Research Article
BibTex RIS Cite

SİRKE, KEKİK SUYU VE vB_EcoM-P34 FAJININ MARULDA Escherichia coli O157: H7'nin İNHİBE EDİLMESİ ÜZERİNE ETKİNLİĞİ

Year 2023, , 772 - 783, 15.08.2023
https://doi.org/10.15237/gida.GD23044

Abstract

Bu çalışmada kekik suyu, elma sirkesi, üzüm sirkesi ve vB_EcoM-P34 fajının Escherichia coli O157:H7 ATCC 35150'ye karşı antibakteriyel aktivitesi ve marulda aynı bakteriye karşı dekontaminasyon için kullanılma potansiyeli incelenmiştir. Marul örnekleri, 5.66 log düzeyindeki E. coli O157:H7 ile inoküle edildikten 30 dakika sonra kekik suyu, elma sirkesi, üzüm sirkesi (%10, %25, %50), vB_EcoM-P34 fajı (108 POB/mL) ve musluk suyu ile yıkanmıştır. Konsantrasyona bağlı olarak elma sirkesi, üzüm sirkesi ve kekik suyu maruldaki bakteri sayısını 0.78 ve 2.69 log arasında azaltmıştır. Bakteri sayısında en etkili azalma 3.23 log olarak vB_EcoM-P34 fajı ile muamele sonucu elde edilmiştir. Marulda dekontaminasyon için bakteriyofaj uygulaması en uygun yöntem olarak belirlenirken bunu sırasıyla %50 konsantrasyonda hazırlanan üzüm sirkesi, elma sirkesi ve kekik suyu izlemiştir. Fakat yüksek konsantrasyonda uygulanan sirkeler ve kekik suyu marulda keskin bir koku ve hafif düzeyde renk açılmasına neden olmuştur.

