Research Article
BibTex RIS Cite

ANTIOXIDATIVE EFFECT OF TURKISH CHESTNUT BEE POLLEN ON DNA OXIDATION SYSTEM AND ITS PHENOLIC COMPOUNDS

Year 2018, Volume: 43 Issue: 1, 34 - 42, 15.01.2018

Abstract

Chestnut bee pollen is a
high antioxidative natural bee product. In this study the phenolic compounds in
chestnut bee pollen were determined by HPLC-DAD system. Ethanol, water and
methanol were used for the extraction of antioxidant compounds from chestnut
bee pollen. The total phenolic contents and antioxidant capacities of extracts
were determined by Folin-Ciocalteu, CHROMAC (Cr(VI) reduction antioxidant
capacity) and FRAP (ferric reducing antioxidant power) methods,
respectively. 
When compared the amounts of
phenolic compounds and spectroscopic results (total phenolic contents and
antioxidant capacities), the most suitable solvent was found ethanol for the
extraction of antioxidant compounds from bee pollen. The major phenolic
compounds in the chestnut bee pollen were determined as pinocembrin, chrysin,
galangin and hyperoside with the contents of 1.246, 0.332, 0.122 and 0.516 mg/g
of bee pollen, respectively. And also it was determined that the chestnut bee
pollen was inhibited 11% of DNA oxidation in Fenton medium.
  

