Research Article
BibTex RIS Cite

THE EFFECT OF PEA PROTEIN AND SPIRULINA ADDITION ON THE RHEOLOGICAL PROPERTIES OF BINARY HYDROGEL FORMS

Year 2024, , 903 - 919, 10.10.2024
https://doi.org/10.15237/gida.GD24079

Abstract

This study focused on the development and rheological properties of pectin-gelatin binary hydrogels based on pea protein and spirulina due to their high water content, low calories, and satiety benefits. According to rotational and oscillatory tests, the consistency coefficients were 25% and 20% higher in the 6P1B sample (6% pectin, 0.5% gelatin, and 1% pea protein) compared to the 6P1S sample (6% pectin, 0.5% gelatin, and 1% spirulina), respectively. The flow behavior index ranged from 0.22±0.01 to 0.29±0.02. Furthermore, the thermal stability of pea protein formulations outperformed those containing spirulina. Molecular docking analysis indicated that the binding energies between pectin-gelatin, pectin-spirulina, and pectin-pea protein were relatively stable and efficient, with values of -6.53, -7.85, and -8.30 kcal/mol, respectively. Pea protein and spirulina-based hydrogels show potential for use in 3D printing technology and as fat substitutes, and they can support the development of innovative food products with nutritional and functional properties.