References

  • Albayrak, S., Aksoy, A. (2012). Essential oil composition and in vitro antioxidant and antimicrobial activities of Thymus cappadocicus boiss. Journal of Food Processing and Preservation, 37: 605-614. doi:10.1111/j.1745-4549.2012.00694.x
  • Benli, M., Yiğit, N. (2005). Ülkemizde yaygın kullanımı olan kekik (Thymus vulgaris) bitkisinin antimikrobiyal aktivitesi. Orlab On-Line Mikrobiyoloji Dergisi, 3(8): 1-8.
  • Bjornsdottir, K., Breidt, Jr.F., McFeeters, R.F. (2006). Protective effects of organic acids on survival of Escherichia coli O157:H7 in acidic environments. Applied and Environmental Microbiology, 72(1): 660–664. doi: 10.1128/AEM.72.1.660-664.2006
  • Boyacioglu, O., Sharma, M., Sulakvelidze, A., Goktepe, I. (2013). Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens-using a bacteriophage cocktail in combination with modified atmosphere packaging. Bacteriophage, 3(1): e24620, 2013. doi: 10.4161/bact.24620
  • Boydağ, İ. (2004). Origanum onites L. (Kekik) yağ altı suyunun uçucu bileşikleri. Anadolu Üniversitesi Sağlık Bilimleri Enstitüsü Doktora Tezi, Eskişehir, Türkiye, 175s.
  • Carter, C.D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A.M., Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2(3):178-185. doi: 10.4161/ bact.22825
  • Chang, J.M., Fang, T.J. (2007). Survival of Escherichia coli O157:H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157:H7. Food Microbiology, 24:745–751. doi:10.1016/j.fm.2007.03.005
  • Chinchkar, A.V., Singh, A., Sing, S.V., Acharya, A.M., Kamble, M.G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46:e16495. doi: doi.org/ 10.1111/jfpp.16495
  • Duc, M.H., Son, M.H., Yi, H.P.S., Sato, J., Ngan, P.H., Masuda, Y., Honjoh, K., Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Research International 131. https://doi.org/10.1016/j.foodres.2020.108977
  • Elhan, S. (2014). Farklı Sirke Çeşitleri Ve Konsantrasyonlarının Salata Bileşenlerinin Dezenfeksiyonunda Kullanım İmkanlarının Araştırılması. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Erzurum, Türkiye, 57 s.
  • Elias, S.O., Noronha, T.B., Tondo, E.C. (2019). Salmonella spp. and Escherichia coli O157:H7 prevalence and levels on lettuce: A systematic review and meta-analysis. Food Microbiology, 84.doi: https://doi.org/10.1016/j.fm.2019.05.001
  • Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli 0157:H7. Journal of Food Protection, 61(8): 953-959.
  • Ferguson, S., Roberts, C., Handy, E., Sharma, M. (2013). Lytic bacteriophages reduce Escherichia coli O157:H7 on fresh cut lettuce introduced through cross contamination. Bacteriophage, 3(1): e24323.
  • Gökırmaklı, Ç., Budak, H.N., Güzel-Seydim Z.B. (2019). Antimicrobial effect of vinegar. Turkish Journal of Agriculture – Food Science and Technology, 7(10): 1645-1650. doi: doi.org/10.24925/ turjaf.v7i10.1635-1640.2708
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., Hatab, S.R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9:1639. doi: 10.3389/fmicb. 2018.01639 9.
  • Gülmez, M., Oral, N., Sezer, Ç., Duman, B., Vatsansever, L. (2006). Satış yerlerinden alınan maydanoz örneklerinin kekik suyu ve sirke ile dekontaminasyonu. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 12(1): 41-47.
  • Guo, Y., Li, J., Islam, S., Yan, T., Zhou, Y., Liang, L., Connerton, I.F., Deng, K., Li, J. (2021). Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Research International, 147. doi: https://doi.org/10.1016/j.foodres.2021.110492
  • Kara, M., Assouguem, A., El Fadili, M., Benmessaoud, S., Alshawwa, S.Z., Al Kamaly, O., Saghrouchni, H., Zerhouni, A.R., Bahhou, J. (2022). Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules, 27: 770. doi: doi.org/10.3390/ molecules27030770
  • Lu, Y.T., Ma, Y., Wong, C.W.Y., Wang, S. (2022). Characterization and application of bacteriophages for the biocontrol of Shiga-toxin producing Escherichia coli in Romaine lettuce. Food Control, 140. doi: https://doi.org/10.1016/ j.foodcont.2022.109109
  • Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., Nabavi, S.F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 173: 339-347. doi: dx.doi.org/10.1016/j.foodchem.2014.10.042
  • Nthenge, A.K., Liu, S. (2019). Antimicrobial efficacy of household sanitizers against artificially inoculated Salmonella on ready-to-eat spinach (Spinacia oleracea). Journal of Consumer Protection and Food Safety, 14:105–112. doi: https://doi.org/10.1007/s00003-018-1201-x(0123
  • Ousaaid, D., Laaroussi, H., Bakour, M., Ennaji, H., Lyoussi, B., El Arabi, I. (2021). Antifungal and antibacterial activities of apple vinegar of different cultivars. International Journal of Microbiology, 6. doi: doi.org/10.1155/2021/6087671
