Research Article
BibTex RIS Cite

COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION

Year 2023, , 510 - 525, 16.06.2023
https://doi.org/10.15237/gida.GD23024

Abstract

Due to its high price and consumer demand, virgin olive oil is an essential product vulnerable to deception for unfair economic gain. In our research, sunflower, palm olein and cottonseed oil were used as adulterants in different amounts for the preparation of adulterated samples. Sterol composition, the difference in theoretical and actual equivalent carbon number 42 triglycerides (ΔECN42) value and FTIR spectra were used to classify the adulterated and virgin olive oil samples. Decision trees on Δ7-stigmastenol and campesterol allowed the detection of 10% and higher adulteration. ΔECN42 ad FTIR provided good detection of the adulterated samples, even for the mixed oils at 1% concentration. However, the detecting performance of the FTIR decreased as the virgin olive oil sample set expanded with different seasons and varieties. Correct multivariate approach and FTIR data selection significantly influence the performance of FTIR spectroscopy for detecting VOO adulteration.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü ve TÜBİTAK

Project Number

22473 ve 120O872

Thanks

The authors thank the Ege University Office of Scientific Research Projects for funding this work under Project 22473. Also, the Geographically Indicated VOO samples used in this study were obtained via a previous scientific project (120O872) supported in the frame of the Short Term R&D Funding Program of The Scientific and Technological Research Council of Türkiye (TUBITAK).