References

  • Alavi, F., Ciftci, O. N. (2023). Superlight macroporous aerogels produced from cold-set egg white protein hydrogels show superior oil structuring capacity. Food Hydrocolloids, 136, 108180. https://doi.org/10.1016/ j.foodhyd.2022.108180
  • Anvari, M., Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum Arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60, 516–524. https://doi.org/10.1016/j.foodhyd.2016.04.028
  • Bernaerts, T. M., Gheysen, L., Foubert, I., Hendrickx, M. E., Van Loey, A. M. (2019). The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances, 37(8), 107419. https://doi.org/10.1016/j.biotechadv.2019.107419
  • Cai, W. D., Qiu, W. Y., Ding, Z. C., Wu, L. X., Yan, J. K. (2019). Conformational and rheological properties of a quaternary ammonium salt of curdlan. Food Chemistry, 280, 130-138. https://doi.org/10.1016/j.foodchem.2018.12.059
  • Cao, Y., Li, Z., Fan, X., Liu, M., Han, X., Huang, J., Xiong, Y. L. (2022). Multifaceted functionality of l-arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food Function, 13(3), 1336-1347. https://doi.org/10.1039/ D1FO03372G
  • Cebrián-Lloret, V., Martínez-Abad, A., López-Rubio, A., Martínez-Sanz, M. (2024). Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocolloids, 146, 109177. https://doi.org/10.1016/j.foodhyd.2023.109177
  • De Berardinis, L., Plazzotta, S., Manzocco, L. (2023). Optimising soy and pea protein gelation to obtain hydrogels intended as precursors of food-grade dried porous materials. Gels, 9(1), 62. https://doi.org/10.3390/gels9010062
  • dos Santos, M., da Rocha, D. A. V. F., Bernardinelli, O. D., Oliveira Júnior, F. D., de Sousa, D. G., Sabadini, E., Pollonio, M. A. R. (2022). Understanding the performance of plant protein concentrates as partial meat substitutes in hybrid meat emulsions. Foods, 11 (21), 3311. https://doi.org/10.3390/foods11213311
  • Ferreira de Freitas, R., Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm 8 (10), 1970–1981. doi:10.1039/c7md00381a
  • Ghanbari, M., Mortazavian, A. M., Ghasemi, J. B., Mohammadi, A., Hosseini, H. Neyestani, T. R. (2017). Formulation and development of a new prebiotic cereal-based dairy dessert: rheological, sensory and physical attributes. Food Science and Technology Research, 23(5), 637-649. DOI: 10.3136/fstr.23.637
  • Ghica, M. V., Hîrjău, M., Lupuleasa, D., Dinu-Pîrvu, C. E. (2016). Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules, 21(6), 786. https://doi.org/10.3390/molecules21060786
  • Gupta, B., Tummalapalli, M., Deopura, B. L., Alam, M. S. (2014). Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydrate polymers, 106, 312-318. https://doi.org/10.1016/ j.carbpol.2014.02.019
  • Hilal, A., Florowska, A., Wroniak, M. (2023). Binary hydrogels: Induction methods and recent application progress as food matrices for bioactive compounds delivery—A bibliometric review. Gels, 9(1), 68. https://doi.org/10.3390/ gels9010068
  • Hou, J. J., Guo, J., Wang, J. M., He, X. T., Yuan, Y., Yin, S. W., Yang, X. Q. (2015). Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure. Food Hydrocolloids, 50, 94-101. DOI: 10.1016/ j.foodhyd.2015.04.012
  • Ishwarya S, P., Nisha, P. (2022). Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science and Nutrition, 62 (16), 4393-4417. https://doi.org/ 10.1080/10408398.2021.1875394
  • Kan, X., Zhang, S., Kwok, E., Chu, Y., Chen, L., Zeng, X. (2024). Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. International Journal of Biological Macromolecules, 132878. https://doi.org/ 10.1016/j.ijbiomac.2024.132878
  • Klein, M., Poverenov, E. (2020). Natural biopolymer‐based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture, 100(6), 2337-2347. https://doi.org/10.1002/jsfa.10274
  • Koshenaj, K., Ferrari, G. (2024). A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers, 16(14), 1991. https://doi.org/10.3390/polym16141991
  • Lapomarda, A., Cerqueni, G., Geven, M. A., Chiesa, I., De Acutis, A., De Blasi, M., Vozzi, G. (2021). Physicochemical Characterization of Pectin‐Gelatin Biomaterial Formulations for 3D Bioprinting. Macromolecular Bioscience, 21(9), 2100168. https://doi.org/10.1002/ mabi.202100168
  • Lenie, M. D., Ahmadzadeh, S., Van Bockstaele, F., Ubeyitogullari, A. (2024). Development of a pH-responsive system based on starch and alginate-pectin hydrogels using coaxial 3D food printing. Food Hydrocolloids, 153, 109989. https://doi.org/10.1016/j.foodhyd.2024.109989
  • Li, C., Xu, Y., Zhang, Y., Shen, Y., Deng, X., Wang, F. (2024). Novel bigels based on walnut oil oleogel and chitosan hydrogel: Preparation, characterization, and application as food spread. International Journal of Biological Macromolecules, 260, 129530. https://doi.org/ 10.1016/j.ijbiomac.2024.129530
  • Liu, L., Tian, W., Chen, Μ., Huang, Y., Xiao, J. (2023). Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydrate Polymers, 312, 120765. DOI: 10.1016/j.carbpol.2023.120765
  • Martins, A. J., Silva, P., Maciel, F., Pastrana, L. M., Cunha, R. L., Cerqueira, M. A., Vicente, A. A. (2019). Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Research International, 116, 1298-1305. https://doi.org/10.1016/ j.foodres.2018.10.019
  • Melzener, L., Spaans, S., Hauck, N., Pötgens, A. J., Flack, J. E., Post, M. J., Doğan, A. (2023). Short-Stranded Zein Fibers for Muscle Tissue Engineering in Alginate-Based Composite Hydrogels. Gels, 9(11), 914. https://doi.org/ 10.3390/gels9110914
  • Mirzaei, A., Esmkhani, M., Zallaghi, M., Nezafat, Z., Javanshir, S. (2023). Biomedical and environmental applications of carrageenan-based hydrogels: a review. Journal of Polymers and the Environment, 31(5), 1679-1705. https://doi.org/ 10.1007/s10924-022-02726-5
  • Mo, Q., Huang, L., Sheng, Y., Wei, Z., Zhang, S., Li, Y., Xue, M. (2024). Crosslinking strategy and promotion role of cellulose as a composite hydrogel component for three-dimensional printing–A review. Food Hydrocolloids, 110079. https://doi.org/10.1016/j.foodhyd.2024.110079
