Research Article
BibTex RIS Cite

Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma

Year 2022, Volume: 7 Issue: 3, 187 - 196, 15.12.2022
https://doi.org/10.29128/geomatik.946594

Abstract

GNSS İnterferometrik Reflektometri (GNSS-IR) yöntemi, GNSS verilerinin analizi ile anten etrafındaki çevresel özelliklerin kestirimine olanak sağlamaktadır. Deniz kıyısındaki GNSS antenlerinin, deniz yüzeyinden yansıma alabilecek kadar yeterli açık görüş açısına sahip olması durumunda, GNSS-IR yöntemine dayalı olarak deniz seviyesi değişimleri belirlenebilmektedir. Bu çalışmada, deniz seviyesi değişimlerinin GNSS-IR yöntemine dayalı olarak belirlenebilirliği, TUSAGA-Aktif ağına ait istasyonlardan Tekirdağ (TEKR) istasyonunun 2020 yılına ait bir yıllık statik GPS uydu verileri ile SNR1 ve SNR2 (L1 ve L2 frekansları) için ayrı ayrı analiz edilmiştir. Analizlerde frekans limiti, uydu yükseklik açısı limiti, spektral analiz ile elde edilen arka plan gürültü koşulu (AGK) ve medyan mutlak sapma (MAD) koşulu dikkate alınmıştır. Verilerin değerlendirilmesi için 18 farklı analiz stratejisi oluşturulmuş ve kestirimler için doğrulama verisi olarak TUDES Marmara Ereğlisi mareograf istasyonunun sağladığı deniz seviyesi ölçüleri kullanılmıştır. Sonuçlar, veriden elde edilen kestirim sayısı (KS) ve 1 yıllık veride toplam günlük kestirim kapsam sayısı bakımından da incelenmiştir. Buna göre, 1 yıllık veri için en yüksek korelasyon SNR1 ile 5°-20° yükseklik açısı ve 5AGK koşulu için %75 (KS: 1911, Kapsam: 279) olarak bulunmuştur. Yıllık veri için en yüksek korelasyonun elde edildiği strateji ile aylık değerlendirmeler yapıldığında ise SNR1 için %84’e, SNR2 için ise %88’e varan korelasyon değerleri elde edilmiştir.

