Review
BibTex RIS Cite

HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER

Year 2017, Volume: 42 Issue: 3, 242 - 251, 15.06.2017

Abstract

Halofilik
laktik asit bakterileri (HLAB), tuz konsantrasyonu yüksek olan ortamlarda
gelişen mikroorganizmalardır. Bu mikroorganizmaların tuzlu ortamlarda
gelişebilmesi biyoteknolojinin çeşitli alanlarında kullanılma potansiyellerini
arttırmaktadır. Enzimler endüstrinin hemen her alanında kullanılmaktadır ve
genellikle mikroorganizmalardan elde edilmektedir. Mikrobiyel enzimlerin
endüstride kullanılmalarının bitkisel veya hayvansal kaynaklı enzimlere göre
avantajları vardır. Bunlar; katalitik aktivitelerinin çok yüksek olmaları,
istenmeyen yan ürün oluşturmamaları, daha stabil ve ucuz olmaları, fazla
miktarda elde edilebilmeleridir. Enzim teknolojisinin giderek gelişmesi,
ürünlerin kullanım alanlarının çeşitliliği ve ekonomik değerinin çok yüksek
olması nedeniyle biyoteknolojinin endüstriyel enzimler ile ilgili alanında
yapılan çeşitli araştırmalar daha da önem kazanmaktadır. HLAB tarafından
üretilen enzimler farklı sektörlerde kullanım alanına sahiptir. Bu makalede
endüstriyel alanda yaygın olarak kullanılan HLAB’tan elde edilen proteaz,
amilaz, selülaz, ksilanaz, lipaz gibi enzimler hakkında bilgi verilmiş ve
yapılan araştırmalardan örnekler sunulmuştur.