  • Morris, G. A., Castile, J., Smith, A., Adams, G. G., Harding, S. E. (2010). The effect of different storage temperatures on the physical properties of pectin solutions and gels. Polymer Degradation and Stability, 95(12), 2670-2673. https://doi.org/10.1016/j.polymdegradstab.2010.07.013
  • Rosti, M. E., Takagi, S. (2021). Shear-thinning and shear-thickening emulsions in shear flows. Physics of Fluids, 33(8). https://doi.org/ 10.1063/5.0063180
  • Sahagún, M., Bravo-Núñez, Á., Báscones, G., Gómez, M. (2018). Influence of protein source on the characteristics of gluten-free layer cakes. LWT, 94, 50-56. https://doi.org/10.1016/ j.lwt.2018.04.014
  • Said, N. S., Olawuyi, I. F., Lee, W. Y. (2023). Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications. Gels, 9(9), 732. https://doi.org/10.3390/gels9090732
  • Sedighi, M., Shrestha, N., Mahmoudi, Z., Khademi, Z., Ghasempour, A., Dehghan, H., Shahbazi, M. A. (2023). Multifunctional self-assembled peptide hydrogels for biomedical applications. Polymers, 15(5), 1160. https://doi.org/10.3390/polym15051160
  • Shi, K., Wang, W., Sun, J., Jiang, C., Hao, J. (2024). A rapid one-step affinity purification of C-phycocyanin from Spirulina platensis. Journal of Chromatography A, 1720, 464801. DOI: 10.1016/j.chroma.2024.464801
  • Smith, S. O., Eilers, M., Song, D., Crocker, E., Ying, W., Groesbeek, M., Aimoto, S. (2002). Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer. Biophysical Journal, 82(5), 2476-2486. https://doi.org/10.1016/S0006-3495(02)75590-2
  • Stojkov, G., Niyazov, Z., Picchioni, F., Bose, R. K. (2021). Relationship between structure and rheology of hydrogels for various applications. Gels, 7(4), 255. DOI: 10.3390/gels7040255
  • Swe, M. T. H., Asavapichayont, P. (2018). Effect of silicone oil on the microstructure, gelation and rheological properties of sorbitan monostearate–sesame oil oleogels. Asian Journal of Pharmaceutical Sciences, 13(5), 485-497. https://doi.org/10.1016/j.ajps.2018.04.006
  • Tanwar, M., Gupta, R. K., Rani, A. (2024). Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Critical Reviews in Biotechnology, 44(2), 275-301. https://doi.org/ 10.1080/07388551.2022.2157702
  • Varela, M. S., Palacio, M. A., Navarro, A. S., Yamul, D. K. (2023). Structural and functional properties and digital image texture analysis of gelatin, pectin, and carrageenan gels with honey addition. Journal of Texture Studies, 54(5), 646-658. https://doi.org/10.1111/jtxs.12774
  • Wang, L., Zhang, H. J., Wang, X., Zhao, W., Yan, W., Zhang, F., You, X. (2023). Edible hydrogel from gelatin and alginate as functional low‐calorie noodle. Journal of Applied Polymer Science, 140 (2), e53281. https://doi.org/10.1002/app.53281
  • Wang, M., Yin, Z., Sun, W., Zhong, Q., Zhang, Y., Zeng, M. (2023b). Microalgae play a structuring role in food: Effect of spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocolloids, 136, 108244. https://doi.org/10.1016/ j.foodhyd.2022.108244
  • Woldeyes, M. A., Qi, W., Razinkov, V. I., Furst, E. M., Roberts, C. J. (2020). Temperature dependence of protein solution viscosity and protein–protein interactions: insights into the origins of high-viscosity protein solutions. Molecular Pharmaceutics, 17(12), 4473-4482. doi/10.1021/acs.molpharmaceut.0c00552
  • Wu, Y., Cui, W., Eskin, N. A. M., Goff, H. D. (2009). An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International, 42(8), 1141-1146. https://doi.org/ 10.1016/j.foodres.2009.05.015
  • Xu, S. Q., Du, Y. N., Zhang, Z. J., Yan, J. N., Sun, J. J., Zhang, L. C., Wu, H. T. (2024). Gel properties and interactions of hydrogels constructed with low acyl gellan gum and puerarin. Carbohydrate Polymers, 326, 121594. https://doi.org/10.1016/j.carbpol.2023.121594
  • Yan, J., Li, S., Chen, G., Ma, C., McClements, D. J., Liu, X., Liu, F. (2023). Formation, physicochemical properties, and comparison of heat-and enzyme-induced whey protein-gelatin composite hydrogels. Food Hydrocolloids, 137, 108384. https://doi.org/10.1016/ j.foodhyd.2022.108384
  • Yang, X., Li, A., Li, D., Guo, Y., Sun, L. (2021). Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends in Food Science and Technology, 109, 197-210. https://doi.org/ 10.1016/j.tifs.2021.01.002
  • Yin, L., Fu, S., Wu, R., Wei, S., Yi, J., Zhang, L. M., Yang, L. (2020). Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. International Journal of Biological Macromolecules, 164, 1124-1132. https://doi.org/10.1016/j.ijbiomac.2020.07.125
  • Yu Deng, H., Ang Zheng, Z., Xie, A. M., Lin Chen, Z., Cao, P. (2024). Preparation and performance characterization of temperature‐sensitive JP‐3 kerosene gel propellant. Propellants, Explosives, Pyrotechnics, 49(1), e202300156. https://doi.org/10.1002/ prep.202300156
  • Zha, F., Rao, J., Chen, B. (2021). Plant-based food hydrogels: Constitutive characteristics, formation, and modulation. Current Opinion in Colloid and Interface Science, 56, 101505. https://doi.org/ 10.1016/j.cocis.2021.101505
  • Zhang, D., Chen, D., Campanella, O. H. (2024). Effect of pH on the gelling properties of pea protein-pectin dispersions. Food Hydrocolloids, 151, 109731. https://doi.org/10.1016/ j.foodhyd.2024.109731
  • Zhang, D., Chen, D., Patel, B., Campanella, O. H. (2022)b. Pectin as a natural agent for reinforcement of pea protein gel. Carbohydrate Polymers, 298, 120038. https://doi.org/10.1016/ j.carbpol.2022.120038
  • Zhang, Q., Fan, W., Shi, Y., Tu, Z., Hu, Y., Zhang, J. (2023). Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: Multi-spectroscopy and molecular docking. LWT, 188, 115363. DOI: 10.1016/j.lwt.2023.115363
  • Zhang, X., Wang, C., Qi, Z., Zhao, R., Wang, C., Zhang, T. (2022). Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Research International, 160, 111713. https://doi.org/ 10.1016/j.foodres.2022.111713
  • Zhou, M., Bi, J., Chen, J., Wang, R., Richel, A. (2021). Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocolloids, 112, 106350. https://doi.org/ 10.1016/j.foodhyd.2020.106350

BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ

Year 2024, , 903 - 919, 10.10.2024
https://doi.org/10.15237/gida.GD24079

Abstract

Bu çalışma, bezelye proteini ve spirulina bazlı pektin-jelatin ikili hidrojellerinin yüksek su içeriği, düşük kalori ve tokluk hissi sağlama avantajları nedeniyle geliştirilmesi ve reolojik özelliklerinin incelenmesi üzerine odaklanmaktadır. Rotasyonel ve salınım testlerine göre kıvam katsayıları, 6P1B örneğinde (%6 pektin-%0.5 jelatin-%1 bezelye proteini) 6P1S örneğine (%6 pektin-%0.5 jelatin-%1 spirulina) göre sırasıyla %25 ve %20 daha yüksek bulunmuştur. Örneklerin akış davranış indeksleri 0.22±0.01 ile 0.29±0.02 aralığında tespit edilmiştir. Ayrıca, bezelye proteini formülasyonlarının termal stabilitesi, spirulina içerenlerden daha iyi performans göstermiştir. Moleküler kenetleme analizi, pektin-jelatin, pektin-spirulina ve pektin-bezelye proteini arasındaki bağlanma enerjilerinin sırasıyla -6.53; -7.85 ve -8.30 kcal/mol ile nispeten kararlı ve etkili olduğunu işaret etmektedir. Bezelye proteini ve spirulina bazlı hidrojeller, 3D baskı teknolojisi ve yağ ikamesi olarak potansiyele sahip olup, besleyici ve işlevsel özellikleriyle yenilikçi gıda ürünlerinin geliştirilmesini destekleyebilirler.