References

  • Aloisi, I., Zoccali, M., Dugo, P., Tranchida, P. Q., Mondello, L. (2020). Fingerprinting of the unsaponifiable fraction of vegetable oils by using cryogenically-modulated comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry. Food Analytical Methods, 13, 1523-1529.
  • Anonymous (2017). Standard for olive oils and olive pomace. Codex Alimentarius Council. http://www.fao.org/fao-who-codexalimentarius/committees/committee-detail/es/?committee=CCFO. (Accessed 09 February 2023).
  • Anonymous (2017b). Determination of fatty acid methyl esters by gas chromatography. International Olive Council. International Olive Council Standard Method.
  • Anonymous (2017c). Determination of the difference between actual and theoretical content of triacyglycerols with ECN42. International Olive Council. International Olive Council Standard Method.
  • Anonymous (2022). Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and 2022/2104. European Commission. Official Journal of the European Union.
  • Anonymous (1999). Standard for Named Vegetable Oils. Codex Alimentarius. Codex Alimentarius Council. Codex Stan 210-1999.
  • Anushree, S., André, M., Guillaume, D., Frédéric, F. (2017). Stearic sunflower oil as a sustainable and healthy alternative to palm oil. A review. Agronomy for sustainable development, 37: 1-10. DOI: 10.1007/s13593-017-0426-x.
  • Aroca-Santos, R., Cancilla, J. C., Pérez-Pérez, A., Moral, A., Torrecilla, J. S. (2016). Quantifying binary and ternary mixtures of monovarietal extra virgin olive oils with UV–vis absorption and chemometrics. Sensors and Actuators B: Chemical, 234: 115-121. DOI: 10.1016/j.snb.2016.04.094.
  • Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., Aparicio-Ruiz, R. (2005). Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. Journal of agricultural and food chemistry, 53(16), 6201-6206. DOI: 10.1021/ jf050595n.
  • Balkan, B., Meral, S. (2017). Olive Oil Industry Dynamics: The Case of Turkey. 35th International Conference of the System Dynamics Society and 60th Anniversary of System Dynamics Celebration: 1–26.
  • https://www.researchgate.net/profile/Busra_Atamer/publication/320386514_Olive_Oil_Industry_Dynamics_The_Case_of_Turkey/links/59e0ffd4aca2724cbfdb6b69/Olive-Oil-Industry-Dynamics-The-Case-of-Turkey.pdf. (Accessed 9 February 2023).
  • Ben Hmida, R., Gargouri, B., Chtourou, F., Sevim, D., Bouaziz, M. (2022). Fatty acid and triacyglycerid as markers of virgin olive oil from mediterranean region: Traceability and chemometric authentication. European Food Research and Technology, 248(7), 1749-1764.
  • Bozdogan Konuskan, D., Mungan, B. (2016). Effects of Variety, Maturation and Growing Region on Chemical Properties, Fatty Acid and Sterol Compositions of Virgin Olive Oils. Journal of the American Oil Chemists' Society 93(11). Springer Berlin Heidelberg: 1499–1508. DOI: 10.1007/s11746-016-2904-8.
  • Chiavaro, E. (2014). Differential Scanning Calorimetry: Applicationsin Fat Andoil Technology. DOI: 10.1201/b17739. Çalışlar, S., Zorlusoy, E., Doğan, N. (2018). Palm Yağı ve Kanatlı Hayvan Beslemede Kullanımı. Selcuk Journal of Agricultural and Food Sciences 32(3): 575–586. DOI: 10.15316/sjafs.2018.139.
  • Dourtoglou, V. G., Dourtoglou, T., Antonopoulos, A., Stefanou, E., Lalas, S., Poulos, C. (2003). Detection of olive oil adulteration using principal component analysis applied on total and regio FA content. Journal of the American Oil Chemists' Society, 80(3): 203-208. DOI: 10.1007/s11746-003-0677-1.
  • Esteki, M., Simal-Gandara, J., Shahsavari, Z., Zandbaaf, S., Dashtaki, E., Vander Heyden, Y. (2018). A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food control, 93: 165-182. DOI: 10.1016/ j.foodcont.2018.06.015.
  • Filoda, P. F., Fetter, L. F., Fornasier, F., Schneider, R. D. C. D. S., Helfer, G. A., Tischer, B., da Costa, A. B. (2019). Fast methodology for identification of olive oil adulterated with a mix of different vegetable oils. Food Analytical Methods, 12(1): 293-304. Food Analytical Methods. Food Analytical Methods.
  • Green, H. S., Li, X., De Pra, M., Lovejoy, K. S., Steiner, F., Acworth, I. N., Wang, S. C. (2020). A rapid method for the detection of extra virgin olive oil adulteration using UHPLC-CAD profiling of triacylglycerols and PCA. Food Control, 107, 106773.
  • Gómez-Caravaca, A. M., Maggio, R. M., Cerretani, L. (2016). Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Analytica Chimica Acta, 913: 1-21. DOI: 10.1016/j.aca.2016.01.025.
  • Jabeur, H., Zribi, A., Makni, J., Rebai, A., Abdelhedi, R., Bouaziz, M. (2014). Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Journal of agricultural and food chemistry, 62(21): 4893-4904.
  • Lia, F., Morote Castellano, A., Zammit-Mangion, M., Farrugia, C. (2018) Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils. Journal of Food Science and Technology 55(6): Springer India: 2143–2151. DOI: 10.1007/s13197-018-3131-0.
  • Mariotti, M., Peri, C. (2014) The composition and nutritional properties of extra-virgin olive oil. In: Peri C (ed.) The Extra-Virgin Olive Oil Handbook, pp. 21–34.
  • Massart, D. L., Vandeginste, B. G., Buydens, L. M., Lewi, P. J., Smeyers-Verbeke, J., Jong, S. D. (1998). Handbook of chemometrics and qualimetrics. Elsevier Science Inc..
  • Milanez, K. D. T. M., Nóbrega, T. C. A., Nascimento, D. S., Insausti, M., Band, B. S. F., Pontes, M. J. C. (2017). Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. LWT-Food Science and Technology, 85: 9-15. DOI: 10.1016/j.lwt.2017.06.060.
  • Movasaghi, Z., Rehman, S., Rehman, I.U. (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews 43(2): 134–179. DOI: 10.1080/ 05704920701829043.
  • Nigri, S., Oumeddour, R. (2013) Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils. MATEC Web of Conferences 5: 04028. DOI: 10.1051/ matecconf/20130504028.
  • Ordoudi, S. A., Özdikicierler, O., Tsimidou, M. Z. (2022). Detection of ternary mixtures of virgin olive oil with canola, hazelnut or safflower oils via non-targeted ATR-FTIR fingerprinting and chemometrics. Food Control, 142, 109240. DOI: 10.1016/j.foodcont.2022.109240.
  • Öztürk, B., Ankan, A. Özdemir, D. (2010) Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy. Elsevier Inc. DOI: 10.1016/B978-0-12-374420-3.00050-4.
  • Pan, M., Sun, S., Zhou, Q., Chen, J. (2018). a simple and portable screening method for adulterated olive oils using the hand‐held FTIR spectrometer and chemometrics tools. Journal of food science, 83(6): 1605-1612. DOI: 10.1111/1750-3841.14190.
  • Saygın Gümüşkesen, A., Yemişçioğlu, F. (2010). Bitkisel Sıvı ve Katı Yağ Üretim Teknolojisi. İzmir: Sidas Medya. Squeo, G., Grassi, S., Paradiso, V. M., Alamprese, C., Caponio, F. (2019). FT-IR extra virgin olive oil classification based on ethyl ester content. Food Control, 102, 149-156.
  • Tsimidou, M. Z., Ordoudi, S. A., Nenadis, N., Mourtzinos, I. (2015). Food Fraud. 1st ed. Elsevier Ltd. DOI: 10.1016/B978-0-12-384947-2.00010-6.
  • Uncu, A. T., Uncu, A. O., Frary, A., Doganlar, S. (2017). Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food chemistry, 221: 1026-1033. DOI: 10.1016/j.foodchem.2016.11.059.
  • Uncu, O., Ozen, B., Tokatli, F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta 201(February). Elsevier B.V.: 65–73. DOI: 10.1016/j.talanta.2019.03.116.
  • Vitaglione, P., Savarese, M., Paduano, A., Scalfi, L., Fogliano, V., Sacchi, R. (2015). Healthy virgin olive oil: A matter of bitterness. Critical reviews in food science and nutrition, 55(13): 1808-1818. DOI: 10.1080/10408398.2012.708685.
  • Zhang, X., Qi, X., Zou, M., Liu, F. (2011). Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Analytical letters, 44(12): 2209-2220. DOI: 10.1080/ 00032719.2010.546030.