References

  • Salvucci E, LeBlanc J.G, Perez G. 2016. Technological properties of lactic acid bacteria isolated from raw cereal material. LWT - Food Sci Technol, 70, 185-191.
  • Yüksekdağ Z.N, Beyatlı Y. 2009. Bazı laktik asit bakterilerinin fizyolojik, biyokimyasal, plazmit DNA ve protein profil özelliklerinin incelenmesi. GIDA, 34 (2): 91-98.
  • Başyiğit Kılıç G, Kuleaşan H, Eralp İ, Karahan A.G. 2009. Manufacture of Turkish Beyaz cheese added with probiotic strains. LTW-Food Sci Technol, 42, 1003-1008.
  • Sağdıç O, Öztürk İ, Cankurt H, Tornuk F. 2011. Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Tech, DOI 10.1007/s11947-011-0611-x.
  • Hayek S.A, İbrahim S.A. 2013. Current limitations and challenges with lactic acid bacteria: A Review. Food Nut Sci, 4, 73-87.
  • Roohi A, Ahmed I, Iqbal M, Jamil M. 2012. Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak. Pak J Bot, 44, 365-370.
  • Surve V.V, Patil M.U, Dharmadekari S.M. 2012. Moderately halophilic bacteria from solar salt pans of Ribander, Goa: a comparative study. Int J Adv Biotec Res, 3, 635–643.
  • Gomes J, Steiner W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol, 42 (4) 223–235.
  • Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K. 2006. Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett Appl Microbiol, 44, 308–313.
  • Uchida M, Miyoshi T, Yoshida G, Niwa K, Mori M, Wakabayash H. 2014. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis). J Appl Microbiol, 116, 1506-1520.
  • Gurung N, Ray S, Bose S, Rai V. 2013. A Broader View: Microbial enzymes and their relevance in industries, medicine and beyond. Hindawi Publishing Corporation BioMed Res Int, Article ID 329121, p:8, http://dx.doi.org/10.1155/2013/329121.
  • Alpan L.G. 2008. Bazı ekstrem termofil anaerobik bakterilerin alkali proteazlarının özelliklerinin belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Ankara.
  • Singh A.K, Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Appl Biochem Biotechnol, 166 (2): 486–520.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol, 118 (1-3): 155-70.
  • Anisha C, Mathew J, Radhakrishnan E.K. 2012. Extracellular lipolytic enzyme production by a novel extremely halophilic bacterium. Universal J Environ Res Technol, 2 (3): 143-148.
  • Arroyo-López F.N, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A. 2012. Yeasts in table olive processing: Desirable or spoilage microorganisms? Int J Food Microbiol, 160, 42–49.
  • Moreno M.D.L, Pérez D, García M.T, Mellado E. 2013. Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3, 38-51.
  • Schreck S.D, Grunden A.M. 2014. Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol, 98, 1011–1021.
  • Ghasemi Y, Rasoul-Amini S, Kazemi A, Zarrini G, Morowvat M. H, Kargar M. 2011. Isolation and charecterisation of some moderately halophilic bacteria with lipolytic activity. Microbiol, 80 (4): 483-487.
  • Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers O.P, Leer R, Tarchini R, Peters S.A, Sandbrink H.M, Fiers M.W.E.J, Stiekema W, Lankhorst R.M.K, Bron P.A, Hoffer S.M, Nierop Groot M.S, Kerkhoven R, de Vries M, Ursing B, de Vos W.M, Siezen R.J. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA, 100 (4): 1990–1995.
  • Esteban-Torres M, Manche J.M, Rivas B, Munoz R. 2015. Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT - Food Sci Technol, 60 (1): 246–252.
  • Andersen H.J, Ostdal H. 1995. Partial purification and characterisation of a lipase from Lactobacillus plantarum MF32. Food Chem, 53 (4): 369-373.
  • Thapa N, Pal J, Tamang J,P. 2006. Phenotypic identification and technological properties of lactic acid bacteria isolated from traditionally processed fish products of the Eastern Himalayas. Int J Food Microbiol, 107 (1): 33-8.
  • Morales F, Morales I.J, Hernandez C.H. 2011. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses. Appl Biochem Biotechnol, 164, 889-905.
  • Güven R.G. 2011. Termofilik bakteriler ve biyoteknolojik açıdan önemli bazı enzimler. Elektronik Mikrobiyol Derg, TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 09 (1): 1-10.
  • Pandey A, Nigam P, Soccol C.R, Soccol V.T, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol Appl Biochem, 31 (2):135-52.
  • Şimşek T. 2006. Türkiye’nin değişik bölgelerinden termostabil alfa amilaz üreten Bacillus sp. türlerinin izolasyonu karakterizasyonu ve alfa amilaz geninin klonlanması. Ankara Üniversitesi Biyoteknoloji Enstitüsü Yüksek Lisans Tezi, Ankara.
  • Tatar S. 2007. Termofil moderately halofilik Bacillus sp. suşlarından amilaz enzimi üretimi ve endüstriyel kullanım olanaklarının araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Adana.
  • Jabbour D, Sorger A, Sahm K, Antranikian G. 2013. A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor. Appl Microbiol Biotechnol, 97 (7): 2971-1978. doi: 10.1007/s00253-012-4194-x.
  • Pathak A.P, Sardar A.G, Janaj P.C. 2014. Exploring the salted fish for salt stable amylase producing bacteria. Indian J Geo-Marine Sci, 43(10): 1967-1971.
  • Kıran Eren Ö, Çömlekçioğlu U, Dostbil N. 2006. Bazı Mikrobiyal enzimler ve endüstrideki kullanım alanları. KSÜ Fen ve Mühendislik Derg, 9 (1): 12-18.
  • Adrio J.L, Demain A.L. 2014. Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4, 117-139; doi:10.3390/biom4010117.
  • Qadar S.A.I, Shireen E, Iqbal S, Anwar A. 2009. Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian J Biotechnol, 18, 286-290.