References

  • Alavi, F., Ciftci, O. N. (2023). Superlight macroporous aerogels produced from cold-set egg white protein hydrogels show superior oil structuring capacity. Food Hydrocolloids, 136, 108180. https://doi.org/10.1016/ j.foodhyd.2022.108180
  • Anvari, M., Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin–Gum Arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60, 516–524. https://doi.org/10.1016/j.foodhyd.2016.04.028
  • Bernaerts, T. M., Gheysen, L., Foubert, I., Hendrickx, M. E., Van Loey, A. M. (2019). The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnology Advances, 37(8), 107419. https://doi.org/10.1016/j.biotechadv.2019.107419
  • Cai, W. D., Qiu, W. Y., Ding, Z. C., Wu, L. X., Yan, J. K. (2019). Conformational and rheological properties of a quaternary ammonium salt of curdlan. Food Chemistry, 280, 130-138. https://doi.org/10.1016/j.foodchem.2018.12.059
  • Cao, Y., Li, Z., Fan, X., Liu, M., Han, X., Huang, J., Xiong, Y. L. (2022). Multifaceted functionality of l-arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food Function, 13(3), 1336-1347. https://doi.org/10.1039/ D1FO03372G
  • Cebrián-Lloret, V., Martínez-Abad, A., López-Rubio, A., Martínez-Sanz, M. (2024). Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocolloids, 146, 109177. https://doi.org/10.1016/j.foodhyd.2023.109177
  • De Berardinis, L., Plazzotta, S., Manzocco, L. (2023). Optimising soy and pea protein gelation to obtain hydrogels intended as precursors of food-grade dried porous materials. Gels, 9(1), 62. https://doi.org/10.3390/gels9010062
  • dos Santos, M., da Rocha, D. A. V. F., Bernardinelli, O. D., Oliveira Júnior, F. D., de Sousa, D. G., Sabadini, E., Pollonio, M. A. R. (2022). Understanding the performance of plant protein concentrates as partial meat substitutes in hybrid meat emulsions. Foods, 11 (21), 3311. https://doi.org/10.3390/foods11213311
  • Ferreira de Freitas, R., Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm 8 (10), 1970–1981. doi:10.1039/c7md00381a
  • Ghanbari, M., Mortazavian, A. M., Ghasemi, J. B., Mohammadi, A., Hosseini, H. Neyestani, T. R. (2017). Formulation and development of a new prebiotic cereal-based dairy dessert: rheological, sensory and physical attributes. Food Science and Technology Research, 23(5), 637-649. DOI: 10.3136/fstr.23.637
  • Ghica, M. V., Hîrjău, M., Lupuleasa, D., Dinu-Pîrvu, C. E. (2016). Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules, 21(6), 786. https://doi.org/10.3390/molecules21060786
  • Gupta, B., Tummalapalli, M., Deopura, B. L., Alam, M. S. (2014). Preparation and characterization of in-situ crosslinked pectin–gelatin hydrogels. Carbohydrate polymers, 106, 312-318. https://doi.org/10.1016/ j.carbpol.2014.02.019
  • Hilal, A., Florowska, A., Wroniak, M. (2023). Binary hydrogels: Induction methods and recent application progress as food matrices for bioactive compounds delivery—A bibliometric review. Gels, 9(1), 68. https://doi.org/10.3390/ gels9010068
  • Hou, J. J., Guo, J., Wang, J. M., He, X. T., Yuan, Y., Yin, S. W., Yang, X. Q. (2015). Edible double-network gels based on soy protein and sugar beet pectin with hierarchical microstructure. Food Hydrocolloids, 50, 94-101. DOI: 10.1016/ j.foodhyd.2015.04.012
  • Ishwarya S, P., Nisha, P. (2022). Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science and Nutrition, 62 (16), 4393-4417. https://doi.org/ 10.1080/10408398.2021.1875394
  • Kan, X., Zhang, S., Kwok, E., Chu, Y., Chen, L., Zeng, X. (2024). Granular hydrogels with tunable properties prepared from gum Arabic and protein microgels. International Journal of Biological Macromolecules, 132878. https://doi.org/ 10.1016/j.ijbiomac.2024.132878
  • Klein, M., Poverenov, E. (2020). Natural biopolymer‐based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture, 100(6), 2337-2347. https://doi.org/10.1002/jsfa.10274
  • Koshenaj, K., Ferrari, G. (2024). A Comprehensive Review on Starch-Based Hydrogels: From Tradition to Innovation, Opportunities, and Drawbacks. Polymers, 16(14), 1991. https://doi.org/10.3390/polym16141991