  • Poimenidou, S.V., Bikouli, V.C., Gardeli, C., Mitsi, C., Tarantilis, P.A., Nychas, G.J., Panagiotis, N., Skandamis, P.N. (2016). Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce. International Journal of Food Microbiology, 220, 6–18. doi: dx.doi.org/10.1016/ j.ijfoodmicro.2015.12.013
  • Puligundla, P., Lim, S. (2022). Biocontrol approaches against Escherichia coli O157:H7 in foods. Foods, 11, 756. doi: doi.org/10.3390/foods11050756
  • Qureshi, W., Saeed, F., Ajaz, M., Rasool, S.A. (2022). In Vitro antimicrobial, antibiofilm and antiphage activity of thyme (Thymus vulgaris). Pakistan Journal of Botany, 54(3): 1121-1128. doi: dx.doi.org/10.30848/PJB2022-3(43) Sağdıç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT, 36, 467- 473. doi:10.1016/S0023-6438(03)00037-9
  • Santos, Y.O., Almeida, R.C.C., Guimarães, A.G., Almeida, P.F. (2009). Hygienic-sanitary quality of vegetables and evaluation of treatments for the elimination of indigenous E. coli and E. coli O157:H7 from the surface of leaves of lettuce (Lactuca sativa L.). Ciência e Tecnologia de Alimentos, 30(4): 1083-1089. doi: doi.org/10.1590/S0101-20612010000400038
  • Sarac, N., Ugur, A. (2008). Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. subspecies hirtum (Link) Ietswaart, Satureja thymbra L., and Thymus cilicicus Boiss. & Bal. growing wild in Turkey. Journal of Medical Food, 11(3): 568–573. doi: 10.1089/jmf.2007.0520
  • Şengün, İ.Y., Karapınar, M. (2006). Bazı sebzelere inokule edilen Salmonella typhimuriuım’un limon suyu ve sirke ile inaktivasyonu. Gıda, 31(3): 161-167.
  • Sethi, S., Nayak, S.L., Joshi, A., Sharma, R.R. (2020). Sanitizers for fresh-cut fruits and vegetables. In: Fresh –Cut Fruits and Vegetables, Siddiqui, M.W. (chief ed.), Academic Press, the UK, pp. 99-119. https://doi.org/10.1016/B978-0-12-816184-5.00005-7
  • Singh, N., Singh, R.K., Bhunia, A.K., Stroshine, R.L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. LWT, 35: 720–729. doi:10.1006/ fstl.2002.0933
  • Singha, S., Thomas, R., Viswakarma, J.N., Gupta, V.K. (2023). Foodborne illnesses of Escherichia coli O157 origin and its control. J Food Sci Technol, 60(4):1274–1283. doi: https://doi.org/10.1007/s13197-022-05381-9
  • Strauch, E., Hammerl, J.A., Hertwig, S. (2007). Bacteriophages: new tools for safer food? Journal of Consumer Protection and Food Safety, 2: 138-143. doi: 10.1007/s00003-007-0188-5
  • Svircev, A., Roach, D., Castle, A. (2018). Framing the Future with Bacteriophages in Agriculture. Viruses, 10, 218. doi:10.3390/v10050218
  • Turner, K., Moua, C.N., Hajmeer, M., Barnes, A., Needham, M. (2019). Overview of Leafy Greens–Related Food Safety Incidents with a California Link: 1996 to 2016. Journal of Food Protection, Vol. 82(3), 405–414. doi:10.4315/0362-028X.JFP-18-316
  • Uyttendaele, M., Neyts, K., Vanderswalmen, H., Notebaert, E., Debevere, J. (2004). Control of Aeromonas on minimally processed vegetable by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. International Journal of Food Microbiology, 90: 263– 271. doi:10.1016/S0168-1605(03)00309-X
  • Wang, Z., Zhao, X. (2022). The application and research progress of bacteriophages in food safety. Journal of Applied Microbiology: 133:2137–2147. doi: 10.1111/jam.15555
  • Wójcicki M., Swider, O., Gientka, I., Blazejak, S., Srednicka, P., Shymialevich, D., Cieslak, H., Wardaszka, A., Emanowicz, P., Sokolowska, B., Kubiak, E.J. (2023). Effectiveness of a phage cocktail as a potential biocontrol agent against saprophytic bacteria in ready-to-eat plant-based food. Viruses, 15, 172. doi: https://doi.org/10.3390/v15010172
  • Wu, F.M., Doyle, M.P., Beuchat, L.R., Wells, J.G., Mintz, E.D., Swaminathan, B. (2000). Fate of Shigella sonnei on parsley and methods of disinfection. J. Food Prot., 63, 568–572.
  • Yamaki, S., Yamazaki, K., Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372. doi: https://doi.org/10.1016/j.ijfoodmicro.2022.109680
  • Yildirim, Z., Sakin, T., Akçelik, M., Akçelik, N. (2021). Identification and characterization of lytic bacteriophages specific to foodborne pathogenic Escherichia coli O157:H7. Food Science and Technology International, 27(1):56-72. doi: 10.1177/1082013220929836.
  • Yıldırım, Z., Sakin. T. Çoban, F. (2018). Isolation of anti-Escherichia coli O157:H7 bacteriophages and determination of their host ranges. Turkish Journal of Agriculture–Food Science and Technology 6: 1200–1208.
  • Zhang, H.Z., Shu, M., Yang, W.Y., Pan, H., Tang, M.X., Zhao, Y.Y., Zhong, C., Wu, G.P. (2023). Isolation and characterization of a novel Salmonella bacteriophage JNwz02 capable of lysing Escherichia coli O157:H7 and its antibacterial application in foods. LWT, 173. doi: https://doi.org/10.1016/j.lwt.2022.114251

EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE

Year 2023, , 772 - 783, 15.08.2023
https://doi.org/10.15237/gida.GD23044

Abstract

The antibacterial activity of thyme water, apple vinegar, grape vinegar, and vB_EcoM-P34 phage against Escherichia coli O157:H7 ATCC 35150 and their potential to be utilized for decontamination on lettuce were examined in this study. Lettuce samples were treated with thyme water, apple or grape vinegar solutions (10, 25, 50%), vB_EcoM-P34 phage (about 108 PFU/mL) or tap water for 30 min after inoculation of lettuce with E. coli O157:H7 at the level of 5.66 log. Depending on the concentration, vinegars and thyme water reduced the bacterial count in lettuce by between 0.78 and 2.69 logs. The most effective reduction was achieved by treatment with vB_EcoM-P34 at 3.23 log. Bacteriophage was the most suitable method for decontamination, followed by grape vinegar, apple vinegar, and thyme water at 50%. However, high concentrations of vinegars and thyme water caused a sharp odor and a slight lightening in the color of the lettuce.

References

  • Albayrak, S., Aksoy, A. (2012). Essential oil composition and in vitro antioxidant and antimicrobial activities of Thymus cappadocicus boiss. Journal of Food Processing and Preservation, 37: 605-614. doi:10.1111/j.1745-4549.2012.00694.x
  • Benli, M., Yiğit, N. (2005). Ülkemizde yaygın kullanımı olan kekik (Thymus vulgaris) bitkisinin antimikrobiyal aktivitesi. Orlab On-Line Mikrobiyoloji Dergisi, 3(8): 1-8.
  • Bjornsdottir, K., Breidt, Jr.F., McFeeters, R.F. (2006). Protective effects of organic acids on survival of Escherichia coli O157:H7 in acidic environments. Applied and Environmental Microbiology, 72(1): 660–664. doi: 10.1128/AEM.72.1.660-664.2006
  • Boyacioglu, O., Sharma, M., Sulakvelidze, A., Goktepe, I. (2013). Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens-using a bacteriophage cocktail in combination with modified atmosphere packaging. Bacteriophage, 3(1): e24620, 2013. doi: 10.4161/bact.24620
  • Boydağ, İ. (2004). Origanum onites L. (Kekik) yağ altı suyunun uçucu bileşikleri. Anadolu Üniversitesi Sağlık Bilimleri Enstitüsü Doktora Tezi, Eskişehir, Türkiye, 175s.
  • Carter, C.D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A.M., Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2(3):178-185. doi: 10.4161/ bact.22825
  • Chang, J.M., Fang, T.J. (2007). Survival of Escherichia coli O157:H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157:H7. Food Microbiology, 24:745–751. doi:10.1016/j.fm.2007.03.005
  • Chinchkar, A.V., Singh, A., Sing, S.V., Acharya, A.M., Kamble, M.G. (2022). Potential sanitizers and disinfectants for fresh fruits and vegetables: A comprehensive review. Journal of Food Processing and Preservation, 46:e16495. doi: doi.org/ 10.1111/jfpp.16495
  • Duc, M.H., Son, M.H., Yi, H.P.S., Sato, J., Ngan, P.H., Masuda, Y., Honjoh, K., Miyamoto, T. (2020). Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices. Food Research International 131. https://doi.org/10.1016/j.foodres.2020.108977
  • Elhan, S. (2014). Farklı Sirke Çeşitleri Ve Konsantrasyonlarının Salata Bileşenlerinin Dezenfeksiyonunda Kullanım İmkanlarının Araştırılması. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Erzurum, Türkiye, 57 s.
  • Elias, S.O., Noronha, T.B., Tondo, E.C. (2019). Salmonella spp. and Escherichia coli O157:H7 prevalence and levels on lettuce: A systematic review and meta-analysis. Food Microbiology, 84.doi: https://doi.org/10.1016/j.fm.2019.05.001
  • Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli 0157:H7. Journal of Food Protection, 61(8): 953-959.