  • Mushtaq Z, Irfan M, Nadeem M, Naz M, Syed Q. 2015. Kinetics study of extracellular detergent stable alkaline protease from Rhizopus oryzae. Braz Arch Biol Technol, 58 (2): 175-184.
  • Çerçi B, Koçyiğit A, Karaboz İ. 2011. Gıdaların işlenmesinde kullanılan enzimlerin rekombinant DNA teknolojisi ile üretimi. Elektronik Mikrobiyol Derg TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 09 (3): 1-7. www.mikrobiyoloji.org/pdf/702110301.pdf
  • Sousa M. J, Ardo Y, McSweeney P. L. H. 2001. Advances in the study of proteolysis during cheese ripening. Int Dairy J, 11, 327–345.
  • Maoz A, Mayr R, Scherer S. 2003. Temporal stability and biodiversity of two complex antilisterial Cheese-Ripening. Microbial Consortia. Appl Environ Microbiol, 69 (7): 4012–4018.
  • Akuzawa R, Fox P.F. 2004. Acid phosphatase in cheese. Animal Sci J, 75, 385–391.
  • Hassan A.A, Mansour E.H, El Bedawey A.E.A, Zaki M.S. 2014. Improving dough rheology and cookie quality by protease enzyme. American J Food Sci Nut Research, 1(1): 1-7.
  • Li A.N, Li D.C. 2009. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol, 106 (2): 369-80.
  • Mótyán J.A, Tóth F, Tőzsér J. 2013. Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3 (4): 923–942.
  • Kanlayakrit W, Bovornreungroj P. 2005. Isolation and characterization of salt loving protease producing bacteria form fish Sauce Samples. Kasetsart J Nat Sci, 39, 88 – 97.
  • Udomsil N, Rodtong S, Tanasupawat S, Yongsawatdigul J. 2010. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds, Int J Food Microbiol, 141, 186–194.
  • Cho I.H, Choi E.S, Lim H.G, Lee H.H. 2004. Purification and characterization of six fibrinolytic serine-proteases from Earthworm Lumbricus rubellus. J Biochem Mol Biology, 37 (2): 199-205.
  • Ningthoujam D.S, Thokchom S. 2016. Screening of fibrinolytic enzymes from microorganisms especially Actinomycetes from different biotopes in manipur. Arch Clin Microbiol, 7, 3.
  • Peng Y, Huang Q, Zhang R, Zhang Y. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amynoliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol. 134, 1, 45–52.
  • Sumi H, Nakajima N, Yatgai C. 1995. A unique strong fibrinolytic enyme (katsuwokinase) in skipjack ‘Shiokara’ a Japanese traditional fermented food. Comp Biochem Physiol, 112 (3): 543-547.
  • Prihanto A.A, Darius, Firdaus M. 2013. Proteolytic and fibrinolytic activities of halophilus lactic acid bacteria from two Indonesian fermented foods, J Microbiol Biotechnol Food Sci, 2 (5): 2291-2293.
  • Borah D, Yadav R.N.S, Sangra A, Shahin L, Chaubey A.K. 2012. Production, purification and characterization of nattokinase from Bacillus subtilis, isolated from tea garden soil samples of Dibrugarh, Assam, Asian J Pharm Clin Res, 5 (3): 124-125.
  • Aradhye P.K, Chavan M.D. 2014. Production and characterization of fibrinolytic enzyme from Aspergillus niger, World J Pharmacy and Pharmaceutical Sci, 3 (9): 843-851.
  • Uylaşer V, Konak A. 2004. Gıdalardaki biyojen aminler ve insan sağlığı açısından önemi. Gıda ve Yem Bilimi Teknolojisi, 6, 26-33.
  • Alper N, Temiz A. 2001. Gıdalardaki biyojen aminler ve önemi. Türk Hij Den Biyol Derg, 58 (2): 71 – 80.
  • Collins J.D, Noerrung B, Budka H, Andreoletti O, Buncic S, Griffin J, Hald T, Havelaar A, Hope J, Klein G,Koutsoumanis K, McLauchlin J, Müller-Graf C, Nguyen-The C, Peixe L, Maradona M.P, Ricci A, Sofos J, Threlfall J, Vagsholm I, Vanopdenbosch E. 2011. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J, 9 (10): 2393.
  • Kimura B, Konagaya Y, Fujii T. 2001. Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce, Int J Food Microbiol, 70, 71–77.
  • Konagaya Y, Kimura B, Ishida M, Fujii T. 2002. Purification and properties of a histidine decarboxylase from Tetragenococcus muriaticus, a halophilic lactic acid bacterium. J Appl Microbiol, 92, 1136–1142.
  • Kobayashi T, Kajiwara M, Wahyuni M, Kitakado T, Hamada-Sato N, Imada C, Watanabe E. 2003. Isolation and characterization of halophilic lactic acid bacteria isolated from ‘terasi’ shrimp paste: A traditional fermented seafood product ın Indonesia. J Gen Appl Microbiol, 49, 279-286.
  • Françoise L. 2010. Occurrence and role of lactic acid bacteria in seafood products. Int J Syst Evol Microbiol, 27 (6): 698–709, doi: 10.1016/j.fm. 2010.05.016.
  • Tsai Y.H, Lin C.Y, Chang S.C, Chen H.C, Kung H.F, Wei C.I, Hwang D.F. 2005. Occurrence of histamine and histamine-forming bacteria in salted mackerel in Taiwan, Food Microbiol, 22, 461-467.
  • Pushpa S, Murthy and Madhava M. 2010. Protease pruduction by Aspergillus oryzae in solid-state fermantation utilizing coffee by-products. World Appl Sci J, 8 (2), 199-205.
  • Soares I, Távora Z, Barcelos R.P, Baroni S. 2012. Microorganism produced enzymes in the food industry. Scientific, Health and Social Aspects of The Food Industry, Benjamin Valdez (ed), ISSN 978-953-307-916-5.
  • Vidhyasagar V, Saraniya A, Jeevaratnam K. 2013. Identification of pectin degrading lactic acid bacteria from fermented food sources. In J Adv Lif Sci, 6, 1.
  • Beg Q. K, Kapour M, Mahajan L, Hoondal G.S. 2001. Microbial xylanase and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326-338.
  • Subramaniyan S, Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett, 183 (1): 1-7.
  • Wejse P.L, Ingvorsen K, Mortensen K.K. 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb Technol, 32, 721-727.
  • WainQ M, Ingvorsen K. 2003. Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles, 7, 87-93.

