Research Article
BibTex RIS Cite

PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ

Year 2021, , 803 - 816, 17.05.2021
https://doi.org/10.15237/gida.GD21063

Abstract

Bu çalışmada, Antalya ve Isparta illerinden temin edilen 112 piliç eti örneğinde yüksek seviyede aminoglikozit dirençli (YSAD) Enterococcus yaygınlığı araştırılmış ve izolatların antibiyotik direnç profilleri belirlenmiştir. Çalışmada toplam 32 YSAD Enterococcus suşu izole edilmiştir. Moleküler yöntemler ile izolatların 18’i E. faecium, 5’i E. faecalis, 5’i E. durans, 3’ü E. avium ve 1’i E. casseliflavus olarak tanımlanmıştır. Disk difüzyon testi sonucu, izolatların en duyarlı olduğu antibiyotiklerin ampisilin (%93.75), linezolid (%93.75), penisilin G (%90.62), teikoplanin (%90.62), nitrofurantoin (%78.12), vankomisin (%75) ve kloramfenikol (%68.75) olduğu belirlenmiştir. İzolatların en dirençli olduğu antibiyotiklerin ise eritromisin (%96.87), minosiklin (%96.87), streptomisin (%96.87) ve tetrasiklin (%96.87) olduğu tespit edilmiştir. İzolatların gentamisin ve streptomisin minimum inhibisyon konsantrasyonu (MİK) değerlerinin sırasıyla 16 ile >4096 ve 64 ile >4096 µg/mL arasında değiştiği belirlenmiştir. MİK testleri sonucu, 32 YSAD Enterococcus izolatının 18’inin hem yüksek seviyede streptomisin dirençli (YSSD) hem de yüksek seviyede gentamisin dirençli (YSGD) oldukları tespit edilmiştir.

Supporting Institution

Süleyman Demirel Üniversitesi

Project Number

5010-YL1-17

Thanks

Bu çalışmayı 5010-YL1-17 nolu proje ile maddi olarak destekleyen Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi’ne teşekkür ederiz.