NATÜREL ZEYTİNYAĞI TAĞŞİŞİNİN TESPİTİNDE STEROL KOMPOZİSYONU, ECN42 FARKI VE FTIR SPEKTROSKOPİSİNİN KULLANIMININ KARŞILAŞTIRMALI OLARAK İNCELENMESİ

Year 2023, , 510 - 525, 16.06.2023
https://doi.org/10.15237/gida.GD23024

Abstract

Natürel zeytinyağı, yüksek tüketici talebi ve fiyatı nedeniyle haksız ekonomik kazanç sağlamak için yapılan hileli uygulamalara açık bir üründür. Araştırmamızda ayçiçek yağı, palm olein ve pamuk yağı natürel zeytinyağına farklı oranlarda karıştırılmıştır. Hazırlanan karışım yağların natürel zeytinyağından ayrımının incelenmesi için örneklerin sterol kompozisyonu, ΔECN42 değeri ve FTIR spektrumları kullanılmış ve sonuçlar karşılaştırılmıştır. Mevzuatta belirtilen Δ7-stigmastenol ve kampesterol üzerindeki karar ağaçları, %10 ve daha yüksek tağşişin saptanmasını mümkün kılmıştır. ΔECN42 ve FTIR spektroskopisi ile %1 konsantrasyonda hazırlanan karışım yağlar bile, natürel zeytinyağı numunelerinden ayrılmıştır. Ancak, natürel zeytinyağı numune sayısı, farklı mevsimler ve çeşitlerle genişletildiğinde, FTIR spektroskopisi ile gerçekleştirilen ayrımın hassasiyeti azalmış ve özellikle düşük konsantrasyonlu karışım yağların ayrımı zorlaşmıştır. Doğru çok değişkenli yaklaşım ve FTIR veri seçimi, natürel zeytinyağı tağşişini saptamak için FTIR spektroskopisinin performansını önemli ölçüde etkilemektedir.

