Research Article
BibTex RIS Cite

VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ

Year 2022, Volume: 47 Issue: 4, 679 - 689, 30.08.2022
https://doi.org/10.15237/gida.GD22048

Abstract

Bu araştırmada, vanilin ve nisinin ılımlı sıcaklık koşullarında Listeria monocytogenes inaktivasyonu üzerine etkisi yanıt yüzey yöntemi ile incelenmiştir. L. monocytogenes inhibisyonunda vanilin konsantrasyonu (0.5–1.5 mg/mL), nisin konsantrasyonu (5–10 IU/mL), sıcaklık (45–55C) ve süre (2–6 dak.) bağımsız değişkenlerinin etkisini belirlemek için merkezi kompozit tasarımı kullanılmıştır. Elde edilen ikinci dereceden model ile, vanilin konsantrasyonu, nisin konsantrasyonu ve sıcaklığın inhibisyon üzerine önemli bir etkiye sahip olduğu buna karşın sürenin ise önemsiz olduğu saptanmıştır. Bu çalışma, 1.5 mg/mL vanilin, 10 IU/mL nisin, 55°C sıcaklık ve 5.77 dakikalık uygulamanın L. monocytogenes inaktivasyonu için optimum koşullar olduğu ve bu koşullar ile 7.16 logaritmik azalmanın sağlanabileceğini ortaya koymuştur. Ilımlı sıcaklık koşullarında nisin ve vanilinin birlikte kullanımı gıdalarda L. monocytogenes kontrolü açısından gelecek vaat etmektedir.