References

  • Abauelnaga, M., Lamas, A., Quintela-Baluja, M., Osman, M., Miranda, J.M., Cepeda, A., Franco, C.M. (2016). Evaluation of the extent of virulence factors and antibiotic resistance in enterococci isolated from fermented and unfermented foods. Ann Microbiol, 66: 577-585.
  • Barakat, R.K., Griffiths, M.W., Harris, L.J. (2000). Isolation and characterisation of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packed, refrigerated, poultry meat. Int J Food Microbiol, 62(1-2): 83-94.
  • Bismuth, R., Courvalin, P. (2010). Aminoglycosides and Gram-positive bacteria: antibiogram, 3rd edn. ESKA, Portland
  • Butaye, P., Devriese, L.A., Haesebrouck, F. (2001). Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals. Antimicrob Agents Chemother, 45(5): 1374-1378.
  • Cancilla, M.R., Powell, I.B., Hillier, A.J., Davidson, B.E. (1992). Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol, 58(5): 1772-1775.
  • Cariolato, D., Andrighetto, C., Lombardi, A. (2008). Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control, 19(9): 886-892.
  • Chajecka-Wierzchowska, W., Zadernowska, A., Nalepa, B., Laniewska-Trokenheim, L. (2012). Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr J Microbiol Res, 6(39): 6773-6780.
  • Choi, J-M., Woo, G-J. (2013). Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea. Int J Food Microbiol, 165(1): 1-6.
  • Clinical and Laboratory Standards Institute, (CLSI 2016). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S26 CLSI, Wayne, PA.
  • Demirgül, F., Tuncer, Y. (2017). Detection of antibiotic resistance and resistance genes in enterococci isolated from sucuk, a traditional Turkish dry fermented sausage. Korean J Food Sci An, 37: 670-681.
  • Devriese, L.A., Pot, B. (1995). The genus Enterococcus. In: The Genera of Lactic Acid Bacteria, Wood, B.J.B. & Holzapfel, W.H. (eds.), Blackie Academic & Professional, London, United Kingdom, 327-367.
  • Diarra, M.S., Rempel, H., Champagne, J., Masson, L., Pritchard, J., Edward, T. (2010). Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl Environ Microbiol, 76(24): 8033-8043.
  • Donabedian, S.M., Thal, L.A., Hershberger, E., Perri, M.B., Chow, J.W., Bartlett, P., Jones, R., Joyce, K., Rossiter, S., Gay, K., Johnson, J., Mackinson, C., Debess, E., Madden, J., Angulo, F., Zervos, M.J. (2003). Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol, 41(3): 1109-1113.
  • Edwards, U., Rogall, T., Blocker, H., Emde, M., Bottger, E.C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res, 17: 7843-7853.
  • El-Ghazawy, I.F., Okasha, H.A.S., Mazloum, S.M. (20169. A study of high level aminoglycoside resistant enterococci. Afr J Microbiol Res, 10(16): 572-577.
  • European Committee on Antimicrobial Susceptibility Testing, (EUCAST 2018). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.0, valid from 2018-01-01. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf
  • Franz, C.M.A.P., Holzapfel, W.H., Stiles, M.E. (1999). Enterococci at the crossroad of food safety. Int J Food Microbiol, 47(1-2): 1-24.
  • Garrido, A.M., Galvez, A., Pulido, R.P. (2014). Antimicrobial resistance in enterococci. J Infect Dis Ther, 2: 150.
  • Giraffa, G. (2002). Enterococci from food. FEMS Microbiol Rev, 26: 163-171.
  • Hanchi, H., Mottawea W., Sebei K., Hammami R. (2018). The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol, 9: 1791.
  • Harada, T., Mito, Y., Otsuki, K., Murase, T. (2004). Resistance to gentamicin and vancomycin in enterococcal strains isolated from retail broiler chickens in Japan. J Food Prot, 67(10): 2292-2295.
  • Hugas, M., Garigga, M., Aymerich, M.T. (2003). Functionality of enterococci in meat products. Int J Food Microbiol, 88(2-3): 223-233.
  • Jackson, C.R., Fedorka-Cray, P.J., Barrett, J.B. (2004a). Use of the genus and species spesific multiplex PCR for identification of enterococci. J Clin Microbiol, 42(8): 3558-3565.
  • Jackson, C.R., Fedorka-Cray, P.J., Barrett, J.B., Ladely, S.D. (2004b). Genetic relatedness of high-level aminoglycoside-resistant enterococci isolated from poultry carcasses. Avian Dis, 48(1): 100-107.
  • Jackson, C.R., Lombard, J.E., Dargatz, D.A., Fedorka-Cray, P.J. (2011). Prevalence, species distribution and antimicrobial resistance of enterococci isolated from US dairy cattle. Lett Appl Microbiol, 52(1): 41-48.
  • Kasımoğlu-Doğru, A., Gencay, Y.E., Ayaz, N.D. (2010). Prevalence and antibiotic resistance profiles of Enterococcus species in chicken at slaughter level; absence of vanA and vanB genes in E. faecalis and E. faecium. Res Vet Sci, 89(2): 153-158.
  • Klibi, N., Aouini, R., Borgo, F., Ben Said, L., Ferrario, C., Dziri, R., Boudabous, A., Torres, C., Ben Slama, K. (2015). Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann Microbiol, 65: 695-702.
  • Kim, Y.-J., Park, J.-H., Seo, K.H. (2018). Comparison of the loads and antibiotic-resistance profiles of Enterococcus species from conventional and organic chicken carcasses in South Korea. Poultry Science, 97:271-278.
  • Linden, P.K., Miller, C.B. (1999). Vancomycin-resistant enterococci: the clinical effect of a common nosocomial pathogen. Diagn Microbiol Infect Dis, 33(2): 113-120.
  • Manero, A., Blanch, A.R. (1999). Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol, 65: 4425-4430.
  • Mendiratta, D.K., Kaur, H., Deotale, V., Thamke, D.C., Narang, R., Narang, P. (2008). Status of high level aminoglycoside resistant Enterococcus faecium and Enterococcus faecalis in a rural hospital of central India. Indian J Med Microbiol, 26(4): 369-371.
  • Morandi, S., Brasca, M., Andrighetto, C., Lombardi, A., Lodi, R. (2006). Technological and molecular characterisation of enterococci isolated from North–West Italian dairy products. Int Dairy J, 16: 867-875.
  • Niu H., Yu H., Hu T., Tian G., Zhang L., Guo X., Hu H., Wang Z. (2016). The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol, 47: 691-696.
  • Özdemir, R., Tuncer, Y. (2020). Detection of antibiotic resistance profiles and aminoglycoside-modifiying enzyme (AME) genes in high-level amşinoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey. Mol Biol Rep, 47:1703-1712.
  • Özden, Tuncer, B., Ay, Z., Tuncer, Y. (2013). Occurrence of enterocin genes, virulence factors, and antibiotic resistance 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish tulum cheese. Turk J Biol, 37: 443-449.
  • Padmasini, E., Padmaraj, R., Ramesh, S.S. (2014). High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. The Scientific World Journal, Article ID 329157.
  • Petsaris, O., Miszczak, F., Gicquel-Bruneau, M., Perrin-Guyomard, A., Humbert, F., Sanders, P., Leclercq, R. (2005). Combined antimicrobial resistance in Enterococcus faecium isolated from chickens. Appl Environ Microbiol, 71(5): 2796-2799.
  • Ramirez, M., Tolmasky M. (2010). Aminoglycoside modifying enzymes. Drug Resist Updat, 13(6): 151-171.
  • Russo, N., Caggia, C., Pino, A., Teresa, M.C., Arioli, S., Randazzo, C.L. (2018). Enterococcus spp. in Ragusano PDO and Pecorino Siciliano cheese types: A snapshot of their antibiotic resistance distribution. Food Chem Toxicol, 120: 277-286.
  • Sahoo, T.K., Jena P.K., Nagar N., Patel A.K., Seshadri S. (2015). In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics & Antimicro Prot, 7: 126-136.
  • Sanlibaba, P., Tezel B.U., Senturk E. (2018). Antimicrobial resistance of Enterococcus species isolated from chicken in Turkey. Korean J Food Sci An, 38(2): 391-402.
  • Temiz, A. (1994). Genel Mikrobiyoloji Uygulama Teknikleri. Şafak Matbaacılık Ltd. Şti., Ankara, Türkiye, 266 s. ISBN:975-95834-0-2
  • Yao, J.D.C., Moellering, R.C. (2007). Antibacterial agent, In: Manual of Clinical Microbiology, Murray, P.R. (chief ed), ASM, Washington DC, 1077-1113.
  • Yogurtcu, N.N., Tuncer, Y. (2013). Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish tulum cheese. Int J Dairy Technol, 66: 236-242.
  • Yoshimura, H., Ishimaru, M., Endoh, Y.S., Kojima, A. (2000). Antimicrobial susceptibilities of enterococci isolated from faeces of broiler and layer chickens. Lett Appl Microbiol, 31(6): 427-432.