  • Ferguson, S., Roberts, C., Handy, E., Sharma, M. (2013). Lytic bacteriophages reduce Escherichia coli O157:H7 on fresh cut lettuce introduced through cross contamination. Bacteriophage, 3(1): e24323.
  • Gökırmaklı, Ç., Budak, H.N., Güzel-Seydim Z.B. (2019). Antimicrobial effect of vinegar. Turkish Journal of Agriculture – Food Science and Technology, 7(10): 1645-1650. doi: doi.org/10.24925/ turjaf.v7i10.1635-1640.2708
  • Gonelimali, F.D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., Hatab, S.R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in Microbiology, 9:1639. doi: 10.3389/fmicb. 2018.01639 9.
  • Gülmez, M., Oral, N., Sezer, Ç., Duman, B., Vatsansever, L. (2006). Satış yerlerinden alınan maydanoz örneklerinin kekik suyu ve sirke ile dekontaminasyonu. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 12(1): 41-47.
  • Guo, Y., Li, J., Islam, S., Yan, T., Zhou, Y., Liang, L., Connerton, I.F., Deng, K., Li, J. (2021). Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Research International, 147. doi: https://doi.org/10.1016/j.foodres.2021.110492
  • Kara, M., Assouguem, A., El Fadili, M., Benmessaoud, S., Alshawwa, S.Z., Al Kamaly, O., Saghrouchni, H., Zerhouni, A.R., Bahhou, J. (2022). Contribution to the evaluation of physicochemical properties, total phenolic content, antioxidant potential, and antimicrobial activity of vinegar commercialized in Morocco. Molecules, 27: 770. doi: doi.org/10.3390/ molecules27030770
  • Lu, Y.T., Ma, Y., Wong, C.W.Y., Wang, S. (2022). Characterization and application of bacteriophages for the biocontrol of Shiga-toxin producing Escherichia coli in Romaine lettuce. Food Control, 140. doi: https://doi.org/10.1016/ j.foodcont.2022.109109
  • Nabavi, S.M., Marchese, A., Izadi, M., Curti, V., Daglia, M., Nabavi, S.F. (2015). Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chemistry, 173: 339-347. doi: dx.doi.org/10.1016/j.foodchem.2014.10.042
  • Nthenge, A.K., Liu, S. (2019). Antimicrobial efficacy of household sanitizers against artificially inoculated Salmonella on ready-to-eat spinach (Spinacia oleracea). Journal of Consumer Protection and Food Safety, 14:105–112. doi: https://doi.org/10.1007/s00003-018-1201-x(0123
  • Ousaaid, D., Laaroussi, H., Bakour, M., Ennaji, H., Lyoussi, B., El Arabi, I. (2021). Antifungal and antibacterial activities of apple vinegar of different cultivars. International Journal of Microbiology, 6. doi: doi.org/10.1155/2021/6087671
  • Poimenidou, S.V., Bikouli, V.C., Gardeli, C., Mitsi, C., Tarantilis, P.A., Nychas, G.J., Panagiotis, N., Skandamis, P.N. (2016). Effect of single or combined chemical and natural antimicrobial interventions on Escherichia coli O157:H7, total microbiota and color of packaged spinach and lettuce. International Journal of Food Microbiology, 220, 6–18. doi: dx.doi.org/10.1016/ j.ijfoodmicro.2015.12.013
  • Puligundla, P., Lim, S. (2022). Biocontrol approaches against Escherichia coli O157:H7 in foods. Foods, 11, 756. doi: doi.org/10.3390/foods11050756
  • Qureshi, W., Saeed, F., Ajaz, M., Rasool, S.A. (2022). In Vitro antimicrobial, antibiofilm and antiphage activity of thyme (Thymus vulgaris). Pakistan Journal of Botany, 54(3): 1121-1128. doi: dx.doi.org/10.30848/PJB2022-3(43) Sağdıç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT, 36, 467- 473. doi:10.1016/S0023-6438(03)00037-9
  • Santos, Y.O., Almeida, R.C.C., Guimarães, A.G., Almeida, P.F. (2009). Hygienic-sanitary quality of vegetables and evaluation of treatments for the elimination of indigenous E. coli and E. coli O157:H7 from the surface of leaves of lettuce (Lactuca sativa L.). Ciência e Tecnologia de Alimentos, 30(4): 1083-1089. doi: doi.org/10.1590/S0101-20612010000400038