References

  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1):177-183.
  • Aras, S., Kabir, M.N., Chowdhury, S., Fouladkhah, A.C. (2020). Augmenting the pressure-based pasteurization of Listeria monocytogenes by synergism with nisin and mild heat. International Journal of Environmental Research and Public Health, 17(2): 563.
  • Arioli, S., Montanari, C., Magnani, M., Tabanelli, G., Patrignani, F., Lanciotti, R., Mora, D., Gardini, F. (2019). Modelling of Listeria monocytogenes Scott A after a mild heat treatment in the presence of thymol and carvacrol: Effects on culturability and viability. Journal of Food Engineering, 240: 72-82.
  • Bas, D. and Boyaci, I.H. (2007) Modeling and optimization I: Usability of response resurface methodology. Journal of Food Engineering, 78, 836-845.
  • Bucur, F. I., Grigore-Gurgu, L., Crauwels, P., Riedel, C.U., Nicolay, A.I. (2018). Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Frontiers Microbiology, doi:10.3389/fmicb.2018.02700.
  • Cava-Roda, R., Taboada-Rodriguez, A., Lopez-Gomez, A., Martinez-Hernandez, G.B., Marin-Iniesta, F. (2021). Synergistic antimicrobial activities of combinations of vanillin and essential oils of cinnamon bark, cinnamon leaves, and cloves. Foods, 10(6):1406.
  • Cava-Roda, R.M., Taboada-Rodríguez, A., Valverde-Franco, M.T., Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157:H7 in milk. Food Bioprocess Technology, 5:2120–2131.
  • Chang, Y. Bai, J., Yu, H., Yang, X., Chang, P-S., Nitin, N. (2022). Synergistic inactivation of Listeria and E. coli using a combination of erythorbyl laurate and mild heating and its application in decontamination of peas as a model fresh produce. Food Microbiology, 102.
  • Char, C., S. Guerrero, and S. M. Alzamora. (2009). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20:67–74.
  • Char, C. D., S. N. Guerrero, and S. M. Alzamora. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food Bioprocess Technology, 3:752–761.
  • Delaquis, P., K. Stanich, and P. Toivonen. (2005). Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. Journal of Food Protection, 68:1472–1476.
  • Disson, O., Moura, A., Lecuit, M. (2021). Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends in Microbiology, 29(9):811-822.
  • Esteban, M-D., Palop, A. (2011). Nisin, carvacrol and their combinations against the growth of heat-treated Listeria monocytogenes cells. Food Technology and Biotechnology, 49(1):89-95.
  • Ferrario, M, Fenoglio, D., Chantada, A., Guerrero, S. (2020). Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment. International Journal of Food Microbiology, 332, 108811.
  • Fitzgerald, D. J., M. Stratford, M. J. Gasson, J. Ueckert, A. Bos, and A. Narbad. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantatum and Listeria innocua. Journal of Applied Microbiology, 97:104-113.
  • Friedman, M, & Jürgens, H.S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101-2110.
  • Koç, B., Kaymak Ertekin, F. 2010. Yanıt yüzey yöntemi ve gıda işleme uygulamaları. GIDA, 35(1), 1-8.
  • Li, Q., Zhu, X., Xie, Y., Zhong, Y. (2021). o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Applied Microbiology and Biotechnology, 105: 5147-5158.
  • Mate, J., Peeriago, P.M., Ros-Chumillas, M., Grullon, C., Huertas, J.P., Palop, A. (2017). Fat and fibre interfere with the dramatic effect that nanoemulsified d-limonene has on the heat resistance of Listeria monocytogenes. Food Microbiology, 62:270-274.
  • Montgomery, D. C. 2013. Design and analysis of experiments. Eighth Edition, John Wiley and Sons, Incorporated, New York, 1-757.
  • Olatunde, A., Mohammed, A., Ibrahim, M.A., Tajuddeen, N., Shuaibu, N. (2022). Vanillin: A food additive with multiple biological activities. European Journal of Medicinal Chemistry Reports. doi:10.1016/j.ejmcr.2022.100055.
  • Orizano-Ponce, E., Char, C., Sepulveda, F., Ortiz-Viedma, J. (2022). Heat sensitization of Escherichia coli by the natural antimicrobials vanillin and emulsified citral in blended carrot-orange juice. Food Microbiology, 107. doi:10.1016/j.fm.2022.104058.
  • Perez-Ramos, A., Madimoussa, D., Coucheney, F., Drider, D. (2021). Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms, 9(10). doi: 10.3390/microorganisms9102107.
  • Polat Yemiş, G., Pagotto, F., Bach, S., & Delaquis, P. (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74(12), 2062-2069.
  • Polat Yemiş, G., Pagotto, F., Bach, S., & Delaquis, P. (2012). Thermal tolerance and survival of Cronobacter sakazakii in powdered infant formula supplemented with vanillin, ethyl vanillin and vanillic acid. Journal of Food Science, 77(9), M523-M527.
  • Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.L., & Oksman-Caldentey, K.J. (2005). Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67, 8-18.
  • Schenk, M., Ferrario, M, Guerrero, S. (2018). Antimicrobial activity of binary and ternary mixtures of vanillin, citral, and potassium sorbate in laboratory media and fruit purées. Food and Bioprocess Technology, 11:324-333.
  • Takundwa, B.A., Bhagwat, P., Pillai, S., Ijabadeniyi, O.A. (2021). Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT, 139, doi:10.1016/j.lwt.2020.110522.
  • Yang, J., Chen, Y_Z, Yu-Xuan, W., Tao, L., Zhang, Y-D., Wang, S-R., Zhang, G-C., Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology, 175.

DETERMINATION OF INHIBITORY EFFECT OF VANILLIN AND NISIN ON LISTERIA MONOCYTOGENES BY RESPONSE SURFACE METHODOLOGY

Year 2022, Volume: 47 Issue: 4, 679 - 689, 30.08.2022
https://doi.org/10.15237/gida.GD22048

Abstract

In this study, the effects of vanillin and nisin on the inactivation of Listeria monocytogenes under mild temperature conditions were investigated using the response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including vanillin concentration (0.5–1.5 mg/mL), nisin concentration (5–10 IU/mL), temperature (45–55C), and time (2–6 min.) on inhibition of L. monocytogenes. The proposed quadratic model revealed that vanillin concentration, nisin concentration and temperature had a significant effect on inhibition, whereas time was insignificant. The optimum conditions for the combined treatment for microbial reduction (7.16 log) were determined which were 1.5 mg/mL vanillin, 10 IU/mL nisin at 55C for 5.77 min. The combined use of nisin and vanillin in foods under mild temperature conditions is promising for controling L. monocytogenes in foods.