  • Lapomarda, A., Cerqueni, G., Geven, M. A., Chiesa, I., De Acutis, A., De Blasi, M., Vozzi, G. (2021). Physicochemical Characterization of Pectin‐Gelatin Biomaterial Formulations for 3D Bioprinting. Macromolecular Bioscience, 21(9), 2100168. https://doi.org/10.1002/ mabi.202100168
  • Lenie, M. D., Ahmadzadeh, S., Van Bockstaele, F., Ubeyitogullari, A. (2024). Development of a pH-responsive system based on starch and alginate-pectin hydrogels using coaxial 3D food printing. Food Hydrocolloids, 153, 109989. https://doi.org/10.1016/j.foodhyd.2024.109989
  • Li, C., Xu, Y., Zhang, Y., Shen, Y., Deng, X., Wang, F. (2024). Novel bigels based on walnut oil oleogel and chitosan hydrogel: Preparation, characterization, and application as food spread. International Journal of Biological Macromolecules, 260, 129530. https://doi.org/ 10.1016/j.ijbiomac.2024.129530
  • Liu, L., Tian, W., Chen, Μ., Huang, Y., Xiao, J. (2023). Oral sensation and gastrointestinal digestive profiles of bigels tuned by the mass ratio of konjac glucomannan to gelatin in the binary hydrogel matrix. Carbohydrate Polymers, 312, 120765. DOI: 10.1016/j.carbpol.2023.120765
  • Martins, A. J., Silva, P., Maciel, F., Pastrana, L. M., Cunha, R. L., Cerqueira, M. A., Vicente, A. A. (2019). Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Research International, 116, 1298-1305. https://doi.org/10.1016/ j.foodres.2018.10.019
  • Melzener, L., Spaans, S., Hauck, N., Pötgens, A. J., Flack, J. E., Post, M. J., Doğan, A. (2023). Short-Stranded Zein Fibers for Muscle Tissue Engineering in Alginate-Based Composite Hydrogels. Gels, 9(11), 914. https://doi.org/ 10.3390/gels9110914
  • Mirzaei, A., Esmkhani, M., Zallaghi, M., Nezafat, Z., Javanshir, S. (2023). Biomedical and environmental applications of carrageenan-based hydrogels: a review. Journal of Polymers and the Environment, 31(5), 1679-1705. https://doi.org/ 10.1007/s10924-022-02726-5
  • Mo, Q., Huang, L., Sheng, Y., Wei, Z., Zhang, S., Li, Y., Xue, M. (2024). Crosslinking strategy and promotion role of cellulose as a composite hydrogel component for three-dimensional printing–A review. Food Hydrocolloids, 110079. https://doi.org/10.1016/j.foodhyd.2024.110079
  • Morris, G. A., Castile, J., Smith, A., Adams, G. G., Harding, S. E. (2010). The effect of different storage temperatures on the physical properties of pectin solutions and gels. Polymer Degradation and Stability, 95(12), 2670-2673. https://doi.org/10.1016/j.polymdegradstab.2010.07.013
  • Rosti, M. E., Takagi, S. (2021). Shear-thinning and shear-thickening emulsions in shear flows. Physics of Fluids, 33(8). https://doi.org/ 10.1063/5.0063180
  • Sahagún, M., Bravo-Núñez, Á., Báscones, G., Gómez, M. (2018). Influence of protein source on the characteristics of gluten-free layer cakes. LWT, 94, 50-56. https://doi.org/10.1016/ j.lwt.2018.04.014
  • Said, N. S., Olawuyi, I. F., Lee, W. Y. (2023). Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications. Gels, 9(9), 732. https://doi.org/10.3390/gels9090732
  • Sedighi, M., Shrestha, N., Mahmoudi, Z., Khademi, Z., Ghasempour, A., Dehghan, H., Shahbazi, M. A. (2023). Multifunctional self-assembled peptide hydrogels for biomedical applications. Polymers, 15(5), 1160. https://doi.org/10.3390/polym15051160
  • Shi, K., Wang, W., Sun, J., Jiang, C., Hao, J. (2024). A rapid one-step affinity purification of C-phycocyanin from Spirulina platensis. Journal of Chromatography A, 1720, 464801. DOI: 10.1016/j.chroma.2024.464801
  • Smith, S. O., Eilers, M., Song, D., Crocker, E., Ying, W., Groesbeek, M., Aimoto, S. (2002). Implications of threonine hydrogen bonding in the glycophorin A transmembrane helix dimer. Biophysical Journal, 82(5), 2476-2486. https://doi.org/10.1016/S0006-3495(02)75590-2
  • Stojkov, G., Niyazov, Z., Picchioni, F., Bose, R. K. (2021). Relationship between structure and rheology of hydrogels for various applications. Gels, 7(4), 255. DOI: 10.3390/gels7040255
  • Swe, M. T. H., Asavapichayont, P. (2018). Effect of silicone oil on the microstructure, gelation and rheological properties of sorbitan monostearate–sesame oil oleogels. Asian Journal of Pharmaceutical Sciences, 13(5), 485-497. https://doi.org/10.1016/j.ajps.2018.04.006