DETERMINATION OF THE ANTIBIOTIC RESISTANCE PROFILES OF HIGH-LEVEL AMINOGLYCOSID-RESISTANT ENTEROCOCCI ISOLATED FROM BROILER MEAT

Year 2021, , 803 - 816, 17.05.2021
https://doi.org/10.15237/gida.GD21063

Abstract

In this study, the prevalence of high-level aminoglycoside-resistant (HLAR) Enterococcus in broiler meat samples obtained from Antalya and Isparta provinces was investigated and antibiotic resistance profiles of isolates was detected. A total of 32 HLAR Enterococcus strains were isolated in this study. Isolates were identified as 18 E. faecium, 5 E. faecalis, 5 E. durans, 3 E. avium and 1 E. casseliflavus by molecular methods. As a result of the disc diffusion test, HLAR Enterococcus isolates were found to be most susceptible to ampicillin (93.75%), linezolide (93.75%), penicillin G (90.62%), teikoplanine (90.62%), nitrofurantoin (78.12%), vancomycin (75%) and chloramphenicol (68.75%). It has been determined that the antibiotics to which the isolates are most resistant are erythromycin (96.87%), minocycline (96.87%), streptomycin (96.87%), and tetracycline (96.87%). Gentamicin and streptomycin minimum inhibitory concentration (MIC) values of HLAR isolates were detected changing in the ranged from 16 to >4096 and 64 to >4096 µg/mL, respectively. According to the MIC test results, 18 out of 32 HLAR isolates were identified as both high-level gentamicin-resistant (HLGR) and high-level streptomycin-resistant (HLSR).