References

  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1):177-183.
  • Aras, S., Kabir, M.N., Chowdhury, S., Fouladkhah, A.C. (2020). Augmenting the pressure-based pasteurization of Listeria monocytogenes by synergism with nisin and mild heat. International Journal of Environmental Research and Public Health, 17(2): 563.
  • Arioli, S., Montanari, C., Magnani, M., Tabanelli, G., Patrignani, F., Lanciotti, R., Mora, D., Gardini, F. (2019). Modelling of Listeria monocytogenes Scott A after a mild heat treatment in the presence of thymol and carvacrol: Effects on culturability and viability. Journal of Food Engineering, 240: 72-82.
  • Bas, D. and Boyaci, I.H. (2007) Modeling and optimization I: Usability of response resurface methodology. Journal of Food Engineering, 78, 836-845.
  • Bucur, F. I., Grigore-Gurgu, L., Crauwels, P., Riedel, C.U., Nicolay, A.I. (2018). Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Frontiers Microbiology, doi:10.3389/fmicb.2018.02700.
  • Cava-Roda, R., Taboada-Rodriguez, A., Lopez-Gomez, A., Martinez-Hernandez, G.B., Marin-Iniesta, F. (2021). Synergistic antimicrobial activities of combinations of vanillin and essential oils of cinnamon bark, cinnamon leaves, and cloves. Foods, 10(6):1406.
  • Cava-Roda, R.M., Taboada-Rodríguez, A., Valverde-Franco, M.T., Marín-Iniesta, F. (2012). Antimicrobial activity of vanillin and mixtures with cinnamon and clove essential oils in controlling Listeria monocytogenes and Escherichia coli O157:H7 in milk. Food Bioprocess Technology, 5:2120–2131.
  • Chang, Y. Bai, J., Yu, H., Yang, X., Chang, P-S., Nitin, N. (2022). Synergistic inactivation of Listeria and E. coli using a combination of erythorbyl laurate and mild heating and its application in decontamination of peas as a model fresh produce. Food Microbiology, 102.
  • Char, C., S. Guerrero, and S. M. Alzamora. (2009). Survival of Listeria innocua in thermally processed orange juice as affected by vanillin addition. Food Control, 20:67–74.
  • Char, C. D., S. N. Guerrero, and S. M. Alzamora. (2010). Mild thermal process combined with vanillin plus citral to help shorten the inactivation time for Listeria innocua in orange juice. Food Bioprocess Technology, 3:752–761.
  • Delaquis, P., K. Stanich, and P. Toivonen. (2005). Effect of pH on the inhibition of Listeria spp. by vanillin and vanillic acid. Journal of Food Protection, 68:1472–1476.
  • Disson, O., Moura, A., Lecuit, M. (2021). Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends in Microbiology, 29(9):811-822.
  • Esteban, M-D., Palop, A. (2011). Nisin, carvacrol and their combinations against the growth of heat-treated Listeria monocytogenes cells. Food Technology and Biotechnology, 49(1):89-95.
  • Ferrario, M, Fenoglio, D., Chantada, A., Guerrero, S. (2020). Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment. International Journal of Food Microbiology, 332, 108811.
  • Fitzgerald, D. J., M. Stratford, M. J. Gasson, J. Ueckert, A. Bos, and A. Narbad. (2004). Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantatum and Listeria innocua. Journal of Applied Microbiology, 97:104-113.
  • Friedman, M, & Jürgens, H.S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101-2110.
  • Koç, B., Kaymak Ertekin, F. 2010. Yanıt yüzey yöntemi ve gıda işleme uygulamaları. GIDA, 35(1), 1-8.
  • Li, Q., Zhu, X., Xie, Y., Zhong, Y. (2021). o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Applied Microbiology and Biotechnology, 105: 5147-5158.
  • Mate, J., Peeriago, P.M., Ros-Chumillas, M., Grullon, C., Huertas, J.P., Palop, A. (2017). Fat and fibre interfere with the dramatic effect that nanoemulsified d-limonene has on the heat resistance of Listeria monocytogenes. Food Microbiology, 62:270-274.
  • Montgomery, D. C. 2013. Design and analysis of experiments. Eighth Edition, John Wiley and Sons, Incorporated, New York, 1-757.
  • Olatunde, A., Mohammed, A., Ibrahim, M.A., Tajuddeen, N., Shuaibu, N. (2022). Vanillin: A food additive with multiple biological activities. European Journal of Medicinal Chemistry Reports. doi:10.1016/j.ejmcr.2022.100055.
  • Orizano-Ponce, E., Char, C., Sepulveda, F., Ortiz-Viedma, J. (2022). Heat sensitization of Escherichia coli by the natural antimicrobials vanillin and emulsified citral in blended carrot-orange juice. Food Microbiology, 107. doi:10.1016/j.fm.2022.104058.
  • Perez-Ramos, A., Madimoussa, D., Coucheney, F., Drider, D. (2021). Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms, 9(10). doi: 10.3390/microorganisms9102107.
  • Polat Yemiş, G., Pagotto, F., Bach, S., & Delaquis, P. (2011). Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. Journal of Food Protection, 74(12), 2062-2069.
  • Polat Yemiş, G., Pagotto, F., Bach, S., & Delaquis, P. (2012). Thermal tolerance and survival of Cronobacter sakazakii in powdered infant formula supplemented with vanillin, ethyl vanillin and vanillic acid. Journal of Food Science, 77(9), M523-M527.
  • Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.L., & Oksman-Caldentey, K.J. (2005). Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67, 8-18.
  • Schenk, M., Ferrario, M, Guerrero, S. (2018). Antimicrobial activity of binary and ternary mixtures of vanillin, citral, and potassium sorbate in laboratory media and fruit purées. Food and Bioprocess Technology, 11:324-333.
  • Takundwa, B.A., Bhagwat, P., Pillai, S., Ijabadeniyi, O.A. (2021). Antimicrobial efficacy of nisin, oregano and ultrasound against Escherichia coli O157:H7 and Listeria monocytogenes on lettuce. LWT, 139, doi:10.1016/j.lwt.2020.110522.
  • Yang, J., Chen, Y_Z, Yu-Xuan, W., Tao, L., Zhang, Y-D., Wang, S-R., Zhang, G-C., Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide Biochemistry and Physiology, 175.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Gökçe Polat Yemiş 0000-0002-1367-0535