Project Number

22473 ve 120O872

References

  • Aloisi, I., Zoccali, M., Dugo, P., Tranchida, P. Q., Mondello, L. (2020). Fingerprinting of the unsaponifiable fraction of vegetable oils by using cryogenically-modulated comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry. Food Analytical Methods, 13, 1523-1529.
  • Anonymous (2017). Standard for olive oils and olive pomace. Codex Alimentarius Council. http://www.fao.org/fao-who-codexalimentarius/committees/committee-detail/es/?committee=CCFO. (Accessed 09 February 2023).
  • Anonymous (2017b). Determination of fatty acid methyl esters by gas chromatography. International Olive Council. International Olive Council Standard Method.
  • Anonymous (2017c). Determination of the difference between actual and theoretical content of triacyglycerols with ECN42. International Olive Council. International Olive Council Standard Method.
  • Anonymous (2022). Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil, and repealing Commission Regulation (EEC) No 2568/91 and 2022/2104. European Commission. Official Journal of the European Union.
  • Anonymous (1999). Standard for Named Vegetable Oils. Codex Alimentarius. Codex Alimentarius Council. Codex Stan 210-1999.
  • Anushree, S., André, M., Guillaume, D., Frédéric, F. (2017). Stearic sunflower oil as a sustainable and healthy alternative to palm oil. A review. Agronomy for sustainable development, 37: 1-10. DOI: 10.1007/s13593-017-0426-x.
  • Aroca-Santos, R., Cancilla, J. C., Pérez-Pérez, A., Moral, A., Torrecilla, J. S. (2016). Quantifying binary and ternary mixtures of monovarietal extra virgin olive oils with UV–vis absorption and chemometrics. Sensors and Actuators B: Chemical, 234: 115-121. DOI: 10.1016/j.snb.2016.04.094.
  • Baeten, V., Fernández Pierna, J. A., Dardenne, P., Meurens, M., García-González, D. L., Aparicio-Ruiz, R. (2005). Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. Journal of agricultural and food chemistry, 53(16), 6201-6206. DOI: 10.1021/ jf050595n.
  • Balkan, B., Meral, S. (2017). Olive Oil Industry Dynamics: The Case of Turkey. 35th International Conference of the System Dynamics Society and 60th Anniversary of System Dynamics Celebration: 1–26.
  • https://www.researchgate.net/profile/Busra_Atamer/publication/320386514_Olive_Oil_Industry_Dynamics_The_Case_of_Turkey/links/59e0ffd4aca2724cbfdb6b69/Olive-Oil-Industry-Dynamics-The-Case-of-Turkey.pdf. (Accessed 9 February 2023).
  • Ben Hmida, R., Gargouri, B., Chtourou, F., Sevim, D., Bouaziz, M. (2022). Fatty acid and triacyglycerid as markers of virgin olive oil from mediterranean region: Traceability and chemometric authentication. European Food Research and Technology, 248(7), 1749-1764.
  • Bozdogan Konuskan, D., Mungan, B. (2016). Effects of Variety, Maturation and Growing Region on Chemical Properties, Fatty Acid and Sterol Compositions of Virgin Olive Oils. Journal of the American Oil Chemists' Society 93(11). Springer Berlin Heidelberg: 1499–1508. DOI: 10.1007/s11746-016-2904-8.
  • Chiavaro, E. (2014). Differential Scanning Calorimetry: Applicationsin Fat Andoil Technology. DOI: 10.1201/b17739. Çalışlar, S., Zorlusoy, E., Doğan, N. (2018). Palm Yağı ve Kanatlı Hayvan Beslemede Kullanımı. Selcuk Journal of Agricultural and Food Sciences 32(3): 575–586. DOI: 10.15316/sjafs.2018.139.
  • Dourtoglou, V. G., Dourtoglou, T., Antonopoulos, A., Stefanou, E., Lalas, S., Poulos, C. (2003). Detection of olive oil adulteration using principal component analysis applied on total and regio FA content. Journal of the American Oil Chemists' Society, 80(3): 203-208. DOI: 10.1007/s11746-003-0677-1.
  • Esteki, M., Simal-Gandara, J., Shahsavari, Z., Zandbaaf, S., Dashtaki, E., Vander Heyden, Y. (2018). A review on the application of chromatographic methods, coupled to chemometrics, for food authentication. Food control, 93: 165-182. DOI: 10.1016/ j.foodcont.2018.06.015.
  • Filoda, P. F., Fetter, L. F., Fornasier, F., Schneider, R. D. C. D. S., Helfer, G. A., Tischer, B., da Costa, A. B. (2019). Fast methodology for identification of olive oil adulterated with a mix of different vegetable oils. Food Analytical Methods, 12(1): 293-304. Food Analytical Methods. Food Analytical Methods.
