BibTex RIS Cite

Gelatinization of Waxy, Normal and High Amylose Corn Starches (in English)

Year 2010, Volume: 35 Issue: 4, 237 - 244, 01.08.2010

Abstract

The influence of amylose content on water uptake and solubility behaviors and percent degree of gelatinization of waxy (Amioca), normal and high amylose (Hylon VII) corn starches were investigated. Gelatinization was also followed by differential scanning calorimetry and the transition temperatures and enthalpies were determined. The results were discussed in relation to underlying mass transfer processes during gelatinization. It was determined that water uptake and solubility of starches decreased as the amylose content increased. Amioca exhibited the highest water uptake, attributed to its low amylose content. The water uptake and solubility of Hylon VII were low at all temperatures. The highly associated structure of Hylon VII and also the presence of lipid complexes were considered as the factors influencing its gelatinization behavior. Therefore it was concluded that the mass transfer processes for gelatinization was mainly influenced by free amylose for network formation rather than the proportion of amylose in starch.

References

  • Singh N, Singh J, Kaur L, Soghi NS, Gill, BS. 2003.
  • Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem : 219-231. Sandhu K, Singh N. 2007. Some properties of corn starches II: Physicochemical, gelatinization, retrograda- tion, pasting and gel textural properties. Food Chem 101: 1507.
  • Hoseney R. 1994. C. Principles of cereal science and technology; AACC Inc. St Paul, Minnesota, 378 p.
  • Leach HW. 1965. Gelatinization of starch. In: Starch: chemistry and technology (Vol I.), Whistler RL, Paschall,
  • EF (Ed.), Academic Press Inc., New York, pp. 289-307. Lund D. 1984. Influence of time, temperature, mois- ture, ingredients and processing conditions on starch gelatinization. Crit Rev Food Sci 20 (4): 249-273.
  • Biliaderis CG. 1990. Thermal analysis of food carbo- hydrates. In: Thermal analysis of foods; Harwalkar VR,
  • Ma CY, (Ed.), Elsevier Applied Science Publishers, New York, pp. 168-220. Karapantsios TD, Sakonidou EP, Raphaelides SN. Water dispersion kinetics during starch gelatiniza- tion. Carbohyd Polym 49: 479-490. Matveev YI, van Soest JJG, Nieman C, Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP. 2001. The re- lationship between thermodynamic and structural prop- erties of low and high amylose maize starches. Carbohyd Polym 44: 151-160.
  • Vandeputte GE, Derycke V, Geeroms J, Delcour JA. Rice starches. II. Structural aspects provide insight in swelling and pasting properties. J Cereal Sci 38: 53-59. Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ, 1993. Swelling and gelatinisation of cereal starches.
  • IV. Some effects of lipid complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem 70: 385-391. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O. 1998. Relationships between chain length distribution of amylopectin and gelatini- sation properties within the same botanical origin for sweet potato and buckwheat. Carbohyd Polym 37: 153
  • Fredriksson H, Silverio J, Andersson R, Eliasson AC, Aman P. 1998. The influence of amylose and amylopec- tin characteristics on gelatinisation and retrogradation properties of different starches. Carbohyd Polym 35: 134.
  • Sasaki T, Yasui T, Matsuki J. 2000. Effect of amylose content on gelatinisation, retrogradation, and pasting properties from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem 77: 58-63.
  • Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterisation of rice starches: a poly- meric approach to phase transitions of granular starch. J Agri Food Chem 34: 6-14. Cheetham NWH, Tao LP. 1997. The effects of amy- lose content on the molecular size of amylose and on the distribution of amylopectin chain length in maize starches. Carbohyd Polym 33: 251-261.
  • Gernat C, Radosta S, Anger H, Damaschun G. 1993.
  • Crystalline parts of three different conformations de- tected in native and enzymatically degraded starches, Starch/Starke 45: 309-314. Shi, Y-C, Seib PA. 1992. The structure of four waxy starches related to gelatinisation and retrogradation. Carbohyd Res 227: 131-145.
  • AOAC. 1990. Official Methods of Analysis of the As- sociation of Official Analytical Chemists; Inc.:Virginia.
  • Leach HW, McCowen LD, Schoch T. 1959. Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem 36 (6): 534-544.
  • Birch GG, Priestly RJ. 1973. Degree of gelatinization of cooked rice. Die Stärke 3: 98-100.
  • Köksel H, Şahbaz F, Özboy Ö. 1993. The influence of wheat drying temperatures on the birefringence and X-ray diffraction patterns of wet harvested wheat starch. Cereal Chem 70 (4): 481-483.
  • Collanna, P, Mercier, C. 1985. Gelatinization and melting of maize and pea starches with normal and high- amylose genotypes. Phytochemistry 24 (8): 1667-1674.
  • Sasaki T, Matsuki J. 1998. Effect of wheat starch structure on swelling power. Cereal Chem 75 (4): 525
  • Tester RF, Morrison WR. 1990. Swelling and gelatini- zation of cereal starches. I. Effects of amylopectin, amy- lose and lipids. Cereal Chem 67 (6): 551-557.
  • Lund DB, Wirakartakusumah MA. 1984. A model for starch gelatinization phenomena. In Engineering and Food, Engineering Sciences in the Food Industry (Vol. 1);
  • Mckenna BM, (Ed.); Elsevier: London, UK, pp. 425-432. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effects of amylo- pectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76: 629-637.
  • Shi YC, Capitani T, Trzasko P, Jeffcoat R. 1998. Mo- lecular structure of a low-amylopectin starch and other high-amylose maize starches. J Cereal Sci 27: 289-299.
  • Ohtsuka A, Watanabe T, Suzuki T. 1994. Gel struc- ture and water diffusion phenomena in gels studied by pulsed field gradient stimulated echo NMR, Carbohyd Polym 25: 95-100.

Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce)

Year 2010, Volume: 35 Issue: 4, 237 - 244, 01.08.2010

Abstract

Bu çalışmada mumsu (Amioca), normal ve yüksek amiloz içerikli (Hylon VII) mısır nişastalarının su kazancı ve çözünürlük davranışları ile jelatinizasyon derecelerine amiloz içeriğinin etkisi araştırılmıştır. Jelatinizasyon diferansiyel taramalı kalorimetri yöntemi ile de incelenmiş, geçiş sıcaklıkları ve entalpileri belirlenmiştir. Jelatinizasyon süresince meydana gelen değişiklikler kütle aktarımı yaklaşımıyla değerlendirilmiştir. Nişastadaki amiloz miktarı azaldıkça su alma ve çözünürlük miktarının azaldığı belirlenmiştir. En yüksek su alma Amioca da izlenmiş ve bu durum düşük amiloz içeriği ile ilişkilendirilmiştir. Hylon VII de gözlenen molekül içi assosiyasyon ve lipit varlığının jelatinizasyon davranışında belirleyici rol oynadığı izlenmiştir. Elde edilen sonuçlar ışığında, jelatinizasyon sırasındaki kütle aktarım olaylarının nişastadaki amiloz oranından çok ağ yapıda yer alabilen serbest amiloz miktarından etkilendiği sonucuna varılmıştır.