  • Tanwar, M., Gupta, R. K., Rani, A. (2024). Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry. Critical Reviews in Biotechnology, 44(2), 275-301. https://doi.org/ 10.1080/07388551.2022.2157702
  • Varela, M. S., Palacio, M. A., Navarro, A. S., Yamul, D. K. (2023). Structural and functional properties and digital image texture analysis of gelatin, pectin, and carrageenan gels with honey addition. Journal of Texture Studies, 54(5), 646-658. https://doi.org/10.1111/jtxs.12774
  • Wang, L., Zhang, H. J., Wang, X., Zhao, W., Yan, W., Zhang, F., You, X. (2023). Edible hydrogel from gelatin and alginate as functional low‐calorie noodle. Journal of Applied Polymer Science, 140 (2), e53281. https://doi.org/10.1002/app.53281
  • Wang, M., Yin, Z., Sun, W., Zhong, Q., Zhang, Y., Zeng, M. (2023b). Microalgae play a structuring role in food: Effect of spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocolloids, 136, 108244. https://doi.org/10.1016/ j.foodhyd.2022.108244
  • Woldeyes, M. A., Qi, W., Razinkov, V. I., Furst, E. M., Roberts, C. J. (2020). Temperature dependence of protein solution viscosity and protein–protein interactions: insights into the origins of high-viscosity protein solutions. Molecular Pharmaceutics, 17(12), 4473-4482. doi/10.1021/acs.molpharmaceut.0c00552
  • Wu, Y., Cui, W., Eskin, N. A. M., Goff, H. D. (2009). An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International, 42(8), 1141-1146. https://doi.org/ 10.1016/j.foodres.2009.05.015
  • Xu, S. Q., Du, Y. N., Zhang, Z. J., Yan, J. N., Sun, J. J., Zhang, L. C., Wu, H. T. (2024). Gel properties and interactions of hydrogels constructed with low acyl gellan gum and puerarin. Carbohydrate Polymers, 326, 121594. https://doi.org/10.1016/j.carbpol.2023.121594
  • Yan, J., Li, S., Chen, G., Ma, C., McClements, D. J., Liu, X., Liu, F. (2023). Formation, physicochemical properties, and comparison of heat-and enzyme-induced whey protein-gelatin composite hydrogels. Food Hydrocolloids, 137, 108384. https://doi.org/10.1016/ j.foodhyd.2022.108384
  • Yang, X., Li, A., Li, D., Guo, Y., Sun, L. (2021). Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends in Food Science and Technology, 109, 197-210. https://doi.org/ 10.1016/j.tifs.2021.01.002
  • Yin, L., Fu, S., Wu, R., Wei, S., Yi, J., Zhang, L. M., Yang, L. (2020). Chain conformation of an acidic polysaccharide from green tea and related mechanism of α-amylase inhibitory activity. International Journal of Biological Macromolecules, 164, 1124-1132. https://doi.org/10.1016/j.ijbiomac.2020.07.125
  • Yu Deng, H., Ang Zheng, Z., Xie, A. M., Lin Chen, Z., Cao, P. (2024). Preparation and performance characterization of temperature‐sensitive JP‐3 kerosene gel propellant. Propellants, Explosives, Pyrotechnics, 49(1), e202300156. https://doi.org/10.1002/ prep.202300156
  • Zha, F., Rao, J., Chen, B. (2021). Plant-based food hydrogels: Constitutive characteristics, formation, and modulation. Current Opinion in Colloid and Interface Science, 56, 101505. https://doi.org/ 10.1016/j.cocis.2021.101505
  • Zhang, D., Chen, D., Campanella, O. H. (2024). Effect of pH on the gelling properties of pea protein-pectin dispersions. Food Hydrocolloids, 151, 109731. https://doi.org/10.1016/ j.foodhyd.2024.109731
  • Zhang, D., Chen, D., Patel, B., Campanella, O. H. (2022)b. Pectin as a natural agent for reinforcement of pea protein gel. Carbohydrate Polymers, 298, 120038. https://doi.org/10.1016/ j.carbpol.2022.120038
  • Zhang, Q., Fan, W., Shi, Y., Tu, Z., Hu, Y., Zhang, J. (2023). Interaction between soy protein isolate/whey protein isolate and sucrose ester during microencapsulation: Multi-spectroscopy and molecular docking. LWT, 188, 115363. DOI: 10.1016/j.lwt.2023.115363
  • Zhang, X., Wang, C., Qi, Z., Zhao, R., Wang, C., Zhang, T. (2022). Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Research International, 160, 111713. https://doi.org/ 10.1016/j.foodres.2022.111713
  • Zhou, M., Bi, J., Chen, J., Wang, R., Richel, A. (2021). Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocolloids, 112, 106350. https://doi.org/ 10.1016/j.foodhyd.2020.106350
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Food Technology
Journal Section Articles
Authors