Publication Date August 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 4

Cite

APA Polat Yemiş, G. (2022). VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ. Gıda, 47(4), 679-689. https://doi.org/10.15237/gida.GD22048
AMA Polat Yemiş G. VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ. The Journal of Food. August 2022;47(4):679-689. doi:10.15237/gida.GD22048
Chicago Polat Yemiş, Gökçe. “VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ”. Gıda 47, no. 4 (August 2022): 679-89. https://doi.org/10.15237/gida.GD22048.
EndNote Polat Yemiş G (August 1, 2022) VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ. Gıda 47 4 679–689.
IEEE G. Polat Yemiş, “VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ”, The Journal of Food, vol. 47, no. 4, pp. 679–689, 2022, doi: 10.15237/gida.GD22048.
ISNAD Polat Yemiş, Gökçe. “VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ”. Gıda 47/4 (August 2022), 679-689. https://doi.org/10.15237/gida.GD22048.
JAMA Polat Yemiş G. VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ. The Journal of Food. 2022;47:679–689.
MLA Polat Yemiş, Gökçe. “VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ”. Gıda, vol. 47, no. 4, 2022, pp. 679-8, doi:10.15237/gida.GD22048.
Vancouver Polat Yemiş G. VANİLİN VE NİSİNİN LİSTERİA MONOCYTOGENES ÜZERİNE İNHİBİSYON ETKİSİNİN YANIT YÜZEY YÖNTEMİ İLE BELİRLENMESİ. The Journal of Food. 2022;47(4):679-8.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/