskas J, Arnér ES. Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. The Journal of biological chemistry. 2006;281:5593-603.
  • Xu H, Yu X, Qu S, Sui D. Juglone, isolated from Juglans mandshurica Maxim, induces apoptosis via down-regulation of AR expression in human prostate cancer LNCaP cells. Bioorganic & medicinal chemistry letters. 2013;23:3631-4.
  • Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555-66.
  • Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell research. 2018;28:265-80.
  • Avcı E, Arıkoğlu H, Erkoç Kaya D. Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells. Gene. 2016;588:74-8.
  • Gokturk F, Erkoc-Kaya D, Arikoglu H. Juglone can inhibit angiogenesis and metastasis in pancreatic cancer cells by targeting Wnt/β-catenin signaling. Bratislavske lekarske listy. 2021;122:132-7.
  • Dai Y, Li F, Jiao Y, et al. Mortalin/glucose-regulated protein 75 promotes the cisplatin-resistance of gastric cancer via regulating anti-oxidation/apoptosis and metabolic reprogramming. Cell death discovery. 2021;7:140.
  • Makker A, Goel MM, Mahdi AA, et al. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas. The Indian journal of medical research. 2016;143:S112-s9.
  • Lee WR, Na H, Lee SW, et al. Transcriptomic analysis of mitochondrial TFAM depletion changing cell morphology and proliferation. Scientific reports. 2017;7:17841.
  • Hsu CC, Lin TW, Chang WW, et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecologic oncology. 2005;96:415-22.
  • Popov LD. Mitochondrial biogenesis: An update. J Cell Mol Med. 2020;24:4892-9.
  • Sun L, Suo C, Li S-t, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2018;1870:51-66.
  • Golpich M, Amini E, Mohamed Z, et al. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther. 2017;23:5-22.
  • Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. Febs j. 2017;284:183-95.
  • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337:1062-5.
  • Grandemange S, Herzig S, Martinou J-C, editors. Mitochondrial dynamics and cancer. Seminars in cancer biology; 2009: Elsevier.
  • Cardanho-Ramos C, Morais VA. Mitochondrial Biogenesis in Neurons: How and Where. Int J Mol Sci. 2021;22.
  • Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones. 2006;11:116-28.
  • Prudent J, McBride HM. The mitochondria–endoplasmic reticulum contact sites: a signalling platform for cell death. Current opinion in cell biology. 2017;47:52-63.
  • Carroll WL, Evensen NA. Targeting a major hub of cell fate decisions - the mitochondrial-associated membrane. Haematologica. 2019;104:419-21.
  • Szabadkai G, Bianchi K, Várnai P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175:901-11.
  • Tosatto A, Sommaggio R, Kummerow C, et al. The mitochondrial calcium uniporter regulates breast cancer progression via HIF‐1α. EMBO molecular medicine. 2016;8:569-85.
  • Gueguinou M, Crottès D, Chantôme A, et al. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene. 2017;36:3640-7.
  • Simoes ICM, Morciano G, Lebiedzinska-Arciszewska M, et al. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020;1866:165834.
  • MIZUKOSHI E, SUZUKI M, LOUPATOV A, et al. Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochemical Journal. 1999;343:461-6.
  • Kang D, Hamasaki N. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: overview of its multiple roles. Annals of the New York Academy of Sciences. 2005;1042:101-8.
  • Yoshida Y, Izumi H, Torigoe T, et al. p53 Physically Interacts with Mitochondrial Transcription Factor A and Differentially Regulates Binding to Damaged DNA1. Cancer research. 2003;63:3729-34.
  • Xie D, Wu X, Lan L, et al. Downregulation of TFAM inhibits the tumorigenesis of non-small cell lung cancer by activating ROS-mediated JNK/p38MAPK signaling and reducing cellular bioenergetics. Oncotarget. 2016;7.
  • Yamauchi M, Nakayama Y, Minagawa N, et al. Mitochondrial Transcription Factor A Worsens the Clinical Course of Patients With Pancreatic Cancer Through Inhibition of Apoptosis of Cancer Cells. Pancreas. 2014;43:405-10.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93.
  • Dancey J. mTOR signaling and drug development in cancer. Nature Reviews Clinical Oncology. 2010;7:209-19.
  • de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Frontiers in oncology. 2019;9:1373.
  • Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer research. 2009;69:1821-7.
  • Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proceedings of the National Academy of Sciences. 2002;99:4319-24.
  • Larsson O, Morita M, Topisirovic I, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proceedings of the National Academy of Sciences. 2012;109:8977-82.
  • Lu C-L, Qin L, Liu H-C, et al. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition-a Warburg-reversing effect. PloS one. 2015;10:e0121046.
  • Roberts D, Tan-Sah V, Ding E, Smith J, Miyamoto S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Molecular cell. 2014;53:521-33.
  • Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer metastasis reviews. 2018;37:643-53.
  • Laplante M, Sabatini DM. mTOR signaling at a glance. Journal of cell science. 2009;122:3589-94.
  • Hassan Z, Schneeweis C, Wirth M, et al. MTOR inhibitor-based combination therapies for pancreatic cancer. British journal of cancer. 2018;118:366-77.
  • Iriana S, Ahmed S, Gong J, et al. Targeting mTOR in Pancreatic Ductal Adenocarcinoma. Frontiers in oncology. 2016;6:99.
  • Jia S, Xu X, Zhou S, et al. Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress-and mitochondrial stress-dependent pathways. Cell death & disease. 2019;10:1-15.
  • Gremke N, Polo P, Dort A, et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nature Communications. 2020;11:4684.
There are 51 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Article
Authors

Emine Merve Demirbaş Büyüktüt 0000-0003-3911-7663

Dudu Erkoç Kaya 0000-0003-0114-6602

Fatma Göktürk 0000-0001-8311-0683

Hilal Arıkoğlu 0000-0002-6600-6603

Project Number 21202128
Early Pub Date August 29, 2023
Publication Date August 31, 2023
Submission Date May 9, 2023
Published in Issue Year 2023

Cite

Vancouver Demirbaş Büyüktüt EM, Erkoç Kaya D, Göktürk F, Arıkoğlu H. Juglone Effects by Dual Way on mTOR Gene Expression, Which Plays Central Role in Cell Growth, Survival and Metabolism, in PANC-1 and BxPC-3 Pancreatic Cancer Cell Lines. Genel Tıp Derg. 2023;33(4):353-9.