  • Green, H. S., Li, X., De Pra, M., Lovejoy, K. S., Steiner, F., Acworth, I. N., Wang, S. C. (2020). A rapid method for the detection of extra virgin olive oil adulteration using UHPLC-CAD profiling of triacylglycerols and PCA. Food Control, 107, 106773.
  • Gómez-Caravaca, A. M., Maggio, R. M., Cerretani, L. (2016). Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Analytica Chimica Acta, 913: 1-21. DOI: 10.1016/j.aca.2016.01.025.
  • Jabeur, H., Zribi, A., Makni, J., Rebai, A., Abdelhedi, R., Bouaziz, M. (2014). Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. Journal of agricultural and food chemistry, 62(21): 4893-4904.
  • Lia, F., Morote Castellano, A., Zammit-Mangion, M., Farrugia, C. (2018) Application of fluorescence spectroscopy and chemometric models for the detection of vegetable oil adulterants in Maltese virgin olive oils. Journal of Food Science and Technology 55(6): Springer India: 2143–2151. DOI: 10.1007/s13197-018-3131-0.
  • Mariotti, M., Peri, C. (2014) The composition and nutritional properties of extra-virgin olive oil. In: Peri C (ed.) The Extra-Virgin Olive Oil Handbook, pp. 21–34.
  • Massart, D. L., Vandeginste, B. G., Buydens, L. M., Lewi, P. J., Smeyers-Verbeke, J., Jong, S. D. (1998). Handbook of chemometrics and qualimetrics. Elsevier Science Inc..
  • Milanez, K. D. T. M., Nóbrega, T. C. A., Nascimento, D. S., Insausti, M., Band, B. S. F., Pontes, M. J. C. (2017). Multivariate modeling for detecting adulteration of extra virgin olive oil with soybean oil using fluorescence and UV–Vis spectroscopies: A preliminary approach. LWT-Food Science and Technology, 85: 9-15. DOI: 10.1016/j.lwt.2017.06.060.
  • Movasaghi, Z., Rehman, S., Rehman, I.U. (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Applied Spectroscopy Reviews 43(2): 134–179. DOI: 10.1080/ 05704920701829043.
  • Nigri, S., Oumeddour, R. (2013) Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils. MATEC Web of Conferences 5: 04028. DOI: 10.1051/ matecconf/20130504028.
  • Ordoudi, S. A., Özdikicierler, O., Tsimidou, M. Z. (2022). Detection of ternary mixtures of virgin olive oil with canola, hazelnut or safflower oils via non-targeted ATR-FTIR fingerprinting and chemometrics. Food Control, 142, 109240. DOI: 10.1016/j.foodcont.2022.109240.
  • Öztürk, B., Ankan, A. Özdemir, D. (2010) Olive Oil Adulteration with Sunflower and Corn Oil Using Molecular Fluorescence Spectroscopy. Elsevier Inc. DOI: 10.1016/B978-0-12-374420-3.00050-4.
  • Pan, M., Sun, S., Zhou, Q., Chen, J. (2018). a simple and portable screening method for adulterated olive oils using the hand‐held FTIR spectrometer and chemometrics tools. Journal of food science, 83(6): 1605-1612. DOI: 10.1111/1750-3841.14190.
  • Saygın Gümüşkesen, A., Yemişçioğlu, F. (2010). Bitkisel Sıvı ve Katı Yağ Üretim Teknolojisi. İzmir: Sidas Medya. Squeo, G., Grassi, S., Paradiso, V. M., Alamprese, C., Caponio, F. (2019). FT-IR extra virgin olive oil classification based on ethyl ester content. Food Control, 102, 149-156.
  • Tsimidou, M. Z., Ordoudi, S. A., Nenadis, N., Mourtzinos, I. (2015). Food Fraud. 1st ed. Elsevier Ltd. DOI: 10.1016/B978-0-12-384947-2.00010-6.
  • Uncu, A. T., Uncu, A. O., Frary, A., Doganlar, S. (2017). Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food chemistry, 221: 1026-1033. DOI: 10.1016/j.foodchem.2016.11.059.
  • Uncu, O., Ozen, B., Tokatli, F. (2019). Use of FTIR and UV–visible spectroscopy in determination of chemical characteristics of olive oils. Talanta 201(February). Elsevier B.V.: 65–73. DOI: 10.1016/j.talanta.2019.03.116.
  • Vitaglione, P., Savarese, M., Paduano, A., Scalfi, L., Fogliano, V., Sacchi, R. (2015). Healthy virgin olive oil: A matter of bitterness. Critical reviews in food science and nutrition, 55(13): 1808-1818. DOI: 10.1080/10408398.2012.708685.
  • Zhang, X., Qi, X., Zou, M., Liu, F. (2011). Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Analytical letters, 44(12): 2209-2220. DOI: 10.1080/ 00032719.2010.546030.
There are 35 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Ebru Karacan 0000-0001-7144-8820

