Research Article
BibTex RIS Cite

ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ

Year 2023, , 627 - 640, 16.06.2023
https://doi.org/10.15237/gida.GD23020

Abstract

Araştırmada ketencik tohumundan farklı sıcaklık (30, 45, 60°C), süre (15, 30, 45 dk) ve güç (%30, 65, 100) koşullarında ultrasonikasyon yöntemi ile yağ ekstraksiyonunun optimizasyonu amaçlanmıştır. Optimum koşullarda elde edilen yağ, soksalet ekstraksiyonu ile elde edilen yağ örneği ile verim, yağ asidi kompozisyonu ve oksidasyon özellikleri bakımından karşılaştırılmıştır. Ultrasonikasyon yönteminde yağ verimi açısından optimum koşullar 38.16°C, 15 dk ve %30 ultrasonikasyon gücü ve bu koşullarda yağ verimi 24.44 g/100g olarak bulunmuştur. Oksidasyon analizleri sonuçlarına göre ise soksalet ve ultrasonikasyon yöntemleri ile elde edilen yağların peroksit değerlerinin sırasıyla 3.39-69.25 ve 2.15-54.19 meqO2/kg yağ, konjuge dien değerlerinin ise sırasıyla 2.14-9.71 ve 1.79-7.22 olduğu belirlenmiştir. Ayrıca uygulanan ekstraksiyon yöntemleri ketencik yağının yağ asidi kompozisyonunda önemli bir farklılığa neden olmamıştır. Ketencik yağının ekstraksiyonunda ultrasonikasyon tekniğinin bir alternatif olabileceği ve bu yağın fonksiyonel gıdaların üretiminde kullanılma potansiyelinin bulunduğu değerlendirilmiştir.

Supporting Institution

Yok

Project Number

Yok

Thanks

Araştırmaya verdiği destek nedeniyle Prof. Dr. Mustafa KIRALAN’a teşekkür ederiz.