References

  • Singh N, Singh J, Kaur L, Soghi NS, Gill, BS. 2003.
  • Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem : 219-231. Sandhu K, Singh N. 2007. Some properties of corn starches II: Physicochemical, gelatinization, retrograda- tion, pasting and gel textural properties. Food Chem 101: 1507.
  • Hoseney R. 1994. C. Principles of cereal science and technology; AACC Inc. St Paul, Minnesota, 378 p.
  • Leach HW. 1965. Gelatinization of starch. In: Starch: chemistry and technology (Vol I.), Whistler RL, Paschall,
  • EF (Ed.), Academic Press Inc., New York, pp. 289-307. Lund D. 1984. Influence of time, temperature, mois- ture, ingredients and processing conditions on starch gelatinization. Crit Rev Food Sci 20 (4): 249-273.
  • Biliaderis CG. 1990. Thermal analysis of food carbo- hydrates. In: Thermal analysis of foods; Harwalkar VR,
  • Ma CY, (Ed.), Elsevier Applied Science Publishers, New York, pp. 168-220. Karapantsios TD, Sakonidou EP, Raphaelides SN. Water dispersion kinetics during starch gelatiniza- tion. Carbohyd Polym 49: 479-490. Matveev YI, van Soest JJG, Nieman C, Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP. 2001. The re- lationship between thermodynamic and structural prop- erties of low and high amylose maize starches. Carbohyd Polym 44: 151-160.
  • Vandeputte GE, Derycke V, Geeroms J, Delcour JA. Rice starches. II. Structural aspects provide insight in swelling and pasting properties. J Cereal Sci 38: 53-59. Morrison WR, Tester RF, Snape CE, Law R, Gidley MJ, 1993. Swelling and gelatinisation of cereal starches.
  • IV. Some effects of lipid complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem 70: 385-391. Noda T, Takahata Y, Sato T, Suda I, Morishita T, Ishiguro K, Yamakawa O. 1998. Relationships between chain length distribution of amylopectin and gelatini- sation properties within the same botanical origin for sweet potato and buckwheat. Carbohyd Polym 37: 153
  • Fredriksson H, Silverio J, Andersson R, Eliasson AC, Aman P. 1998. The influence of amylose and amylopec- tin characteristics on gelatinisation and retrogradation properties of different starches. Carbohyd Polym 35: 134.
  • Sasaki T, Yasui T, Matsuki J. 2000. Effect of amylose content on gelatinisation, retrogradation, and pasting properties from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem 77: 58-63.
  • Biliaderis CG, Page CM, Maurice TJ, Juliano BO. Thermal characterisation of rice starches: a poly- meric approach to phase transitions of granular starch. J Agri Food Chem 34: 6-14. Cheetham NWH, Tao LP. 1997. The effects of amy- lose content on the molecular size of amylose and on the distribution of amylopectin chain length in maize starches. Carbohyd Polym 33: 251-261.
  • Gernat C, Radosta S, Anger H, Damaschun G. 1993.
  • Crystalline parts of three different conformations de- tected in native and enzymatically degraded starches, Starch/Starke 45: 309-314. Shi, Y-C, Seib PA. 1992. The structure of four waxy starches related to gelatinisation and retrogradation. Carbohyd Res 227: 131-145.
  • AOAC. 1990. Official Methods of Analysis of the As- sociation of Official Analytical Chemists; Inc.:Virginia.
  • Leach HW, McCowen LD, Schoch T. 1959. Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem 36 (6): 534-544.
  • Birch GG, Priestly RJ. 1973. Degree of gelatinization of cooked rice. Die Stärke 3: 98-100.
  • Köksel H, Şahbaz F, Özboy Ö. 1993. The influence of wheat drying temperatures on the birefringence and X-ray diffraction patterns of wet harvested wheat starch. Cereal Chem 70 (4): 481-483.
  • Collanna, P, Mercier, C. 1985. Gelatinization and melting of maize and pea starches with normal and high- amylose genotypes. Phytochemistry 24 (8): 1667-1674.
  • Sasaki T, Matsuki J. 1998. Effect of wheat starch structure on swelling power. Cereal Chem 75 (4): 525
  • Tester RF, Morrison WR. 1990. Swelling and gelatini- zation of cereal starches. I. Effects of amylopectin, amy- lose and lipids. Cereal Chem 67 (6): 551-557.
  • Lund DB, Wirakartakusumah MA. 1984. A model for starch gelatinization phenomena. In Engineering and Food, Engineering Sciences in the Food Industry (Vol. 1);
  • Mckenna BM, (Ed.); Elsevier: London, UK, pp. 425-432. Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T. 1999. Effects of amylo- pectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 76: 629-637.
  • Shi YC, Capitani T, Trzasko P, Jeffcoat R. 1998. Mo- lecular structure of a low-amylopectin starch and other high-amylose maize starches. J Cereal Sci 27: 289-299.
  • Ohtsuka A, Watanabe T, Suzuki T. 1994. Gel struc- ture and water diffusion phenomena in gels studied by pulsed field gradient stimulated echo NMR, Carbohyd Polym 25: 95-100.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Aytunga Arık Kibar This is me

İlknur Gönenç This is me

Ferhunde Us This is me

Publication Date August 1, 2010
Published in Issue Year 2010 Volume: 35 Issue: 4

Cite

APA Kibar, A. A. ., Gönenç, İ. ., & Us, F. . (2010). Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce). Gıda, 35(4), 237-244.
AMA Kibar AA, Gönenç İ, Us F. Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce). The Journal of Food. August 2010;35(4):237-244.
Chicago Kibar, Aytunga Arık, İlknur Gönenç, and Ferhunde Us. “Mumsu, Normal Ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce)”. Gıda 35, no. 4 (August 2010): 237-44.
EndNote Kibar AA, Gönenç İ, Us F (August 1, 2010) Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce). Gıda 35 4 237–244.
IEEE A. A. . Kibar, İ. . Gönenç, and F. . Us, “Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce)”, The Journal of Food, vol. 35, no. 4, pp. 237–244, 2010.
ISNAD Kibar, Aytunga Arık et al. “Mumsu, Normal Ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce)”. Gıda 35/4 (August 2010), 237-244.
JAMA Kibar AA, Gönenç İ, Us F. Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce). The Journal of Food. 2010;35:237–244.
MLA Kibar, Aytunga Arık et al. “Mumsu, Normal Ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce)”. Gıda, vol. 35, no. 4, 2010, pp. 237-44.
Vancouver Kibar AA, Gönenç İ, Us F. Mumsu, Normal ve Yüksek Amiloz İçerikli Mısır Nişastalarının Jelatinizasyonu (İngilizce). The Journal of Food. 2010;35(4):237-44.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/