THE HYDROLYTIC ENZYMES PRODUCED BY HALOPHILIC LACTIC ACID BACTERIA

Year 2017, Volume: 42 Issue: 3, 242 - 251, 15.06.2017

Abstract

Halophilic lactic acid bacteria (HLAB)
are microorganisms that grow in environments with high salt concentration. The
survivability of these microorganisms under salty environments increases their
usage potential in various fields
of biotechnology. Enzymes are used in almost in every field of industry and
usually obtained from microorganisms. The use of the microbial e
nzymes in
industrial process has several distinct advantages compared to the plant or
animal derived enzymes. These advantages are; high
catalytic activity, no formation of undesirable side products,
more stability, less production cost and high enzyme production yield. Biotechnological
research in the field of industrial enzymes is gaining more importance due to
the development of enzyme technology, the diversity in the fields of product
usage and high economical value. The enzymes which are produced by HLAB have
many application areas in different industrial sectors. In this review article,
information about enzymes such as lipases, xylanase, cellulase, amylase and
protease obtained from HLAB is provided and the results of research in this
area is presented and it has been presented some examples.

References

  • Salvucci E, LeBlanc J.G, Perez G. 2016. Technological properties of lactic acid bacteria isolated from raw cereal material. LWT - Food Sci Technol, 70, 185-191.
  • Yüksekdağ Z.N, Beyatlı Y. 2009. Bazı laktik asit bakterilerinin fizyolojik, biyokimyasal, plazmit DNA ve protein profil özelliklerinin incelenmesi. GIDA, 34 (2): 91-98.
  • Başyiğit Kılıç G, Kuleaşan H, Eralp İ, Karahan A.G. 2009. Manufacture of Turkish Beyaz cheese added with probiotic strains. LTW-Food Sci Technol, 42, 1003-1008.
  • Sağdıç O, Öztürk İ, Cankurt H, Tornuk F. 2011. Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Tech, DOI 10.1007/s11947-011-0611-x.
  • Hayek S.A, İbrahim S.A. 2013. Current limitations and challenges with lactic acid bacteria: A Review. Food Nut Sci, 4, 73-87.
  • Roohi A, Ahmed I, Iqbal M, Jamil M. 2012. Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak. Pak J Bot, 44, 365-370.
  • Surve V.V, Patil M.U, Dharmadekari S.M. 2012. Moderately halophilic bacteria from solar salt pans of Ribander, Goa: a comparative study. Int J Adv Biotec Res, 3, 635–643.
  • Gomes J, Steiner W. 2004. The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol, 42 (4) 223–235.
  • Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K. 2006. Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett Appl Microbiol, 44, 308–313.
  • Uchida M, Miyoshi T, Yoshida G, Niwa K, Mori M, Wakabayash H. 2014. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis). J Appl Microbiol, 116, 1506-1520.
  • Gurung N, Ray S, Bose S, Rai V. 2013. A Broader View: Microbial enzymes and their relevance in industries, medicine and beyond. Hindawi Publishing Corporation BioMed Res Int, Article ID 329121, p:8, http://dx.doi.org/10.1155/2013/329121.
  • Alpan L.G. 2008. Bazı ekstrem termofil anaerobik bakterilerin alkali proteazlarının özelliklerinin belirlenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, Ankara.
  • Singh A.K, Mukhopadhyay M. 2012. Overview of fungal lipase: a review. Appl Biochem Biotechnol, 166 (2): 486–520.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol, 118 (1-3): 155-70.
  • Anisha C, Mathew J, Radhakrishnan E.K. 2012. Extracellular lipolytic enzyme production by a novel extremely halophilic bacterium. Universal J Environ Res Technol, 2 (3): 143-148.
  • Arroyo-López F.N, Romero-Gil V, Bautista-Gallego J, Rodríguez-Gómez F, Jiménez-Díaz R, García-García P, Querol A, Garrido-Fernández A. 2012. Yeasts in table olive processing: Desirable or spoilage microorganisms? Int J Food Microbiol, 160, 42–49.
  • Moreno M.D.L, Pérez D, García M.T, Mellado E. 2013. Halophilic bacteria as a source of novel hydrolytic enzymes. Life, 3, 38-51.
  • Schreck S.D, Grunden A.M. 2014. Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol, 98, 1011–1021.