References

  • AACC. (2000). Approved methods of American association of cereal chemists 10th ed. American Association of Cereal Chemists Inc., Minnesota, USA.
  • Abramovič, H., Butinar, B., Nikolič, V. (2007). Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chemistry, 104(3), 903-909.
  • AOCS. (2004). Official methods and recommended practices of the American Oil Chemists´ Society 5th ed. AOCS. Champaign, IL.
  • Berti, M., Gesch, R., Eynck, C., Anderson, J., Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710.
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, 2, 209-242.
  • Eidhin, D.N., Burke, J., O'Beirne, D. (2003). Oxidative stability of ω3‐rich camelina oil and camelina oil‐based spread compared with plant and fish oils and sunflower spread. Journal of Food Science, 68(1), 345-353.
  • Goula, A.M., Papatheodorou, A., Karasavva, S., Kaderides, K. (2018). Ultrasound-assisted aqueous enzymatic extraction of oil from pomegranate seeds. Waste and Biomass Valorization, 9(1), 1-11.
  • Haji Heidari, S., Taghian Dinani, S. (2018). The study of ultrasound-assisted enzymatic extraction of oil from peanut seeds using response surface methodology. European Journal of Lipid Science and Technology, 120(3), 1700252.
  • Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J.G., Carmona-García, R., Juárez-Barrientos, J.M., Chávez-Zamudio, R., Martínez-Sánchez, C.E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429-436.
  • Hu, B., Li, Y., Song, J., Li, H., Zhou, Q., Li, C., Zhang Z, Liu Y, Liu A, Zhang Q, Liu S, Luo, Q. (2020). Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method-design, optimization and quality evaluation. Journal of Chromatography A, 1627, 461380.
  • ISO. (2017). ISO Standard No: 12966-2:2017. Animal and vegetable fats and oils-gas chromatography of fatty acid methyl esters-Part 2: Preparation of methyl esters of fatty acids. https://www.iso.org/standard/72142.html (Accessed: 16 January 2023).
  • Jalili, F., Jafari, S.M., Emam-Djomeh, Z., Malekjani, N., Farzaneh, V. (2018). Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598-612.
  • Kıralan, M., Kıralan, S.S., Subaşı, I., Aslan, Y., Ramadan, M.F. (2018). Fatty acids profile and stability of camelina (Camelina sativa) seed oil as affected by extraction method and thermal oxidation. La Rivista Italiana Delle Sostanze Grasse, XCV.
  • Kiralan, M., Çalik, G., Kiralan, S., Özaydin, A., Özkan, G., Ramadan, M.F. (2019). Stability and volatile oxidation compounds of grape seed, flax seed and black cumin seed cold-pressed oils as affected by thermal oxidation. Grasas y Aceites, 70(1), 295-295.
  • Kurt, O., Seyi̇s, F. (2008). Alternatif yağ bitkisi: ketencik [Camelina sativa (L.) Crantz]. Anadolu Tarım Bilimleri Dergisi, 23(2), 116-120.
  • Leclère, M., Lorent, A.R., Jeuffroy, M.H., Butier, A., Chatain, C., Loyce, C. (2021). Diagnosis of camelina seed yield and quality across an on-farm experimental network. European Journal of Agronomy, 122, 126190.
  • Liu, W., Fu, Y.J., Zu, Y.G., Tong, M.H., Wu, N., Liu, X.L., Zhang, S. (2009). Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chemistry, 114(1), 334-339.
  • Li, H.Z., Zhang, Z.J., Hou, T.Y., Li, X.J., Chen, T. (2015). Optimization of ultrasound-assisted hexane extraction of perilla oil using response surface methodology. Industrial Crops and Products, 76, 18-24.
  • Li, Z., Liu, Y., Liang, Y., Wang, H., Yang, F. (2023). Study of the optimization and kinetics of the surfactant-induced ultrasonic-assisted extraction of perilla seed oil: Free radical scavenging capacity and physicochemical and functional characteristics. Sustainable Chemistry and Pharmacy, 32, 100977.
  • Mohammadpour, H., Sadrameli, S.M., Eslami, F., Asoodeh, A. (2019). Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Industrial Crops and Products, 131, 106-116.
  • Mondor, M., Hernández-Álvarez, A.J. (2021). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124(3), 2100035.
  • Moradi, N., Rahimi, M., Moeini, A., Parsamoghadam, M.A. (2018). Impact of ultrasound on oil yield and content of functional food ingredients at the oil extraction from sunflower. Separation Science and Technology, 53(2), 261-276.
  • Mwaurah, P.W., Kumar, S., Kumar, N., Attkan, A.K., Panghal, A., Singh, V.K., Garg, M.K. (2020). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety, 19(1), 3-20.
  • Oprescu, E.E., Enascuta, C.E., Radu, E., Ciltea-Udrescu, M., Lavric, V. (2022). Does the ultrasonic field improve the extraction productivity compared to classical methods–maceration and reflux distillation?. Chemical Engineering and Processing-Process Intensification, 179, 109082.
  • Pan, Z., Qu, W., Ma, H., Atungulu, G.G., McHugh, T.H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372.
  • Perrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58-65.
  • Piravi-vanak, Z., Azadmard-Damirchi, S., Kahrizi, D., Mooraki, N., Ercisli, S., Savage, G.P., Ahmadvandi, H.R., Martinez, F. (2022). Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran. Journal of Molecular Liquids, 345, 117043.
  • Popa, A.L. (2017). Camelina sativa oil-a review. Scientific Bulletin. Series F. Biotechnologies, 21, 233-238. Pratap Singh, A., Fathordoobady, F., Guo, Y., Singh, A., Kitts, D.D. (2020). Antioxidants help favorably regulate the kinetics of lipid peroxidation, polyunsaturated fatty acids degradation and acidic cannabinoids decarboxylation in hempseed oil. Scientific Reports, 10(1), 10567.
  • Rajendran, N., Gurunathan, B., Ebenezer Selvakumari, I.A. (2021). Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products, 162, 113273.
  • Rojo-Gutiérrez, E., Carrasco-Molinar, O., Tirado-Gallegos, J.M., Levario-Gómez, A., Chávez-González, M.L., Baeza-Jiménez, R., Buenrostro-Figueroa, J.J. (2021). Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. Journal of Food Measurement and Characterization, 15(2), 2098-2107.
  • Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M. (2013). Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules, 18(10), 12474-12487.
  • Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M., Bordbar, S., Serjouie, A. (2015). Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chemistry, 172, 7-17.
  • Senrayan, J., Venkatachalam, S. (2020). Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science & Emerging Technologies, 62, 102347.
  • Sousa, G., Trifunovska, M., Antunes, M., Miranda, I., Moldão, M., Alves, V., Vidrih, R., Allen Lopes, P., Aparicio, L., Neves, M., Tecelão, C., Ferreira-Dias, S. (2021). Optimization of ultrasound-assisted extraction of bioactive compounds from Pelvetia canaliculata to sunflower oil. Foods, 10(8), 1732.
  • Sydor, M., Kurasiak-Popowska, D., Stuper-Szablewska, K., Rogoziński, T. (2022). Camelina sativa. Status quo and future perspectives. Industrial Crops and Products, 187, 115531.
  • Tekin, K., Akalın, M.K., Şeker, M.G. (2015). Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Industrial Crops and Products, 77, 954-960.
  • Terpinc, P., Polak, T., Makuc, D., Ulrih, N.P., Abramovič, H. (2012). The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chemistry, 131(2), 580-589.
  • Tian, Y., Xu, Z., Zheng, B., Lo, Y.M. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202-208.
  • Tontul, S.A., Mutlu, C., Koç, A., Erbaş, M. (2018). Çiya tohumundan ultrason destekli yağ ekstraksiyonunun optimizasyonu. Gıda, 43(3), 393-402.
  • Vollmann, J., Eynck, C. (2015). Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal, 10(4), 525-535.
  • Wang, Z., Fang, R., Guo, H. (2020). Advances in ultrasonic production units for enhanced oil recovery in China. Ultrasonics Sonochemistry, 60, 104791.
  • Zhong, J., Wang, Y., Yang, R., Liu, X., Yang, Q., Qin, X. (2018). The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Industrial Crops and Products, 120, 1-10.