Project Number

5010-YL1-17

References

  • Abauelnaga, M., Lamas, A., Quintela-Baluja, M., Osman, M., Miranda, J.M., Cepeda, A., Franco, C.M. (2016). Evaluation of the extent of virulence factors and antibiotic resistance in enterococci isolated from fermented and unfermented foods. Ann Microbiol, 66: 577-585.
  • Barakat, R.K., Griffiths, M.W., Harris, L.J. (2000). Isolation and characterisation of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packed, refrigerated, poultry meat. Int J Food Microbiol, 62(1-2): 83-94.
  • Bismuth, R., Courvalin, P. (2010). Aminoglycosides and Gram-positive bacteria: antibiogram, 3rd edn. ESKA, Portland
  • Butaye, P., Devriese, L.A., Haesebrouck, F. (2001). Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals. Antimicrob Agents Chemother, 45(5): 1374-1378.
  • Cancilla, M.R., Powell, I.B., Hillier, A.J., Davidson, B.E. (1992). Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol, 58(5): 1772-1775.
  • Cariolato, D., Andrighetto, C., Lombardi, A. (2008). Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control, 19(9): 886-892.
  • Chajecka-Wierzchowska, W., Zadernowska, A., Nalepa, B., Laniewska-Trokenheim, L. (2012). Occurrence and antibiotic resistance of enterococci in ready-to-eat food of animal origin. Afr J Microbiol Res, 6(39): 6773-6780.
  • Choi, J-M., Woo, G-J. (2013). Molecular characterization of high-level gentamicin-resistant Enterococcus faecalis from chicken meat in Korea. Int J Food Microbiol, 165(1): 1-6.
  • Clinical and Laboratory Standards Institute, (CLSI 2016). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S26 CLSI, Wayne, PA.
  • Demirgül, F., Tuncer, Y. (2017). Detection of antibiotic resistance and resistance genes in enterococci isolated from sucuk, a traditional Turkish dry fermented sausage. Korean J Food Sci An, 37: 670-681.
  • Devriese, L.A., Pot, B. (1995). The genus Enterococcus. In: The Genera of Lactic Acid Bacteria, Wood, B.J.B. & Holzapfel, W.H. (eds.), Blackie Academic & Professional, London, United Kingdom, 327-367.
  • Diarra, M.S., Rempel, H., Champagne, J., Masson, L., Pritchard, J., Edward, T. (2010). Distribution of antimicrobial resistance and virulence genes in Enterococcus spp. and characterization of isolates from broiler chickens. Appl Environ Microbiol, 76(24): 8033-8043.
  • Donabedian, S.M., Thal, L.A., Hershberger, E., Perri, M.B., Chow, J.W., Bartlett, P., Jones, R., Joyce, K., Rossiter, S., Gay, K., Johnson, J., Mackinson, C., Debess, E., Madden, J., Angulo, F., Zervos, M.J. (2003). Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J Clin Microbiol, 41(3): 1109-1113.
  • Edwards, U., Rogall, T., Blocker, H., Emde, M., Bottger, E.C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res, 17: 7843-7853.
  • El-Ghazawy, I.F., Okasha, H.A.S., Mazloum, S.M. (20169. A study of high level aminoglycoside resistant enterococci. Afr J Microbiol Res, 10(16): 572-577.
  • European Committee on Antimicrobial Susceptibility Testing, (EUCAST 2018). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.0, valid from 2018-01-01. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf
  • Franz, C.M.A.P., Holzapfel, W.H., Stiles, M.E. (1999). Enterococci at the crossroad of food safety. Int J Food Microbiol, 47(1-2): 1-24.
  • Garrido, A.M., Galvez, A., Pulido, R.P. (2014). Antimicrobial resistance in enterococci. J Infect Dis Ther, 2: 150.
  • Giraffa, G. (2002). Enterococci from food. FEMS Microbiol Rev, 26: 163-171.
  • Hanchi, H., Mottawea W., Sebei K., Hammami R. (2018). The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol, 9: 1791.
  • Harada, T., Mito, Y., Otsuki, K., Murase, T. (2004). Resistance to gentamicin and vancomycin in enterococcal strains isolated from retail broiler chickens in Japan. J Food Prot, 67(10): 2292-2295.
  • Hugas, M., Garigga, M., Aymerich, M.T. (2003). Functionality of enterococci in meat products. Int J Food Microbiol, 88(2-3): 223-233.
  • Jackson, C.R., Fedorka-Cray, P.J., Barrett, J.B. (2004a). Use of the genus and species spesific multiplex PCR for identification of enterococci. J Clin Microbiol, 42(8): 3558-3565.
  • Jackson, C.R., Fedorka-Cray, P.J., Barrett, J.B., Ladely, S.D. (2004b). Genetic relatedness of high-level aminoglycoside-resistant enterococci isolated from poultry carcasses. Avian Dis, 48(1): 100-107.