  • Ghasemi Y, Rasoul-Amini S, Kazemi A, Zarrini G, Morowvat M. H, Kargar M. 2011. Isolation and charecterisation of some moderately halophilic bacteria with lipolytic activity. Microbiol, 80 (4): 483-487.
  • Kleerebezem M, Boekhorst J, Van Kranenburg R, Molenaar D, Kuipers O.P, Leer R, Tarchini R, Peters S.A, Sandbrink H.M, Fiers M.W.E.J, Stiekema W, Lankhorst R.M.K, Bron P.A, Hoffer S.M, Nierop Groot M.S, Kerkhoven R, de Vries M, Ursing B, de Vos W.M, Siezen R.J. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA, 100 (4): 1990–1995.
  • Esteban-Torres M, Manche J.M, Rivas B, Munoz R. 2015. Characterization of a halotolerant lipase from the lactic acid bacteria Lactobacillus plantarum useful in food fermentations. LWT - Food Sci Technol, 60 (1): 246–252.
  • Andersen H.J, Ostdal H. 1995. Partial purification and characterisation of a lipase from Lactobacillus plantarum MF32. Food Chem, 53 (4): 369-373.
  • Thapa N, Pal J, Tamang J,P. 2006. Phenotypic identification and technological properties of lactic acid bacteria isolated from traditionally processed fish products of the Eastern Himalayas. Int J Food Microbiol, 107 (1): 33-8.
  • Morales F, Morales I.J, Hernandez C.H. 2011. Isolation and partial characterization of halotolerant lactic acid bacteria from two Mexican cheeses. Appl Biochem Biotechnol, 164, 889-905.
  • Güven R.G. 2011. Termofilik bakteriler ve biyoteknolojik açıdan önemli bazı enzimler. Elektronik Mikrobiyol Derg, TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 09 (1): 1-10.
  • Pandey A, Nigam P, Soccol C.R, Soccol V.T, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol Appl Biochem, 31 (2):135-52.
  • Şimşek T. 2006. Türkiye’nin değişik bölgelerinden termostabil alfa amilaz üreten Bacillus sp. türlerinin izolasyonu karakterizasyonu ve alfa amilaz geninin klonlanması. Ankara Üniversitesi Biyoteknoloji Enstitüsü Yüksek Lisans Tezi, Ankara.
  • Tatar S. 2007. Termofil moderately halofilik Bacillus sp. suşlarından amilaz enzimi üretimi ve endüstriyel kullanım olanaklarının araştırılması. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı Yüksek Lisans Tezi, Adana.
  • Jabbour D, Sorger A, Sahm K, Antranikian G. 2013. A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor. Appl Microbiol Biotechnol, 97 (7): 2971-1978. doi: 10.1007/s00253-012-4194-x.
  • Pathak A.P, Sardar A.G, Janaj P.C. 2014. Exploring the salted fish for salt stable amylase producing bacteria. Indian J Geo-Marine Sci, 43(10): 1967-1971.
  • Kıran Eren Ö, Çömlekçioğlu U, Dostbil N. 2006. Bazı Mikrobiyal enzimler ve endüstrideki kullanım alanları. KSÜ Fen ve Mühendislik Derg, 9 (1): 12-18.
  • Adrio J.L, Demain A.L. 2014. Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4, 117-139; doi:10.3390/biom4010117.
  • Qadar S.A.I, Shireen E, Iqbal S, Anwar A. 2009. Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian J Biotechnol, 18, 286-290.
  • Mushtaq Z, Irfan M, Nadeem M, Naz M, Syed Q. 2015. Kinetics study of extracellular detergent stable alkaline protease from Rhizopus oryzae. Braz Arch Biol Technol, 58 (2): 175-184.
  • Çerçi B, Koçyiğit A, Karaboz İ. 2011. Gıdaların işlenmesinde kullanılan enzimlerin rekombinant DNA teknolojisi ile üretimi. Elektronik Mikrobiyol Derg TR (Eski adı: OrLab On-Line Mikrobiyoloji Dergisi), 09 (3): 1-7. www.mikrobiyoloji.org/pdf/702110301.pdf
  • Sousa M. J, Ardo Y, McSweeney P. L. H. 2001. Advances in the study of proteolysis during cheese ripening. Int Dairy J, 11, 327–345.
  • Maoz A, Mayr R, Scherer S. 2003. Temporal stability and biodiversity of two complex antilisterial Cheese-Ripening. Microbial Consortia. Appl Environ Microbiol, 69 (7): 4012–4018.
  • Akuzawa R, Fox P.F. 2004. Acid phosphatase in cheese. Animal Sci J, 75, 385–391.
  • Hassan A.A, Mansour E.H, El Bedawey A.E.A, Zaki M.S. 2014. Improving dough rheology and cookie quality by protease enzyme. American J Food Sci Nut Research, 1(1): 1-7.
  • Li A.N, Li D.C. 2009. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol, 106 (2): 369-80.
  • Mótyán J.A, Tóth F, Tőzsér J. 2013. Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3 (4): 923–942.
  • Kanlayakrit W, Bovornreungroj P. 2005. Isolation and characterization of salt loving protease producing bacteria form fish Sauce Samples. Kasetsart J Nat Sci, 39, 88 – 97.