DETERMINATION OF THE OXIDATION PROPERTIES OF CAMELINA SEED OILS EXTRACTED BY ULTRASONICATION AND SOXHLET METHODS

Year 2023, , 627 - 640, 16.06.2023
https://doi.org/10.15237/gida.GD23020

Abstract

In the study, it was aimed to optimize oil extraction from camelina with ultrasonication at different temperature (30, 45, 60°C), time (15, 30, 45 min) and power (30, 65, 100%) conditions. The oil obtained under optimum conditions was compared with the oil by soxhlet extraction for yield, fatty acid composition and oxidation properties. The ultrasonication optimum conditions were 38.16°C, 15 min, and 30% ultrasonication power, and oil yield was 24.44 g/100g. The peroxide values of the oils obtained by soxhlet and ultrasonication methods were 3.39-69.25 and 2.15-54.19 meqO2/kg oil, respectively. The conjugated diene values of oils obtained by soxhlet and ultrasonication methods were 2.14-9.71 and 1.79-7.22, respectively. Moreover, the applied extraction methods did not cause a significant difference in the fatty acid composition of camelina oil. Ultrasonication technique can be an alternative for the Camelina sativa oil extraction and this oil has potential for using in the functional food production.

Project Number

Yok

References

  • AACC. (2000). Approved methods of American association of cereal chemists 10th ed. American Association of Cereal Chemists Inc., Minnesota, USA.
  • Abramovič, H., Butinar, B., Nikolič, V. (2007). Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chemistry, 104(3), 903-909.
  • AOCS. (2004). Official methods and recommended practices of the American Oil Chemists´ Society 5th ed. AOCS. Champaign, IL.
  • Berti, M., Gesch, R., Eynck, C., Anderson, J., Cermak, S. (2016). Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 94, 690-710.
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, 2, 209-242.
  • Eidhin, D.N., Burke, J., O'Beirne, D. (2003). Oxidative stability of ω3‐rich camelina oil and camelina oil‐based spread compared with plant and fish oils and sunflower spread. Journal of Food Science, 68(1), 345-353.
  • Goula, A.M., Papatheodorou, A., Karasavva, S., Kaderides, K. (2018). Ultrasound-assisted aqueous enzymatic extraction of oil from pomegranate seeds. Waste and Biomass Valorization, 9(1), 1-11.
  • Haji Heidari, S., Taghian Dinani, S. (2018). The study of ultrasound-assisted enzymatic extraction of oil from peanut seeds using response surface methodology. European Journal of Lipid Science and Technology, 120(3), 1700252.
  • Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J.G., Carmona-García, R., Juárez-Barrientos, J.M., Chávez-Zamudio, R., Martínez-Sánchez, C.E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429-436.
  • Hu, B., Li, Y., Song, J., Li, H., Zhou, Q., Li, C., Zhang Z, Liu Y, Liu A, Zhang Q, Liu S, Luo, Q. (2020). Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method-design, optimization and quality evaluation. Journal of Chromatography A, 1627, 461380.
  • ISO. (2017). ISO Standard No: 12966-2:2017. Animal and vegetable fats and oils-gas chromatography of fatty acid methyl esters-Part 2: Preparation of methyl esters of fatty acids. https://www.iso.org/standard/72142.html (Accessed: 16 January 2023).
  • Jalili, F., Jafari, S.M., Emam-Djomeh, Z., Malekjani, N., Farzaneh, V. (2018). Optimization of ultrasound-assisted extraction of oil from canola seeds with the use of response surface methodology. Food Analytical Methods, 11(2), 598-612.
  • Kıralan, M., Kıralan, S.S., Subaşı, I., Aslan, Y., Ramadan, M.F. (2018). Fatty acids profile and stability of camelina (Camelina sativa) seed oil as affected by extraction method and thermal oxidation. La Rivista Italiana Delle Sostanze Grasse, XCV.
  • Kiralan, M., Çalik, G., Kiralan, S., Özaydin, A., Özkan, G., Ramadan, M.F. (2019). Stability and volatile oxidation compounds of grape seed, flax seed and black cumin seed cold-pressed oils as affected by thermal oxidation. Grasas y Aceites, 70(1), 295-295.
  • Kurt, O., Seyi̇s, F. (2008). Alternatif yağ bitkisi: ketencik [Camelina sativa (L.) Crantz]. Anadolu Tarım Bilimleri Dergisi, 23(2), 116-120.
  • Leclère, M., Lorent, A.R., Jeuffroy, M.H., Butier, A., Chatain, C., Loyce, C. (2021). Diagnosis of camelina seed yield and quality across an on-farm experimental network. European Journal of Agronomy, 122, 126190.
  • Liu, W., Fu, Y.J., Zu, Y.G., Tong, M.H., Wu, N., Liu, X.L., Zhang, S. (2009). Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw. and its antioxidant activity. Food Chemistry, 114(1), 334-339.
  • Li, H.Z., Zhang, Z.J., Hou, T.Y., Li, X.J., Chen, T. (2015). Optimization of ultrasound-assisted hexane extraction of perilla oil using response surface methodology. Industrial Crops and Products, 76, 18-24.