  • Sarac, N., Ugur, A. (2008). Antimicrobial activities of the essential oils of Origanum onites L., Origanum vulgare L. subspecies hirtum (Link) Ietswaart, Satureja thymbra L., and Thymus cilicicus Boiss. & Bal. growing wild in Turkey. Journal of Medical Food, 11(3): 568–573. doi: 10.1089/jmf.2007.0520
  • Şengün, İ.Y., Karapınar, M. (2006). Bazı sebzelere inokule edilen Salmonella typhimuriuım’un limon suyu ve sirke ile inaktivasyonu. Gıda, 31(3): 161-167.
  • Sethi, S., Nayak, S.L., Joshi, A., Sharma, R.R. (2020). Sanitizers for fresh-cut fruits and vegetables. In: Fresh –Cut Fruits and Vegetables, Siddiqui, M.W. (chief ed.), Academic Press, the UK, pp. 99-119. https://doi.org/10.1016/B978-0-12-816184-5.00005-7
  • Singh, N., Singh, R.K., Bhunia, A.K., Stroshine, R.L. (2002). Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. LWT, 35: 720–729. doi:10.1006/ fstl.2002.0933
  • Singha, S., Thomas, R., Viswakarma, J.N., Gupta, V.K. (2023). Foodborne illnesses of Escherichia coli O157 origin and its control. J Food Sci Technol, 60(4):1274–1283. doi: https://doi.org/10.1007/s13197-022-05381-9
  • Strauch, E., Hammerl, J.A., Hertwig, S. (2007). Bacteriophages: new tools for safer food? Journal of Consumer Protection and Food Safety, 2: 138-143. doi: 10.1007/s00003-007-0188-5
  • Svircev, A., Roach, D., Castle, A. (2018). Framing the Future with Bacteriophages in Agriculture. Viruses, 10, 218. doi:10.3390/v10050218
  • Turner, K., Moua, C.N., Hajmeer, M., Barnes, A., Needham, M. (2019). Overview of Leafy Greens–Related Food Safety Incidents with a California Link: 1996 to 2016. Journal of Food Protection, Vol. 82(3), 405–414. doi:10.4315/0362-028X.JFP-18-316
  • Uyttendaele, M., Neyts, K., Vanderswalmen, H., Notebaert, E., Debevere, J. (2004). Control of Aeromonas on minimally processed vegetable by decontamination with lactic acid, chlorinated water, or thyme essential oil solution. International Journal of Food Microbiology, 90: 263– 271. doi:10.1016/S0168-1605(03)00309-X
  • Wang, Z., Zhao, X. (2022). The application and research progress of bacteriophages in food safety. Journal of Applied Microbiology: 133:2137–2147. doi: 10.1111/jam.15555
  • Wójcicki M., Swider, O., Gientka, I., Blazejak, S., Srednicka, P., Shymialevich, D., Cieslak, H., Wardaszka, A., Emanowicz, P., Sokolowska, B., Kubiak, E.J. (2023). Effectiveness of a phage cocktail as a potential biocontrol agent against saprophytic bacteria in ready-to-eat plant-based food. Viruses, 15, 172. doi: https://doi.org/10.3390/v15010172
  • Wu, F.M., Doyle, M.P., Beuchat, L.R., Wells, J.G., Mintz, E.D., Swaminathan, B. (2000). Fate of Shigella sonnei on parsley and methods of disinfection. J. Food Prot., 63, 568–572.
  • Yamaki, S., Yamazaki, K., Kawai, Y. (2022). Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. International Journal of Food Microbiology, 372. doi: https://doi.org/10.1016/j.ijfoodmicro.2022.109680
  • Yildirim, Z., Sakin, T., Akçelik, M., Akçelik, N. (2021). Identification and characterization of lytic bacteriophages specific to foodborne pathogenic Escherichia coli O157:H7. Food Science and Technology International, 27(1):56-72. doi: 10.1177/1082013220929836.
  • Yıldırım, Z., Sakin. T. Çoban, F. (2018). Isolation of anti-Escherichia coli O157:H7 bacteriophages and determination of their host ranges. Turkish Journal of Agriculture–Food Science and Technology 6: 1200–1208.
  • Zhang, H.Z., Shu, M., Yang, W.Y., Pan, H., Tang, M.X., Zhao, Y.Y., Zhong, C., Wu, G.P. (2023). Isolation and characterization of a novel Salmonella bacteriophage JNwz02 capable of lysing Escherichia coli O157:H7 and its antibacterial application in foods. LWT, 173. doi: https://doi.org/10.1016/j.lwt.2022.114251
There are 42 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Tuba Sakin Şahin 0000-0002-0597-1872

