Research Article
BibTex RIS Cite

Gadopentetate Dimeglumine, Çocukların Beyinlerinde Gadolinyum Birikimine Neden Olur Mu?

Year 2023, Volume: 33 Issue: 2, 123 - 127, 30.04.2023
https://doi.org/10.54005/geneltip.1193667

Abstract

Amaç: Kontrastlı manyetik rezonans görüntüleme (MRG) için tekrarlayan gadopentetate dimeglumine uygulanan pediyatrik hastalarda dentat çekirdek (DN) ve globus pallidus’ta (GP) ağırlıklı (T1A) sinyal yoğunluğu (SI) farklılıklarını belirlemek.
Gereç ve Yöntem: Bu retrospektif çalışmaya, kontrast madde olarak en az iki kez intravenöz olarak gadopentetate dimeglumine uygulanan (0.1 mmol/kg) ve kontrastlı beyin MRG yapılan çocuk hastalar dahil edildi. SI ölçümleri, kontrastsız T1A görüntülerinde bilateral dentat çekirdekler (DN) ve globus pallidi (GP) ve beyin omurilik sıvısı (BOS) üzerine beş ROI alanı çizilerek yapıldı. SI karşılaştırması için Student t testi kullanıldı. SI ile gadolinyum uygulama sayısı arasındaki korelasyonu değerlendirmek için Pearson korelasyonu hesaplandı.
Bulgular: Toplam 31 çocuk (yaş aralığı: 3-17 yıl; ortalama 10.6±4.3 yıl) çalışmaya dahil edildi. T1 SI oranları açısından birinci ve üçüncü MRG taramaları arasında anlamlı bir fark yoktu: sağ ve sol DN/CSF, sağ ve sol GP/CSF (P =0.543, P =0.599, P =0.803, P =0.730 , sırasıyla). İkiden fazla gadopentetate dimeglumine uygulanan 18 hasta mevcuttu ve ortalama uygulama sayısı 5±3'tü. İlk ve son MRG taramaları arasında T1 S1 oranları arçısından anlamlı bir fark saptandı; sağ ve sol DN/CSF, sağ ve sol GP/CSF (sırasıyla P=0.0004, P=0.0008, P=0.0001, P=0.014). Gadopentetate dimeglumine uygulamasının sayısı ile sağ ve sol DN/CSF, sağ ve sol GP/CSF (sırasıyla r=0.13, r=0.13, r=0.09 ve r=0.12) SI değerleri arasındaki korelasyon zayıftı.
Sonuç: Bu seride iki kez gadopentetate dimeglumine uygulaması sonrası DN ve GP ‘de anlamlı T1 SI artışı olmazken çoklu uygulama sonrası anlamlı T1 SI artışı bulundu.