References

  • Aybastıer, Ö., Şahin, S., Demir, C. (2013). Response Surface Optimized Ultrasonic-Assisted Extraction of Quercetin and Isolation of Phenolic Compounds From Hypericum perforatum L. by Column Chromatography. Separation Science and Technology, 48(11), 1665–1674, doi:10.1080/01496395.2012.760603.
  • Bogdanov, S. (2004). Quality standards of bee pollen and beeswax. Apiacta, 38, 334–341.
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333, doi:10.1111/j.1753-4887.1998.tb01670.x.
  • Chang, S. S., Ostric-Matijasevic, B., Hsıeh, O. A. L., Huang, C.-L. (1977). Natural antıoxıdants from rosemary and sage. Journal of Food Science, 42(4), 1102–1106.
  • Chen, Y., Xiong, H., Zhang, X., Wang, S. (2012). Electrochemical detection of in situ DNA damage induced by enzyme-catalyzed Fenton reaction. Part II in hydrophobic room temperature ionic liquid. Microchimica Acta, 178(1–2), 37–43, doi:10.1007/s00604-012-0809-2.
  • Dawbaa, S., Aybastıer, Ö., Demir, C. (2017). Ultrasensitive determination of DNA oxidation products by gas chromatography–tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. Journal of Chromatography B, 1051, 84–91, doi:10.1016/j.jchromb.2017.03.014.
  • Dizdaroglu, M. (2012). Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Letters, 327(1–2), 26–47, doi:10.1016/j.canlet.2012.01.016.
  • Eraslan, G., Kanbur, M., Silici, S., Karabacak, M. (2010). Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice. Ecotoxicology and Environmental Safety, 73(5), 1084–1091, doi:10.1016/j.ecoenv.2010.02.017.
  • Güneş, M. E., Şahin, S., Demir, C., Borum, E., Tosunoğlu, A. (2016). Determination of phenolic compounds profile in chestnut and floral honeys and their antioxidant and antimicrobial activities. Journal of Food Biochemistry, in press, doi:10.1111/jfbc.12345.
  • Kao, Y. T., Lu, M. J., Chen, C. (2011). Preliminary analyses of phenolic compounds and antioxidant activities in tea pollen extracts. Journal of Food and Drug Analysis, 19(4), 470–477.
  • Leite, J. P. V, Rastrelli, L., Romussi, G., Oliveira, A. B., Vilegas, J. H. Y., Vilegas, W., Pizza, C. (2001). Isolation and HPLC quantitative analysis of flavonoid glycosides from Brazilian beverages (Maytenus ilicifolia and M. aquifolium). Journal of Agricultural and Food Chemistry, 49(8), 3796–3801, doi:10.1021/jf010294n.
  • Mi, J. C., Howard, L. R., Prior, R. L., Clark, J. R. (2004). Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84(13), 1771–1782, doi:10.1002/jsfa.1885.
  • Mohdaly, A. A. A., Mahmoud, A. A., Roby, M. H. H., Smetanska, I., Ramadan, M. F. (2015). Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. Journal of Food Biochemistry, 39(5), 538–547, doi:10.1111/jfbc.12160.
  • Moroney, M.-A., Alcaraz, M. J., Forder, R. A., Carey, F., Hoult, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787–792.
  • Nasır, N., Şahin, S., Çakmak, Z. E., & Çakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella sp. (Chlorophyta).Phycologia,in press, doi:10.2216/16132.1.
  • Pinto, B., Caciagli, F., Riccio, E., Reali, D., Sarić, A., Balog, T., Scarpato, R. (2010). Antiestrogenic and antigenotoxic activity of bee pollen from Cystus incanus and Salix alba as evaluated by the yeast estrogen screen and the micronucleus assay in human lymphocytes. European Journal of Medicinal Chemistry, 45(9), 4122–4128, doi:10.1016/j.ejmech.2010.06.001.
  • Rzepecka-Stojko, A., Drżał, A., Stojko, J., Buszman, E. (2014). Effect of storage conditions on antioxidant activity of bee pollen extracts. Medycyna Weterynaryjna, 70(12), 740-744.
  • Silva, B. M., Andrade, P. B., Valentão, P., Ferreres, F., Seabra, R. M., Ferreira, M. A. (2004). Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: Antioxidant activity. Journal of Agricultural and Food Chemistry, 52(15), 4705–4712. doi:10.1021/jf040057v.
  • Şahin, S., Demir, C. (2013). Antioksidan kapasite tayin yöntemi. Patent number: 2013/06324.
  • Veitch, N. C., Grayer, R. J. (2011). Flavonoids and their glycosides, including anthocyanins. Natural Product Reports, 28(10), 1626, doi:10.1039/c1np00044f.
  • Yildiz, O., Can, Z., Saral, Ö., Yuluǧ, E., Öztürk, F., Aliyazicioǧlu, R., Kolayli, S. (2013). Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evidence-Based Complementary and Alternative Medicinefile, doi:10.1155/2013/461478.
  • Yildiz, O., Karahalil, F., Can, Z., Sahin, H., Kolayli, S. (2013). Total monoamine oxidase (MAO) inhibition by chestnut honey, pollen and propolis. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(5), 690–694, doi:10.3109/14756366.2013.843171.

TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ

Year 2018, Volume: 43 Issue: 1, 34 - 42, 15.01.2018

Abstract



Kestane arı poleni antioksidan özelliği yüksek doğal bir
arı ürünüdür. Bu çalışmada kestane arı poleninde bulunan fenolik bileşikler
HPLC-DAD cihazı ile tayin edilmiştir. Kestane poleninden antioksidan
bileşiklerin ekstraksiyonu için etanol, su ve metanol çözücüleri
kullanılmıştır. Ekstraktların toplam fenolik madde içeriği ve antioksidan
kapasiteleri sırasıyla Folin-Ciocalteu, CHROMAC (Cr (VI) indirgen antioksidan
kapasite) ve FRAP (demir iyonu indirgeyici antioksidan güç) yöntemleri ile
belirlenmiştir. Fenolik madde miktarları ve spektroskopik sonuçlar (toplam
fenolik miktarları ve antioksidan kapasiteleri) karşılaştırıldığında arı
poleninden antioksidan bileşiklerin ekstraksiyonu için en iyi çözücünün etanol
olduğu bulunmuştur. Pinocembrin, chrysin, galangin ve hyperoside sırasıyla
1.246, 0.332, 0.122 and 0.516
mg/g örnek içeriği ile kestane arı poleninde bulunan başlıca fenolik
bileşiklerdir.
Bununla birlikte Fenton ortamında,
kestane poleninin DNA oksidasyonunu %11 oranında önlediği belirlenmiştir. 