Rabia Erol 0009-0005-0906-0944

Zeliha Yıldırım 0000-0002-6155-6921

Publication Date August 15, 2023
Published in Issue Year 2023

Cite

APA Sakin Şahin, T., Erol, R., & Yıldırım, Z. (2023). EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE. Gıda, 48(4), 772-783. https://doi.org/10.15237/gida.GD23044
AMA Sakin Şahin T, Erol R, Yıldırım Z. EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE. GIDA. August 2023;48(4):772-783. doi:10.15237/gida.GD23044
Chicago Sakin Şahin, Tuba, Rabia Erol, and Zeliha Yıldırım. “EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia Coli O157:H7 IN LETTUCE”. Gıda 48, no. 4 (August 2023): 772-83. https://doi.org/10.15237/gida.GD23044.
EndNote Sakin Şahin T, Erol R, Yıldırım Z (August 1, 2023) EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE. Gıda 48 4 772–783.
IEEE T. Sakin Şahin, R. Erol, and Z. Yıldırım, “EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE”, GIDA, vol. 48, no. 4, pp. 772–783, 2023, doi: 10.15237/gida.GD23044.
ISNAD Sakin Şahin, Tuba et al. “EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia Coli O157:H7 IN LETTUCE”. Gıda 48/4 (August 2023), 772-783. https://doi.org/10.15237/gida.GD23044.
JAMA Sakin Şahin T, Erol R, Yıldırım Z. EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE. GIDA. 2023;48:772–783.
MLA Sakin Şahin, Tuba et al. “EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia Coli O157:H7 IN LETTUCE”. Gıda, vol. 48, no. 4, 2023, pp. 772-83, doi:10.15237/gida.GD23044.
Vancouver Sakin Şahin T, Erol R, Yıldırım Z. EFFICACY OF VINEGAR, THYME WATER AND vB_EcoM-P34 PHAGE IN INHIBITING Escherichia coli O157:H7 IN LETTUCE. GIDA. 2023;48(4):772-83.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/