References

  • 1. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834–841.
  • 2. Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Invest Radiol 2016;51:447–453.
  • 3. McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–782.
  • 4. Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 2015;136:e1637–1640.
  • 5. Roberts DR, Chatterjee AR, Yazdani M, et al. Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:2340–2347.
  • 6. Hu HH, Pokorney A, Towbin RB, Miller JH. Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: Evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 2016;46:1590–1598.
  • 7. Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: A pediatric casecontrol study. Radiology 2017;285:223–230.
  • 8. Young J, Orosz I, Franke M, et al. Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration. Clin Radiol 2018;73:290–295.
  • 9. Blakemore SJ. Imaging brain development: the adolescent brain. Neuroimage2012;61:397– 406.
  • 10. Stein J, Schettler T, Wallinga D, et al.In harm’s way: toxic threats to child development. J Dev Behav Pediatr 2002;23:S13–22.
  • 11. Flood TF, Stence NV, Maloney JA, Mirsky DM. Pediatric brain:Repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 2017;282:222–228.
  • 12. Topcuoglu ED, Topcuoglu OM, Oysu AS, Bukte Y. Does Godeterate Meglumine cause gadolinium retention in the brain of children? A case-control study. J. Magn. Reson. Imaging 2020;51:1471-1477.
  • 13. DeBevits JJ, Munbodh R, Bageac D et al. Gray matter nucleus hyperintensity after monthly triple-dose Gadopentetate Dimeglumine with long-term Magnetic Resonance Imaging. Invest Radiol2020;55: 629–635.
  • 14. Alexander J. Towbin &Bin Zhang Jonathan R. Dillman. A retrospective cohort evaluation of the effect of multiple administrations of gadopentetate dimeglumine on brain magnetic resonance imaging T1-weighted signal. Pediatric Radiology (2021) 51:457–470.
  • 15. Renz DM, Kümpel S, Böttcher J, Pfeil A, Streitparth F, Waginger M, Reichenbach JR, Teichgräber UK, Mentzel HJ. Comparison of unenhanced T1-Weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of Gadopentetate Dimeglumine versus Gadobutrol in a pediatric population. Invest Radiol. 2018 Feb;53(2):119-127.
  • 16. Öner AY, Barutcu B, Aykol Ş, Tali ET. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: Residual gadolinium deposition? Invest Radiol 2017 Apr;52(4):195-197.
  • 17. Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol2016;206:414-419.
  • 18. Roberts DR, Holden KR. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 2016;38:331-336.
  • 19. Ryu YJ, Choi YH, Cheon JE, Lee WJ, Park S, Park JE, et al. Pediatric brain: gadolinium deposition indentate nucleus and globus pallidus on unenhanced T1-weighted images is dependent on the type of contrast agent. Invest Radiol 2018;53:246-255.
  • 20. Kasper E, Schemuth HP, Horry S, Kinner S. Changes in signal intensity in the dentate nucleus at unenhanced T1-weighted magnetic resonance imaging depending on class of previously used gadolinium-based contrast agent. Pediatr Radiol. 2018 May;48:686-693.
  • 21. XJ.R. Young,XW.B. Pope, andXM. Bobinski. Gadolinium Deposition within the Pediatric Brain: No Increased Intrinsic T1-Weighted Signal Intensity within the Dentate Nucleus following the Administration of a Minimum of 4 Doses of the Macrocyclic Agent Gadoteridol. AJNR Am J Neuroradiol 39:1604 – 08 Sep 2018.
  • 22. Behzadi AH, Farooq Z, Zhao Y, Shih G, Prince MR. Dentate nucleus signal intensity decrease on T1-weighted MR images after switching from gadopentetate dimeglumine to gadobutrol. Radiology 2018;287:816–823.
  • 23. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275:783–791.
  • 24. Splendiani A, Perri M, Marsecano C, et al. Effects of serial macrocyclicbased contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: A retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 2018;123:125–134.
  • 25. Welk B, McArthur E, Morrow SA, et al. Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 2016;316:96–98.
  • 26. Perrotta G, Metens T, Absil J, Lemort M, Manto M. Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: A monocenter retrospective study. J Neurol 2017;264:2277–2283.

Does Gadopentetate Dimeglumine Induce Gadolinium Accumulation in the Brains of Children?

Year 2023, Volume: 33 Issue: 2, 123 - 127, 30.04.2023
https://doi.org/10.54005/geneltip.1193667

Abstract

Aim: To determine T1-weighted (T1W) signal intensity (SI) differences in the dentate nucleus (DN) and globus pallidus (GP) following contrast enhanced magnetic resonance imaging (MRI) with multiple gadopentetate dimeglumine administrations in a group of pediatric patients.
Methods and materials: This retrospective study included children with at least two enhanced brain MRIs. All patients received gadopentetate dimeglumine intravenously (0.1 mmol/kg). SI measurements were done by drawing five region of interests (ROI) on dentate nuclei (DN) and globus pallidi (GP) bilaterally and cerebro-spinal fluid (CSF) in unenhanced T1W images. Student t-test was used for comparison of SI. Pearson correlation was calculated for the correlation between the SI and the number of gadolinium administrations.
Results: A total of 31 children (age range: 3-17 years; mean 10.6±4.3 years) were included. There was no significant difference between the first and the third MRI scans by means of the T1 SI ratios: right and left DN/CSF, right and left GP/CSF (P =0.543, P =0.599, P =0.803, P =0.730, respectively). 18 patients received more than two gadopentetate dimeglumine, the mean number of administrations was 5±3. A significant difference was detected between first and last MRI scans; right and left DN/CSF, right and left GP/CSF (P=0.0004, P=0.0008, P=0.0001, P=0.014 respectively). Correlation between the number of gadopentetate dimeglumine administrations and the SI for right and left DN/CSF, right and left GP/CSF (r=0.13, r=0.13, r=0.09 and r=0.12, respectively) was poor.
Conclusion: There was no significant T1 SI increase for children with at least two gadopentetate dimeglumine administrations but after multiple administrations, significant T1 SI increase was found in this series.