References

  • Altuntas C & Tunalioglu N (2020). Estimation performance of soil moisture with GPS-IR method. Sigma Journal of Engineering and Natural Sciences, 38(4), 2217-2230.
  • Altuntas C & Tunalioglu N (2021). Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digital Signal Processing, 112(2021), 103011.
  • Altuntaş C &Tunalıoğlu N (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. DOI: 10.31127/tuje.870620
  • Anderson K D (2000). Determination of water level and tides using interferometric observations of GPS signals. Journal of Atmospheric and Oceanic Technology, 17(8), 1118-1127, doi:10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2.
  • Axelrad P, Comp C J & Macdoran P F (1996). SNR-based multipath error correction for GPS differential phase. IEEE Trans. Aerosp. Electron. Syst., 32, 650–660, https://doi.org/10.1109/7.489508.
  • Beşel C, Tanır Kayıkçı E (2021). Türkiye denizlerinde GNSS reflektometre tekniği ile deniz seviyesi değişiminin araştırılması. Jeodezi ve Jeoinformasyon Dergisi, 8(1),1-17. DOI: 10.9733/JGG.2021R0001.T
  • Chen Q, Won D & Akos D M (2014). Snow depth sensing using the GPS L2C signal with a dipole antenna. EURASIP Journal on Advances in Signal Processing, 2014(1), 106, doi:10.1186/1687-6180-2014-106.
  • Chew C, Small E E & Larson K M (2016). An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS solutions, 20(3), 525-537, doi:10.1007/s10291-015-0462-4
  • Gutmann E D, Larson K M, Williams MW, Nievinski F G & Zavorotny V (2012). Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado. Hydrological Processes, 26(19), 2951-2961, doi:10.1002/hyp.8329.
  • Han M, Zhu Y, Yang D, Chang Q, Hong X, Song S (2020). Soil moisture monitoring using GNSS interference signal: proposing a signal reconstruction method. Remote Sens. Letters, 11(4), 373-382.DOI: 10.1080/2150704X.2020.1718235.
  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
  • Jin S, Qian X, Kutoglu H (2016). Snow depth variations estimated from GPS-Reflectometry: A case study in Alaska from L2P SNR data. Remote sensing, 8(1), 63, doi:10.3390/rs8010063.
  • Larson K M, Löfgren J S & Haas R (2013). Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res., 51, 1301–1310, https://doi.org/10.1016/j.asr.2012.04.017.
  • Larson K M, Palo S, Roesler C, Mattia M, Bruno V, Coltelli M & Fee D (2017). Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method. J. Volcanol. Geoth. Res. 344, 26–39, https://doi.org/10.1016/j.polar.2018.11.009.
  • Larson K M, Small E E, Gutmann E, Bilich P & Axelrad J B (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut. 12 (3), 173–177. https://doi.org/10.1007/s10291-007-0076-6.
  • Larson K M, Braun J J, Small E E, Zavorotny V U, Gutmann E D, Bilich A L (2009a). GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 91-99, doi:10.1109/JSTARS.2009.2033612.
  • Larson K M, Gutmann E D, Zavorotny V U, Braun J J, Williams M W, Nievinski F G (2009b). Can we measure snow depth with GPS receivers? Geophysical Research Letters, 36(17), doi:10.1029/2009GL039430.
  • Lomb N R (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343.
  • Martin-Neira M (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 17 (4), 331–355.
  • Neumann B, Vafeidis A, Zimmermann J & Nicholls R (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10(3):e0118571. https ://doi.org/10.1371/journ al.pone.01185 71
  • Nievinski F G & Larson K M (2014a). Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part I: Formulation and Simulations. IEEE Trans. Geosci. Remote Sens. 52 (10), 6555–6563. https://doi.org/10.1109/TGRS.2013.2297681.
  • Nievinski F G & Larson K M (2014b). Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation. IEEE Trans. Geosci. Remote Sens. 52 (10), 6564–6573. https://doi.org/10.1109/TGRS.2013.2297688.
  • Ozeki M, Heki K (2012). GPS snow depth meter with geometry-free linear combinations of carrier phases. Journal of Geodesy, 86(3), 209-219, doi:10.1007/s00190-011-0511-x.
  • Qian X & Jin S (2016). Estimation of snow depth from GLONASS SNR and phase-based multipath reflectometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4817-4823.
  • Rousseeuw P J & Leroy A M (1987). Robust regression and outlier detection (Vol. 1). New York: Wiley.
  • Roussel N, Frappart F, Ramillien G, Darrozes J, Baup F, Lestarquit L, Ha M C (2016). Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (10), 4781-4794, doi:10.1109/JSTARS.2016.2537847.
  • Santamaría-Gómez A & Watson C (2017). Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia. GPS Solutions, 21, 451–459, https://doi.org/10.1007/s10291-016-0537-x.
  • Small E E, Larson K M & Braun J J (2010). Sensing vegetation growth with reflected GPS signals. Geophys. Res. Lett. 37 (12), 245–269. https://doi.org/10.1029/2010GL042951.
  • Scargle J D (1982). Studies in astronomical time series analysis. II.Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835–853, https://doi.org/10.1086/160554.
  • Strandberg J, Hobiger T & Haas R (2016). Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Science, 51(8), 1286-1296.
  • Strandberg J, Hobiger T & Haas R (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solut. 23 (3). https://doi.org/10.1007/s10291-019-0851-1.
  • Tabibi S, Geremia-Nievinski F & van Dam T (2017). Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3773-3785.
  • Tunalıoğlu N, Doğan A H & Durdağ U M (2019). GPS sinyal gürültü oranı verileri ile kar kalınlığının belirlenmesi. Jeodezi ve Jeoinformasyon Dergisi, 6(1) 1-9. Doi: 10.9733/JGG.2019R00601001.T.
  • Xi R, Zhou X, Jiang W, Chen Q (2018). Simultaneous estimation of dam displacements and reservoir level variation from GPS measurements. Meas., 122, 247-256, doi:10.1016/j.measurement.2018.03.036.
  • Wang X, Zhang Q, Zhang S (2018). Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solut 22, 22. https://doi.org/10.1007/s10291-017-0684-8
  • Williams S D, Bell P S, McCann D L, Cooke R & Sams C (2020). Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry. Journal of Atmospheric and Oceanic Technology, 37(10), 1925-1935.
  • Zhang S, Roussel N, Boniface K, Ha M C, Frappart F, Darrozes J, Baup F & Calvet J C (2017). Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017.
Year 2022, Volume: 7 Issue: 3, 187 - 196, 15.12.2022
https://doi.org/10.29128/geomatik.946594