Onur Özdikicierler 0000-0002-8959-4794

Fahri Yemişçioğlu 0000-0003-3957-9921

Project Number 22473 ve 120O872
Publication Date June 16, 2023
Published in Issue Year 2023

Cite

APA Karacan, E., Özdikicierler, O., & Yemişçioğlu, F. (2023). COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION. Gıda, 48(3), 510-525. https://doi.org/10.15237/gida.GD23024
AMA Karacan E, Özdikicierler O, Yemişçioğlu F. COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION. GIDA. June 2023;48(3):510-525. doi:10.15237/gida.GD23024
Chicago Karacan, Ebru, Onur Özdikicierler, and Fahri Yemişçioğlu. “COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION”. Gıda 48, no. 3 (June 2023): 510-25. https://doi.org/10.15237/gida.GD23024.
EndNote Karacan E, Özdikicierler O, Yemişçioğlu F (June 1, 2023) COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION. Gıda 48 3 510–525.
IEEE E. Karacan, O. Özdikicierler, and F. Yemişçioğlu, “COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION”, GIDA, vol. 48, no. 3, pp. 510–525, 2023, doi: 10.15237/gida.GD23024.
ISNAD Karacan, Ebru et al. “COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION”. Gıda 48/3 (June 2023), 510-525. https://doi.org/10.15237/gida.GD23024.
JAMA Karacan E, Özdikicierler O, Yemişçioğlu F. COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION. GIDA. 2023;48:510–525.
MLA Karacan, Ebru et al. “COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION”. Gıda, vol. 48, no. 3, 2023, pp. 510-25, doi:10.15237/gida.GD23024.
Vancouver Karacan E, Özdikicierler O, Yemişçioğlu F. COMPARATIVE INVESTIGATION OF THE USE OF STEROL COMPOSITION, ECN42 DIFFERENCE AND FTIR SPECTROSCOPY IN THE DETERMINATION OF VIRGIN OLIVE OIL ADULTERATION. GIDA. 2023;48(3):510-25.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/