References

  • Aybastıer, Ö., Şahin, S., Demir, C. (2013). Response Surface Optimized Ultrasonic-Assisted Extraction of Quercetin and Isolation of Phenolic Compounds From Hypericum perforatum L. by Column Chromatography. Separation Science and Technology, 48(11), 1665–1674, doi:10.1080/01496395.2012.760603.
  • Bogdanov, S. (2004). Quality standards of bee pollen and beeswax. Apiacta, 38, 334–341.
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333, doi:10.1111/j.1753-4887.1998.tb01670.x.
  • Chang, S. S., Ostric-Matijasevic, B., Hsıeh, O. A. L., Huang, C.-L. (1977). Natural antıoxıdants from rosemary and sage. Journal of Food Science, 42(4), 1102–1106.
  • Chen, Y., Xiong, H., Zhang, X., Wang, S. (2012). Electrochemical detection of in situ DNA damage induced by enzyme-catalyzed Fenton reaction. Part II in hydrophobic room temperature ionic liquid. Microchimica Acta, 178(1–2), 37–43, doi:10.1007/s00604-012-0809-2.
  • Dawbaa, S., Aybastıer, Ö., Demir, C. (2017). Ultrasensitive determination of DNA oxidation products by gas chromatography–tandem mass spectrometry and the role of antioxidants in the prevention of oxidative damage. Journal of Chromatography B, 1051, 84–91, doi:10.1016/j.jchromb.2017.03.014.
  • Dizdaroglu, M. (2012). Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Letters, 327(1–2), 26–47, doi:10.1016/j.canlet.2012.01.016.
  • Eraslan, G., Kanbur, M., Silici, S., Karabacak, M. (2010). Beneficial effect of pine honey on trichlorfon induced some biochemical alterations in mice. Ecotoxicology and Environmental Safety, 73(5), 1084–1091, doi:10.1016/j.ecoenv.2010.02.017.
  • Güneş, M. E., Şahin, S., Demir, C., Borum, E., Tosunoğlu, A. (2016). Determination of phenolic compounds profile in chestnut and floral honeys and their antioxidant and antimicrobial activities. Journal of Food Biochemistry, in press, doi:10.1111/jfbc.12345.
  • Kao, Y. T., Lu, M. J., Chen, C. (2011). Preliminary analyses of phenolic compounds and antioxidant activities in tea pollen extracts. Journal of Food and Drug Analysis, 19(4), 470–477.
  • Leite, J. P. V, Rastrelli, L., Romussi, G., Oliveira, A. B., Vilegas, J. H. Y., Vilegas, W., Pizza, C. (2001). Isolation and HPLC quantitative analysis of flavonoid glycosides from Brazilian beverages (Maytenus ilicifolia and M. aquifolium). Journal of Agricultural and Food Chemistry, 49(8), 3796–3801, doi:10.1021/jf010294n.
  • Mi, J. C., Howard, L. R., Prior, R. L., Clark, J. R. (2004). Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. Journal of the Science of Food and Agriculture, 84(13), 1771–1782, doi:10.1002/jsfa.1885.
  • Mohdaly, A. A. A., Mahmoud, A. A., Roby, M. H. H., Smetanska, I., Ramadan, M. F. (2015). Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. Journal of Food Biochemistry, 39(5), 538–547, doi:10.1111/jfbc.12160.
  • Moroney, M.-A., Alcaraz, M. J., Forder, R. A., Carey, F., Hoult, J. R. S. (1988). Selectivity of Neutrophil 5-Lipoxygenase and Cyclo-oxygenase Inhibition by an Anti-inflammatory Flavonoid Glycoside and Related Aglycone Flavonoids. Journal of Pharmacy and Pharmacology, 40(11), 787–792.
  • Nasır, N., Şahin, S., Çakmak, Z. E., & Çakmak, T. (2017). Optimization of ultrasonic-assisted extraction via multiresponse surface for high antioxidant recovery from Chlorella sp. (Chlorophyta).Phycologia,in press, doi:10.2216/16132.1.
  • Pinto, B., Caciagli, F., Riccio, E., Reali, D., Sarić, A., Balog, T., Scarpato, R. (2010). Antiestrogenic and antigenotoxic activity of bee pollen from Cystus incanus and Salix alba as evaluated by the yeast estrogen screen and the micronucleus assay in human lymphocytes. European Journal of Medicinal Chemistry, 45(9), 4122–4128, doi:10.1016/j.ejmech.2010.06.001.
  • Rzepecka-Stojko, A., Drżał, A., Stojko, J., Buszman, E. (2014). Effect of storage conditions on antioxidant activity of bee pollen extracts. Medycyna Weterynaryjna, 70(12), 740-744.
  • Silva, B. M., Andrade, P. B., Valentão, P., Ferreres, F., Seabra, R. M., Ferreira, M. A. (2004). Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: Antioxidant activity. Journal of Agricultural and Food Chemistry, 52(15), 4705–4712. doi:10.1021/jf040057v.
  • Şahin, S., Demir, C. (2013). Antioksidan kapasite tayin yöntemi. Patent number: 2013/06324.
  • Veitch, N. C., Grayer, R. J. (2011). Flavonoids and their glycosides, including anthocyanins. Natural Product Reports, 28(10), 1626, doi:10.1039/c1np00044f.
  • Yildiz, O., Can, Z., Saral, Ö., Yuluǧ, E., Öztürk, F., Aliyazicioǧlu, R., Kolayli, S. (2013). Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evidence-Based Complementary and Alternative Medicinefile, doi:10.1155/2013/461478.
  • Yildiz, O., Karahalil, F., Can, Z., Sahin, H., Kolayli, S. (2013). Total monoamine oxidase (MAO) inhibition by chestnut honey, pollen and propolis. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(5), 690–694, doi:10.3109/14756366.2013.843171.
There are 22 citations in total.