Abstract

References

  • Altuntas C & Tunalioglu N (2020). Estimation performance of soil moisture with GPS-IR method. Sigma Journal of Engineering and Natural Sciences, 38(4), 2217-2230.
  • Altuntas C & Tunalioglu N (2021). Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data. Digital Signal Processing, 112(2021), 103011.
  • Altuntaş C &Tunalıoğlu N (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. DOI: 10.31127/tuje.870620
  • Anderson K D (2000). Determination of water level and tides using interferometric observations of GPS signals. Journal of Atmospheric and Oceanic Technology, 17(8), 1118-1127, doi:10.1175/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2.
  • Axelrad P, Comp C J & Macdoran P F (1996). SNR-based multipath error correction for GPS differential phase. IEEE Trans. Aerosp. Electron. Syst., 32, 650–660, https://doi.org/10.1109/7.489508.
  • Beşel C, Tanır Kayıkçı E (2021). Türkiye denizlerinde GNSS reflektometre tekniği ile deniz seviyesi değişiminin araştırılması. Jeodezi ve Jeoinformasyon Dergisi, 8(1),1-17. DOI: 10.9733/JGG.2021R0001.T
  • Chen Q, Won D & Akos D M (2014). Snow depth sensing using the GPS L2C signal with a dipole antenna. EURASIP Journal on Advances in Signal Processing, 2014(1), 106, doi:10.1186/1687-6180-2014-106.
  • Chew C, Small E E & Larson K M (2016). An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil. GPS solutions, 20(3), 525-537, doi:10.1007/s10291-015-0462-4
  • Gutmann E D, Larson K M, Williams MW, Nievinski F G & Zavorotny V (2012). Snow measurement by GPS interferometric reflectometry: an evaluation at Niwot Ridge, Colorado. Hydrological Processes, 26(19), 2951-2961, doi:10.1002/hyp.8329.
  • Han M, Zhu Y, Yang D, Chang Q, Hong X, Song S (2020). Soil moisture monitoring using GNSS interference signal: proposing a signal reconstruction method. Remote Sens. Letters, 11(4), 373-382.DOI: 10.1080/2150704X.2020.1718235.
  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E (2008). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Springer Science & Business Media.
  • Jin S, Qian X, Kutoglu H (2016). Snow depth variations estimated from GPS-Reflectometry: A case study in Alaska from L2P SNR data. Remote sensing, 8(1), 63, doi:10.3390/rs8010063.
  • Larson K M, Löfgren J S & Haas R (2013). Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res., 51, 1301–1310, https://doi.org/10.1016/j.asr.2012.04.017.
  • Larson K M, Palo S, Roesler C, Mattia M, Bruno V, Coltelli M & Fee D (2017). Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method. J. Volcanol. Geoth. Res. 344, 26–39, https://doi.org/10.1016/j.polar.2018.11.009.
  • Larson K M, Small E E, Gutmann E, Bilich P & Axelrad J B (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solut. 12 (3), 173–177. https://doi.org/10.1007/s10291-007-0076-6.
  • Larson K M, Braun J J, Small E E, Zavorotny V U, Gutmann E D, Bilich A L (2009a). GPS multipath and its relation to near-surface soil moisture content. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(1), 91-99, doi:10.1109/JSTARS.2009.2033612.
  • Larson K M, Gutmann E D, Zavorotny V U, Braun J J, Williams M W, Nievinski F G (2009b). Can we measure snow depth with GPS receivers? Geophysical Research Letters, 36(17), doi:10.1029/2009GL039430.
  • Lomb N R (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447–462, https://doi.org/10.1007/BF00648343.
  • Martin-Neira M (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 17 (4), 331–355.
  • Neumann B, Vafeidis A, Zimmermann J & Nicholls R (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10(3):e0118571. https ://doi.org/10.1371/journ al.pone.01185 71
  • Nievinski F G & Larson K M (2014a). Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part I: Formulation and Simulations. IEEE Trans. Geosci. Remote Sens. 52 (10), 6555–6563. https://doi.org/10.1109/TGRS.2013.2297681.
  • Nievinski F G & Larson K M (2014b). Inverse Modeling of GPS Multipath for Snow Depth Estimation—Part II: Application and Validation. IEEE Trans. Geosci. Remote Sens. 52 (10), 6564–6573. https://doi.org/10.1109/TGRS.2013.2297688.
  • Ozeki M, Heki K (2012). GPS snow depth meter with geometry-free linear combinations of carrier phases. Journal of Geodesy, 86(3), 209-219, doi:10.1007/s00190-011-0511-x.
  • Qian X & Jin S (2016). Estimation of snow depth from GLONASS SNR and phase-based multipath reflectometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 4817-4823.
  • Rousseeuw P J & Leroy A M (1987). Robust regression and outlier detection (Vol. 1). New York: Wiley.
  • Roussel N, Frappart F, Ramillien G, Darrozes J, Baup F, Lestarquit L, Ha M C (2016). Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (10), 4781-4794, doi:10.1109/JSTARS.2016.2537847.
  • Santamaría-Gómez A & Watson C (2017). Remote leveling of tide gauges using GNSS reflectometry: Case study at Spring Bay, Australia. GPS Solutions, 21, 451–459, https://doi.org/10.1007/s10291-016-0537-x.
  • Small E E, Larson K M & Braun J J (2010). Sensing vegetation growth with reflected GPS signals. Geophys. Res. Lett. 37 (12), 245–269. https://doi.org/10.1029/2010GL042951.
  • Scargle J D (1982). Studies in astronomical time series analysis. II.Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835–853, https://doi.org/10.1086/160554.
  • Strandberg J, Hobiger T & Haas R (2016). Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Science, 51(8), 1286-1296.
  • Strandberg J, Hobiger T & Haas R (2019). Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solut. 23 (3). https://doi.org/10.1007/s10291-019-0851-1.
  • Tabibi S, Geremia-Nievinski F & van Dam T (2017). Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3773-3785.
  • Tunalıoğlu N, Doğan A H & Durdağ U M (2019). GPS sinyal gürültü oranı verileri ile kar kalınlığının belirlenmesi. Jeodezi ve Jeoinformasyon Dergisi, 6(1) 1-9. Doi: 10.9733/JGG.2019R00601001.T.
  • Xi R, Zhou X, Jiang W, Chen Q (2018). Simultaneous estimation of dam displacements and reservoir level variation from GPS measurements. Meas., 122, 247-256, doi:10.1016/j.measurement.2018.03.036.
  • Wang X, Zhang Q, Zhang S (2018). Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solut 22, 22. https://doi.org/10.1007/s10291-017-0684-8
  • Williams S D, Bell P S, McCann D L, Cooke R & Sams C (2020). Demonstrating the potential of low-cost GPS units for the remote measurement of tides and water levels using interferometric reflectometry. Journal of Atmospheric and Oceanic Technology, 37(10), 1925-1935.
  • Zhang S, Roussel N, Boniface K, Ha M C, Frappart F, Darrozes J, Baup F & Calvet J C (2017). Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop. Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Cemali Altuntaş 0000-0002-9660-6124