  • Li, Z., Liu, Y., Liang, Y., Wang, H., Yang, F. (2023). Study of the optimization and kinetics of the surfactant-induced ultrasonic-assisted extraction of perilla seed oil: Free radical scavenging capacity and physicochemical and functional characteristics. Sustainable Chemistry and Pharmacy, 32, 100977.
  • Mohammadpour, H., Sadrameli, S.M., Eslami, F., Asoodeh, A. (2019). Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Industrial Crops and Products, 131, 106-116.
  • Mondor, M., Hernández-Álvarez, A.J. (2021). Camelina sativa composition, attributes, and applications: A review. European Journal of Lipid Science and Technology, 124(3), 2100035.
  • Moradi, N., Rahimi, M., Moeini, A., Parsamoghadam, M.A. (2018). Impact of ultrasound on oil yield and content of functional food ingredients at the oil extraction from sunflower. Separation Science and Technology, 53(2), 261-276.
  • Mwaurah, P.W., Kumar, S., Kumar, N., Attkan, A.K., Panghal, A., Singh, V.K., Garg, M.K. (2020). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety, 19(1), 3-20.
  • Oprescu, E.E., Enascuta, C.E., Radu, E., Ciltea-Udrescu, M., Lavric, V. (2022). Does the ultrasonic field improve the extraction productivity compared to classical methods–maceration and reflux distillation?. Chemical Engineering and Processing-Process Intensification, 179, 109082.
  • Pan, Z., Qu, W., Ma, H., Atungulu, G.G., McHugh, T.H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372.
  • Perrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58-65.
  • Piravi-vanak, Z., Azadmard-Damirchi, S., Kahrizi, D., Mooraki, N., Ercisli, S., Savage, G.P., Ahmadvandi, H.R., Martinez, F. (2022). Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran. Journal of Molecular Liquids, 345, 117043.
  • Popa, A.L. (2017). Camelina sativa oil-a review. Scientific Bulletin. Series F. Biotechnologies, 21, 233-238. Pratap Singh, A., Fathordoobady, F., Guo, Y., Singh, A., Kitts, D.D. (2020). Antioxidants help favorably regulate the kinetics of lipid peroxidation, polyunsaturated fatty acids degradation and acidic cannabinoids decarboxylation in hempseed oil. Scientific Reports, 10(1), 10567.
  • Rajendran, N., Gurunathan, B., Ebenezer Selvakumari, I.A. (2021). Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products, 162, 113273.
  • Rojo-Gutiérrez, E., Carrasco-Molinar, O., Tirado-Gallegos, J.M., Levario-Gómez, A., Chávez-González, M.L., Baeza-Jiménez, R., Buenrostro-Figueroa, J.J. (2021). Evaluation of green extraction processes, lipid composition and antioxidant activity of pomegranate seed oil. Journal of Food Measurement and Characterization, 15(2), 2098-2107.
  • Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M. (2013). Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition and triacylglycerol profile. Molecules, 18(10), 12474-12487.
  • Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M., Bordbar, S., Serjouie, A. (2015). Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chemistry, 172, 7-17.
  • Senrayan, J., Venkatachalam, S. (2020). Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science & Emerging Technologies, 62, 102347.
  • Sousa, G., Trifunovska, M., Antunes, M., Miranda, I., Moldão, M., Alves, V., Vidrih, R., Allen Lopes, P., Aparicio, L., Neves, M., Tecelão, C., Ferreira-Dias, S. (2021). Optimization of ultrasound-assisted extraction of bioactive compounds from Pelvetia canaliculata to sunflower oil. Foods, 10(8), 1732.
  • Sydor, M., Kurasiak-Popowska, D., Stuper-Szablewska, K., Rogoziński, T. (2022). Camelina sativa. Status quo and future perspectives. Industrial Crops and Products, 187, 115531.
  • Tekin, K., Akalın, M.K., Şeker, M.G. (2015). Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Industrial Crops and Products, 77, 954-960.
  • Terpinc, P., Polak, T., Makuc, D., Ulrih, N.P., Abramovič, H. (2012). The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chemistry, 131(2), 580-589.
  • Tian, Y., Xu, Z., Zheng, B., Lo, Y.M. (2013). Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrasonics Sonochemistry, 20(1), 202-208.
  • Tontul, S.A., Mutlu, C., Koç, A., Erbaş, M. (2018). Çiya tohumundan ultrason destekli yağ ekstraksiyonunun optimizasyonu. Gıda, 43(3), 393-402.
  • Vollmann, J., Eynck, C. (2015). Camelina as a sustainable oilseed crop: Contributions of plant breeding and genetic engineering. Biotechnology Journal, 10(4), 525-535.
  • Wang, Z., Fang, R., Guo, H. (2020). Advances in ultrasonic production units for enhanced oil recovery in China. Ultrasonics Sonochemistry, 60, 104791.
  • Zhong, J., Wang, Y., Yang, R., Liu, X., Yang, Q., Qin, X. (2018). The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Industrial Crops and Products, 120, 1-10.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Ceren Mutlu 0000-0003-4943-2798