  • Jackson, C.R., Lombard, J.E., Dargatz, D.A., Fedorka-Cray, P.J. (2011). Prevalence, species distribution and antimicrobial resistance of enterococci isolated from US dairy cattle. Lett Appl Microbiol, 52(1): 41-48.
  • Kasımoğlu-Doğru, A., Gencay, Y.E., Ayaz, N.D. (2010). Prevalence and antibiotic resistance profiles of Enterococcus species in chicken at slaughter level; absence of vanA and vanB genes in E. faecalis and E. faecium. Res Vet Sci, 89(2): 153-158.
  • Klibi, N., Aouini, R., Borgo, F., Ben Said, L., Ferrario, C., Dziri, R., Boudabous, A., Torres, C., Ben Slama, K. (2015). Antibiotic resistance and virulence of faecal enterococci isolated from food-producing animals in Tunisia. Ann Microbiol, 65: 695-702.
  • Kim, Y.-J., Park, J.-H., Seo, K.H. (2018). Comparison of the loads and antibiotic-resistance profiles of Enterococcus species from conventional and organic chicken carcasses in South Korea. Poultry Science, 97:271-278.
  • Linden, P.K., Miller, C.B. (1999). Vancomycin-resistant enterococci: the clinical effect of a common nosocomial pathogen. Diagn Microbiol Infect Dis, 33(2): 113-120.
  • Manero, A., Blanch, A.R. (1999). Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol, 65: 4425-4430.
  • Mendiratta, D.K., Kaur, H., Deotale, V., Thamke, D.C., Narang, R., Narang, P. (2008). Status of high level aminoglycoside resistant Enterococcus faecium and Enterococcus faecalis in a rural hospital of central India. Indian J Med Microbiol, 26(4): 369-371.
  • Morandi, S., Brasca, M., Andrighetto, C., Lombardi, A., Lodi, R. (2006). Technological and molecular characterisation of enterococci isolated from North–West Italian dairy products. Int Dairy J, 16: 867-875.
  • Niu H., Yu H., Hu T., Tian G., Zhang L., Guo X., Hu H., Wang Z. (2016). The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Braz J Microbiol, 47: 691-696.
  • Özdemir, R., Tuncer, Y. (2020). Detection of antibiotic resistance profiles and aminoglycoside-modifiying enzyme (AME) genes in high-level amşinoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey. Mol Biol Rep, 47:1703-1712.
  • Özden, Tuncer, B., Ay, Z., Tuncer, Y. (2013). Occurrence of enterocin genes, virulence factors, and antibiotic resistance 3 bacteriocin-producer Enterococcus faecium strains isolated from Turkish tulum cheese. Turk J Biol, 37: 443-449.
  • Padmasini, E., Padmaraj, R., Ramesh, S.S. (2014). High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. The Scientific World Journal, Article ID 329157.
  • Petsaris, O., Miszczak, F., Gicquel-Bruneau, M., Perrin-Guyomard, A., Humbert, F., Sanders, P., Leclercq, R. (2005). Combined antimicrobial resistance in Enterococcus faecium isolated from chickens. Appl Environ Microbiol, 71(5): 2796-2799.
  • Ramirez, M., Tolmasky M. (2010). Aminoglycoside modifying enzymes. Drug Resist Updat, 13(6): 151-171.
  • Russo, N., Caggia, C., Pino, A., Teresa, M.C., Arioli, S., Randazzo, C.L. (2018). Enterococcus spp. in Ragusano PDO and Pecorino Siciliano cheese types: A snapshot of their antibiotic resistance distribution. Food Chem Toxicol, 120: 277-286.
  • Sahoo, T.K., Jena P.K., Nagar N., Patel A.K., Seshadri S. (2015). In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics & Antimicro Prot, 7: 126-136.
  • Sanlibaba, P., Tezel B.U., Senturk E. (2018). Antimicrobial resistance of Enterococcus species isolated from chicken in Turkey. Korean J Food Sci An, 38(2): 391-402.
  • Temiz, A. (1994). Genel Mikrobiyoloji Uygulama Teknikleri. Şafak Matbaacılık Ltd. Şti., Ankara, Türkiye, 266 s. ISBN:975-95834-0-2
  • Yao, J.D.C., Moellering, R.C. (2007). Antibacterial agent, In: Manual of Clinical Microbiology, Murray, P.R. (chief ed), ASM, Washington DC, 1077-1113.
  • Yogurtcu, N.N., Tuncer, Y. (2013). Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish tulum cheese. Int J Dairy Technol, 66: 236-242.
  • Yoshimura, H., Ishimaru, M., Endoh, Y.S., Kojima, A. (2000). Antimicrobial susceptibilities of enterococci isolated from faeces of broiler and layer chickens. Lett Appl Microbiol, 31(6): 427-432.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Meltem Yalçın 0000-0001-5320-032X