Nursu Tunalıoğlu 0000-0001-9345-5220

Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Altuntaş, C., & Tunalıoğlu, N. (2022). Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik, 7(3), 187-196. https://doi.org/10.29128/geomatik.946594
AMA Altuntaş C, Tunalıoğlu N. Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik. December 2022;7(3):187-196. doi:10.29128/geomatik.946594
Chicago Altuntaş, Cemali, and Nursu Tunalıoğlu. “Deniz Seviyesi değişimlerinin Belirlenmesinde GNSS-IR yönteminin kullanımı Ve doğruluk Analizi üzerine Bir araştırma”. Geomatik 7, no. 3 (December 2022): 187-96. https://doi.org/10.29128/geomatik.946594.
EndNote Altuntaş C, Tunalıoğlu N (December 1, 2022) Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik 7 3 187–196.
IEEE C. Altuntaş and N. Tunalıoğlu, “Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma”, Geomatik, vol. 7, no. 3, pp. 187–196, 2022, doi: 10.29128/geomatik.946594.
ISNAD Altuntaş, Cemali - Tunalıoğlu, Nursu. “Deniz Seviyesi değişimlerinin Belirlenmesinde GNSS-IR yönteminin kullanımı Ve doğruluk Analizi üzerine Bir araştırma”. Geomatik 7/3 (December 2022), 187-196. https://doi.org/10.29128/geomatik.946594.
JAMA Altuntaş C, Tunalıoğlu N. Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik. 2022;7:187–196.
MLA Altuntaş, Cemali and Nursu Tunalıoğlu. “Deniz Seviyesi değişimlerinin Belirlenmesinde GNSS-IR yönteminin kullanımı Ve doğruluk Analizi üzerine Bir araştırma”. Geomatik, vol. 7, no. 3, 2022, pp. 187-96, doi:10.29128/geomatik.946594.
Vancouver Altuntaş C, Tunalıoğlu N. Deniz seviyesi değişimlerinin belirlenmesinde GNSS-IR yönteminin kullanımı ve doğruluk analizi üzerine bir araştırma. Geomatik. 2022;7(3):187-96.