References

  • 1. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834–841.
  • 2. Murata N, Gonzalez-Cuyar LF, Murata K, et al. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Invest Radiol 2016;51:447–453.
  • 3. McDonald RJ, McDonald JS, Kallmes DF, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–782.
  • 4. Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 2015;136:e1637–1640.
  • 5. Roberts DR, Chatterjee AR, Yazdani M, et al. Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:2340–2347.
  • 6. Hu HH, Pokorney A, Towbin RB, Miller JH. Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: Evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 2016;46:1590–1598.
  • 7. Tibussek D, Rademacher C, Caspers J, et al. Gadolinium brain deposition after macrocyclic gadolinium administration: A pediatric casecontrol study. Radiology 2017;285:223–230.
  • 8. Young J, Orosz I, Franke M, et al. Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration. Clin Radiol 2018;73:290–295.
  • 9. Blakemore SJ. Imaging brain development: the adolescent brain. Neuroimage2012;61:397– 406.
  • 10. Stein J, Schettler T, Wallinga D, et al.In harm’s way: toxic threats to child development. J Dev Behav Pediatr 2002;23:S13–22.
  • 11. Flood TF, Stence NV, Maloney JA, Mirsky DM. Pediatric brain:Repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 2017;282:222–228.
  • 12. Topcuoglu ED, Topcuoglu OM, Oysu AS, Bukte Y. Does Godeterate Meglumine cause gadolinium retention in the brain of children? A case-control study. J. Magn. Reson. Imaging 2020;51:1471-1477.
  • 13. DeBevits JJ, Munbodh R, Bageac D et al. Gray matter nucleus hyperintensity after monthly triple-dose Gadopentetate Dimeglumine with long-term Magnetic Resonance Imaging. Invest Radiol2020;55: 629–635.
  • 14. Alexander J. Towbin &Bin Zhang Jonathan R. Dillman. A retrospective cohort evaluation of the effect of multiple administrations of gadopentetate dimeglumine on brain magnetic resonance imaging T1-weighted signal. Pediatric Radiology (2021) 51:457–470.
  • 15. Renz DM, Kümpel S, Böttcher J, Pfeil A, Streitparth F, Waginger M, Reichenbach JR, Teichgräber UK, Mentzel HJ. Comparison of unenhanced T1-Weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of Gadopentetate Dimeglumine versus Gadobutrol in a pediatric population. Invest Radiol. 2018 Feb;53(2):119-127.
  • 16. Öner AY, Barutcu B, Aykol Ş, Tali ET. Intrathecal contrast-enhanced magnetic resonance imaging-related brain signal changes: Residual gadolinium deposition? Invest Radiol 2017 Apr;52(4):195-197.
  • 17. Cao Y, Huang DQ, Shih G, Prince MR. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. AJR Am J Roentgenol2016;206:414-419.
  • 18. Roberts DR, Holden KR. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 2016;38:331-336.
  • 19. Ryu YJ, Choi YH, Cheon JE, Lee WJ, Park S, Park JE, et al. Pediatric brain: gadolinium deposition indentate nucleus and globus pallidus on unenhanced T1-weighted images is dependent on the type of contrast agent. Invest Radiol 2018;53:246-255.
  • 20. Kasper E, Schemuth HP, Horry S, Kinner S. Changes in signal intensity in the dentate nucleus at unenhanced T1-weighted magnetic resonance imaging depending on class of previously used gadolinium-based contrast agent. Pediatr Radiol. 2018 May;48:686-693.
  • 21. XJ.R. Young,XW.B. Pope, andXM. Bobinski. Gadolinium Deposition within the Pediatric Brain: No Increased Intrinsic T1-Weighted Signal Intensity within the Dentate Nucleus following the Administration of a Minimum of 4 Doses of the Macrocyclic Agent Gadoteridol. AJNR Am J Neuroradiol 39:1604 – 08 Sep 2018.
  • 22. Behzadi AH, Farooq Z, Zhao Y, Shih G, Prince MR. Dentate nucleus signal intensity decrease on T1-weighted MR images after switching from gadopentetate dimeglumine to gadobutrol. Radiology 2018;287:816–823.
  • 23. Radbruch A, Weberling LD, Kieslich PJ, et al. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275:783–791.
  • 24. Splendiani A, Perri M, Marsecano C, et al. Effects of serial macrocyclicbased contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: A retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med 2018;123:125–134.
  • 25. Welk B, McArthur E, Morrow SA, et al. Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 2016;316:96–98.
  • 26. Perrotta G, Metens T, Absil J, Lemort M, Manto M. Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: A monocenter retrospective study. J Neurol 2017;264:2277–2283.
There are 26 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Original Article
Authors

Ayşegül Görmez 0000-0001-5620-2881

Osman Melih Topcuoğlu 0000-0002-4008-3395

Early Pub Date April 30, 2023
Publication Date April 30, 2023
Submission Date October 24, 2022
Published in Issue Year 2023 Volume: 33 Issue: 2

Cite

Vancouver Görmez A, Topcuoğlu OM. Does Gadopentetate Dimeglumine Induce Gadolinium Accumulation in the Brains of Children?. Genel Tıp Derg. 2023;33(2):123-7.

The Journal of General Medicine is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).