Yasin Tuncer 0000-0002-2075-5027

Project Number 5010-YL1-17
Publication Date May 17, 2021
Published in Issue Year 2021

Cite

APA Yalçın, M., & Tuncer, Y. (2021). PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ. Gıda, 46(4), 803-816. https://doi.org/10.15237/gida.GD21063
AMA Yalçın M, Tuncer Y. PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ. GIDA. May 2021;46(4):803-816. doi:10.15237/gida.GD21063
Chicago Yalçın, Meltem, and Yasin Tuncer. “PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ”. Gıda 46, no. 4 (May 2021): 803-16. https://doi.org/10.15237/gida.GD21063.
EndNote Yalçın M, Tuncer Y (May 1, 2021) PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ. Gıda 46 4 803–816.
IEEE M. Yalçın and Y. Tuncer, “PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ”, GIDA, vol. 46, no. 4, pp. 803–816, 2021, doi: 10.15237/gida.GD21063.
ISNAD Yalçın, Meltem - Tuncer, Yasin. “PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ”. Gıda 46/4 (May 2021), 803-816. https://doi.org/10.15237/gida.GD21063.
JAMA Yalçın M, Tuncer Y. PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ. GIDA. 2021;46:803–816.
MLA Yalçın, Meltem and Yasin Tuncer. “PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ”. Gıda, vol. 46, no. 4, 2021, pp. 803-16, doi:10.15237/gida.GD21063.
Vancouver Yalçın M, Tuncer Y. PİLİÇ ETİNDEN İZOLE EDİLEN YÜKSEK SEVİYEDE AMİNOGLİKOZİT DİRENÇLİ ENTEROKOKLARIN ANTİBİYOTİK DİRENÇ PROFİLLERİNİN BELİRLENMESİ. GIDA. 2021;46(4):803-16.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/