  • Udomsil N, Rodtong S, Tanasupawat S, Yongsawatdigul J. 2010. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds, Int J Food Microbiol, 141, 186–194.
  • Cho I.H, Choi E.S, Lim H.G, Lee H.H. 2004. Purification and characterization of six fibrinolytic serine-proteases from Earthworm Lumbricus rubellus. J Biochem Mol Biology, 37 (2): 199-205.
  • Ningthoujam D.S, Thokchom S. 2016. Screening of fibrinolytic enzymes from microorganisms especially Actinomycetes from different biotopes in manipur. Arch Clin Microbiol, 7, 3.
  • Peng Y, Huang Q, Zhang R, Zhang Y. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amynoliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol. 134, 1, 45–52.
  • Sumi H, Nakajima N, Yatgai C. 1995. A unique strong fibrinolytic enyme (katsuwokinase) in skipjack ‘Shiokara’ a Japanese traditional fermented food. Comp Biochem Physiol, 112 (3): 543-547.
  • Prihanto A.A, Darius, Firdaus M. 2013. Proteolytic and fibrinolytic activities of halophilus lactic acid bacteria from two Indonesian fermented foods, J Microbiol Biotechnol Food Sci, 2 (5): 2291-2293.
  • Borah D, Yadav R.N.S, Sangra A, Shahin L, Chaubey A.K. 2012. Production, purification and characterization of nattokinase from Bacillus subtilis, isolated from tea garden soil samples of Dibrugarh, Assam, Asian J Pharm Clin Res, 5 (3): 124-125.
  • Aradhye P.K, Chavan M.D. 2014. Production and characterization of fibrinolytic enzyme from Aspergillus niger, World J Pharmacy and Pharmaceutical Sci, 3 (9): 843-851.
  • Uylaşer V, Konak A. 2004. Gıdalardaki biyojen aminler ve insan sağlığı açısından önemi. Gıda ve Yem Bilimi Teknolojisi, 6, 26-33.
  • Alper N, Temiz A. 2001. Gıdalardaki biyojen aminler ve önemi. Türk Hij Den Biyol Derg, 58 (2): 71 – 80.
  • Collins J.D, Noerrung B, Budka H, Andreoletti O, Buncic S, Griffin J, Hald T, Havelaar A, Hope J, Klein G,Koutsoumanis K, McLauchlin J, Müller-Graf C, Nguyen-The C, Peixe L, Maradona M.P, Ricci A, Sofos J, Threlfall J, Vagsholm I, Vanopdenbosch E. 2011. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J, 9 (10): 2393.
  • Kimura B, Konagaya Y, Fujii T. 2001. Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce, Int J Food Microbiol, 70, 71–77.
  • Konagaya Y, Kimura B, Ishida M, Fujii T. 2002. Purification and properties of a histidine decarboxylase from Tetragenococcus muriaticus, a halophilic lactic acid bacterium. J Appl Microbiol, 92, 1136–1142.
  • Kobayashi T, Kajiwara M, Wahyuni M, Kitakado T, Hamada-Sato N, Imada C, Watanabe E. 2003. Isolation and characterization of halophilic lactic acid bacteria isolated from ‘terasi’ shrimp paste: A traditional fermented seafood product ın Indonesia. J Gen Appl Microbiol, 49, 279-286.
  • Françoise L. 2010. Occurrence and role of lactic acid bacteria in seafood products. Int J Syst Evol Microbiol, 27 (6): 698–709, doi: 10.1016/j.fm. 2010.05.016.
  • Tsai Y.H, Lin C.Y, Chang S.C, Chen H.C, Kung H.F, Wei C.I, Hwang D.F. 2005. Occurrence of histamine and histamine-forming bacteria in salted mackerel in Taiwan, Food Microbiol, 22, 461-467.
  • Pushpa S, Murthy and Madhava M. 2010. Protease pruduction by Aspergillus oryzae in solid-state fermantation utilizing coffee by-products. World Appl Sci J, 8 (2), 199-205.
  • Soares I, Távora Z, Barcelos R.P, Baroni S. 2012. Microorganism produced enzymes in the food industry. Scientific, Health and Social Aspects of The Food Industry, Benjamin Valdez (ed), ISSN 978-953-307-916-5.
  • Vidhyasagar V, Saraniya A, Jeevaratnam K. 2013. Identification of pectin degrading lactic acid bacteria from fermented food sources. In J Adv Lif Sci, 6, 1.
  • Beg Q. K, Kapour M, Mahajan L, Hoondal G.S. 2001. Microbial xylanase and their industrial applications: a review. Appl Microbiol Biotechnol, 56, 326-338.
  • Subramaniyan S, Prema P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett, 183 (1): 1-7.
  • Wejse P.L, Ingvorsen K, Mortensen K.K. 2003. Xylanase production by a novel halophilic bacterium increased 20-fold by response surface methodology. Enzyme Microb Technol, 32, 721-727.
  • WainQ M, Ingvorsen K. 2003. Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles, 7, 87-93.
There are 65 citations in total.