Gülce Bedis Kaynarca 0000-0001-7896-457X

Publication Date October 10, 2024
Submission Date August 2, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024

Cite

APA Kaynarca, G. B. (2024). BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda, 49(5), 903-919. https://doi.org/10.15237/gida.GD24079
AMA Kaynarca GB. BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. October 2024;49(5):903-919. doi:10.15237/gida.GD24079
Chicago Kaynarca, Gülce Bedis. “BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 49, no. 5 (October 2024): 903-19. https://doi.org/10.15237/gida.GD24079.
EndNote Kaynarca GB (October 1, 2024) BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda 49 5 903–919.
IEEE G. B. Kaynarca, “BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ”, GIDA, vol. 49, no. 5, pp. 903–919, 2024, doi: 10.15237/gida.GD24079.
ISNAD Kaynarca, Gülce Bedis. “BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 49/5 (October 2024), 903-919. https://doi.org/10.15237/gida.GD24079.
JAMA Kaynarca GB. BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. 2024;49:903–919.
MLA Kaynarca, Gülce Bedis. “BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda, vol. 49, no. 5, 2024, pp. 903-19, doi:10.15237/gida.GD24079.
Vancouver Kaynarca GB. BEZELYE PROTEİNİ VE SPİRULİNA İLAVESİNİN İKİLİ HİDROJEL FORMLARININ REOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA. 2024;49(5):903-19.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/