Fatma Korkmaz 0000-0002-6834-4833

Project Number Yok
Publication Date June 16, 2023
Published in Issue Year 2023

Cite

APA Mutlu, C., & Korkmaz, F. (2023). ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ. Gıda, 48(3), 627-640. https://doi.org/10.15237/gida.GD23020
AMA Mutlu C, Korkmaz F. ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. June 2023;48(3):627-640. doi:10.15237/gida.GD23020
Chicago Mutlu, Ceren, and Fatma Korkmaz. “ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 48, no. 3 (June 2023): 627-40. https://doi.org/10.15237/gida.GD23020.
EndNote Mutlu C, Korkmaz F (June 1, 2023) ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ. Gıda 48 3 627–640.
IEEE C. Mutlu and F. Korkmaz, “ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ”, GIDA, vol. 48, no. 3, pp. 627–640, 2023, doi: 10.15237/gida.GD23020.
ISNAD Mutlu, Ceren - Korkmaz, Fatma. “ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda 48/3 (June 2023), 627-640. https://doi.org/10.15237/gida.GD23020.
JAMA Mutlu C, Korkmaz F. ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2023;48:627–640.
MLA Mutlu, Ceren and Fatma Korkmaz. “ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ”. Gıda, vol. 48, no. 3, 2023, pp. 627-40, doi:10.15237/gida.GD23020.
Vancouver Mutlu C, Korkmaz F. ULTRASONİKASYON VE SOKSALET YÖNTEMLERİYLE EKSTRAKTE EDİLEN KETENCİK TOHUM YAĞLARININ OKSİDATİF ÖZELLİKLERİNİN BELİRLENMESİ. GIDA. 2023;48(3):627-40.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/