Details

Other ID GD17055
Journal Section Articles
Authors

Saliha Şahin

Büşra Karkar This is me

Mesut Ertan Güneş This is me

Publication Date January 15, 2018
Published in Issue Year 2018 Volume: 43 Issue: 1

Cite

APA Şahin, S., Karkar, B., & Güneş, M. E. (2018). TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ. Gıda, 43(1), 34-42.
AMA Şahin S, Karkar B, Güneş ME. TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ. The Journal of Food. January 2018;43(1):34-42.
Chicago Şahin, Saliha, Büşra Karkar, and Mesut Ertan Güneş. “TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ”. Gıda 43, no. 1 (January 2018): 34-42.
EndNote Şahin S, Karkar B, Güneş ME (January 1, 2018) TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ. Gıda 43 1 34–42.
IEEE S. Şahin, B. Karkar, and M. E. Güneş, “TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ”, The Journal of Food, vol. 43, no. 1, pp. 34–42, 2018.
ISNAD Şahin, Saliha et al. “TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ”. Gıda 43/1 (January 2018), 34-42.
JAMA Şahin S, Karkar B, Güneş ME. TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ. The Journal of Food. 2018;43:34–42.
MLA Şahin, Saliha et al. “TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ”. Gıda, vol. 43, no. 1, 2018, pp. 34-42.
Vancouver Şahin S, Karkar B, Güneş ME. TÜRK KESTANE ARI POLENİNİN DNA OKSİDASYON SİSTEMİ ÜZERİNDEKİ ANTİOKSİDAN ETKİSİ VE FENOLİK BİLEŞİKLERİ. The Journal of Food. 2018;43(1):34-42.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/