Details

Journal Section Articles
Authors

Sedef Yüce, Seda Tahtacı, Gülden Başyiğit Kılıç This is me

Publication Date June 15, 2017
Published in Issue Year 2017 Volume: 42 Issue: 3

Cite

APA Seda Tahtacı, Gülden Başyiğit Kılıç, S. Y. (2017). HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER. Gıda, 42(3), 242-251.
AMA Seda Tahtacı, Gülden Başyiğit Kılıç SY. HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER. The Journal of Food. May 2017;42(3):242-251.
Chicago Seda Tahtacı, Gülden Başyiğit Kılıç, Sedef Yüce,. “HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER”. Gıda 42, no. 3 (May 2017): 242-51.
EndNote Seda Tahtacı, Gülden Başyiğit Kılıç SY (May 1, 2017) HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER. Gıda 42 3 242–251.
IEEE S. Y. Seda Tahtacı, Gülden Başyiğit Kılıç, “HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER”, The Journal of Food, vol. 42, no. 3, pp. 242–251, 2017.
ISNAD Seda Tahtacı, Gülden Başyiğit Kılıç, Sedef Yüce,. “HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER”. Gıda 42/3 (May 2017), 242-251.
JAMA Seda Tahtacı, Gülden Başyiğit Kılıç SY. HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER. The Journal of Food. 2017;42:242–251.
MLA Seda Tahtacı, Gülden Başyiğit Kılıç, Sedef Yüce,. “HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER”. Gıda, vol. 42, no. 3, 2017, pp. 242-51.
Vancouver Seda Tahtacı, Gülden Başyiğit Kılıç SY. HALOFİLİK LAKTİK ASİT BAKTERİLERİNİN ÜRETTİĞİ HİDROLİTİK ENZİMLER. The Journal of Food. 2017;42(3):242-51.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/