Research Article
BibTex RIS Cite

KURU KIYMANIN NEM ADSORPSİYON İZOTERMLERİ VE ADSORPSİYON İZOSTERİK ISISI

Year 2022, Volume: 47 Issue: 5, 717 - 728, 30.10.2022
https://doi.org/10.15237/gida.GD22043

Abstract

Kuru kıyma, pişirilmiş bir et ürünüdür. Türkiye'nin İç Anadolu Bölgesi'nde popüler bir et ürünüdür. Kuru kıyma üretiminde dana kaburga, karın etleri ve kaslararası yağ kullanılmaktadır. Bu çalışmada, farklı nispi nem değerlerine sahip dokuz farklı tuz çözeltisi kullanılarak sorpsiyon izotermleri 5, 15 ve 25°C'de belirlenmiştir. Elde edilen deneysel veriler Iglesias-Chirife, Oswin, BET, Harkins-Jura, Smith, Henderson, Halsey, GAB, Peleg eşitliklerine uygulanmış, en iyi uyumun Iglesias-Chirife ve Peleg eşitliklerinde olduğu ortaya çıkarılmıştır. Elde edilen deneysel verilerden sorpsiyon izotermlerinin Tip II özelliğe sahip olduğu bulunmuştur. Clausius Clapeyron eşitliği deneysel izotermlere uygulanarak izosterik adsorpsiyon ısıları belirlenmiş ve artan nem içeriği ile azaldığı tespit edilmiştir.

Supporting Institution

Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

NEÜBAP16/2F9

Thanks

Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne proje desteğinden dolayı teşekkür ederim.

References

  • Al-Muhtaseb, A. H., McMinn, A. M., Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: A review. Trans IChem E, 80, 118-128. https://doi.org/10.1205/09603080252938753
  • Ansari, S., Farahnaky, A., Majzoobi, M., & Badii, F. (2011). Modeling the effect of glucose syrup on the moisture sorption isotherm of figs. Food Biophysics, 6, 377–389. DOI 10.1007/s11483-011-9213-4
  • Badii, F., Farahnaky, A., & Behmadi, H. (2014). Effect of storage relative humidity on physical stability of dried fig. Journal of Food Processing and Preservation, 38, 477-483. doi:10.1111/j.1745-4549.2012.00797.x
  • Basu, S., Shivhare, U. S., Mujumdar, A.S. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24, 917-930. https://doi.org/10.1080/07373930600775979
  • Bell, L., & Labuza, T. (2000). Moisture Sorption: Practical Aspects of Isotherm Measurements and Use; American Association of Cereal Chemists: St. Paul, MN.
  • Chung, D. S. and Pfost, H. B. (1967). Part 1: Heat and free energy changes of adsorption and desorption. Transactions of the ASAE. 549-555.
  • Falade, K. O., & Aworh, O. C. (2004). Adsorption isotherms of osmo-oven dried african star apple (Chrysophyllum albidum) and african mango (Irvingia gabonensis) slices. European Food Research and Technology, 218, 278–283. DOI 10.1007/s00217-003-0843-8
  • Labuza, T. P., Kannane, A., & Chen, J. (1985). Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated foods. Journal of Food Science, 50, 385–392. https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
  • Lemon, D. W. (1975). An improved TBA test for rancidity. New Series Circular No. 51. Halifax Laboratory, Halifax, Nova Scotia.
  • Mbarek, R., and Mihoubi, D. (2019). Thermodynamic properties and water desorption isotherms of Golden Delicious apples. Heat and Mass Transfer, 55, 1405-1418. DOI:10.1007/s00231-018-2527-8
  • Mbarga, M. C. N., Nde, D. B., Mohagir, A., Kapseu, C., & Nkenge, G. E. (2017). Moisture sorption isotherms and properties of sorbed water of neem (Azadirichta indica A. Juss) kernels. Journal of Engineering Physics and Thermophysics, 90, 35-42. DOI 10.1007/s10891-017-1536-7
  • Mrad, N. D., Bonazzi, C., Boudhrioua, N., Kechaou, N., & Courtois, F. (2012). Moisture sorption isotherms, thermodynamic properties, and glass transition of pears and apples. Drying Technology, 30, 1397–1406. https://doi.org/10.1080/07373937.2012.683843
  • Prasantha, B. D. R., & Amunogoda, P. N. R. J. (2013). Moisture adsorption characteristics of solar-dehydrated mango and jackfruit. Food Bioprocess Technology, 6, 1720–1728. DOI 10.1007/s11947-012-0832-7
  • Ockerman, H. W. (1985). Quality control of post-mortem muscle tissue (pp. 10-45). Ohio: Department of Animal Science, The Ohio State University and The Ohio Agricultural Research and Development Center.
  • Quirijns, E., Van Boxtel, A., Van Loon, W., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805–1814. https://doi.org/10.1002/jsfa.2140
  • Sanchez, E. S., Juan, N. S., Simal, S., & Rossello, C. (1997). Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. Journal of Science Food and Agriculture, 74, 57–63. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1%3C57::AID-JSFA770%3E3.0.CO;2-8
  • Shi, Q., Lin, W., Zhao, Y., Zhang, P., Wang, R. (2016). Moisture adsorption isotherms and thermodynamic properties of penaeus vannamei meat with and without maltodextrin addition. Journal of Aquatic Food Product Technology, 25, 1348-1367. https://doi.org/10.1080/10498850.2015.1073204
  • Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19–31. https://doi.org/10.1016/S0260-8774(00)00139-4
  • Trujillo, F. J., Yeow, P. C., Pham, Q. T. (2003). Moisture sorption isotherm of fresh lean beef and external beef fat. Journal of Food Engineering, 60, 357-366. doi:10.1016/S0260-8774(03)00058-X
  • Vega-Galvez, A., Lopez, J., Miranda, M., Di Scala, K., Yagnam, F., & Uribe, E. (2009). Mathematical modelling of moisture sorption isotherms and determination of isosteric heat of blueberry variety O’Neil. International Journal of Food Science and Technology, 44, 2033–2041. https://doi.org/10.1111/j.1365-2621.2009.02027.x

MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT

Year 2022, Volume: 47 Issue: 5, 717 - 728, 30.10.2022
https://doi.org/10.15237/gida.GD22043

Abstract

Dry ground meat is a cooked meat product. It is a popular meat product in Central Anatolian Region of Turkey. Calf plate or flank meats and intermuscular fats are used in the production of dry ground meat. In this study, sorption isotherms were determined using nine different salt solutions (0.1-0.9 aw) having different relative humidity values at 5, 15 and 25°C. From the experimental data obtained, it was found that the sorption isotherms had Type-II characteristics. The obtained experimental data were applied to Iglesias-Chirife, Oswin, BET, Harkins-Jura, Smith, Henderson, Halsey, GAB, Peleg. Iglesias-Chirife and Peleg equations were revealed the best fitting. Isosteric heats of adsorption were evaluated by applying the Clausius-Clapeyron equation to experimental isotherms and decreased with increasing moisture content.

Project Number

NEÜBAP16/2F9

References

  • Al-Muhtaseb, A. H., McMinn, A. M., Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: A review. Trans IChem E, 80, 118-128. https://doi.org/10.1205/09603080252938753
  • Ansari, S., Farahnaky, A., Majzoobi, M., & Badii, F. (2011). Modeling the effect of glucose syrup on the moisture sorption isotherm of figs. Food Biophysics, 6, 377–389. DOI 10.1007/s11483-011-9213-4
  • Badii, F., Farahnaky, A., & Behmadi, H. (2014). Effect of storage relative humidity on physical stability of dried fig. Journal of Food Processing and Preservation, 38, 477-483. doi:10.1111/j.1745-4549.2012.00797.x
  • Basu, S., Shivhare, U. S., Mujumdar, A.S. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24, 917-930. https://doi.org/10.1080/07373930600775979
  • Bell, L., & Labuza, T. (2000). Moisture Sorption: Practical Aspects of Isotherm Measurements and Use; American Association of Cereal Chemists: St. Paul, MN.
  • Chung, D. S. and Pfost, H. B. (1967). Part 1: Heat and free energy changes of adsorption and desorption. Transactions of the ASAE. 549-555.
  • Falade, K. O., & Aworh, O. C. (2004). Adsorption isotherms of osmo-oven dried african star apple (Chrysophyllum albidum) and african mango (Irvingia gabonensis) slices. European Food Research and Technology, 218, 278–283. DOI 10.1007/s00217-003-0843-8
  • Labuza, T. P., Kannane, A., & Chen, J. (1985). Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated foods. Journal of Food Science, 50, 385–392. https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
  • Lemon, D. W. (1975). An improved TBA test for rancidity. New Series Circular No. 51. Halifax Laboratory, Halifax, Nova Scotia.
  • Mbarek, R., and Mihoubi, D. (2019). Thermodynamic properties and water desorption isotherms of Golden Delicious apples. Heat and Mass Transfer, 55, 1405-1418. DOI:10.1007/s00231-018-2527-8
  • Mbarga, M. C. N., Nde, D. B., Mohagir, A., Kapseu, C., & Nkenge, G. E. (2017). Moisture sorption isotherms and properties of sorbed water of neem (Azadirichta indica A. Juss) kernels. Journal of Engineering Physics and Thermophysics, 90, 35-42. DOI 10.1007/s10891-017-1536-7
  • Mrad, N. D., Bonazzi, C., Boudhrioua, N., Kechaou, N., & Courtois, F. (2012). Moisture sorption isotherms, thermodynamic properties, and glass transition of pears and apples. Drying Technology, 30, 1397–1406. https://doi.org/10.1080/07373937.2012.683843
  • Prasantha, B. D. R., & Amunogoda, P. N. R. J. (2013). Moisture adsorption characteristics of solar-dehydrated mango and jackfruit. Food Bioprocess Technology, 6, 1720–1728. DOI 10.1007/s11947-012-0832-7
  • Ockerman, H. W. (1985). Quality control of post-mortem muscle tissue (pp. 10-45). Ohio: Department of Animal Science, The Ohio State University and The Ohio Agricultural Research and Development Center.
  • Quirijns, E., Van Boxtel, A., Van Loon, W., & Van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805–1814. https://doi.org/10.1002/jsfa.2140
  • Sanchez, E. S., Juan, N. S., Simal, S., & Rossello, C. (1997). Calorimetric techniques applied to the determination of isosteric heat of desorption for potato. Journal of Science Food and Agriculture, 74, 57–63. https://doi.org/10.1002/(SICI)1097-0010(199705)74:1%3C57::AID-JSFA770%3E3.0.CO;2-8
  • Shi, Q., Lin, W., Zhao, Y., Zhang, P., Wang, R. (2016). Moisture adsorption isotherms and thermodynamic properties of penaeus vannamei meat with and without maltodextrin addition. Journal of Aquatic Food Product Technology, 25, 1348-1367. https://doi.org/10.1080/10498850.2015.1073204
  • Timmermann, E. O., Chirife, J., & Iglesias, H. A. (2001). Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? Journal of Food Engineering, 48, 19–31. https://doi.org/10.1016/S0260-8774(00)00139-4
  • Trujillo, F. J., Yeow, P. C., Pham, Q. T. (2003). Moisture sorption isotherm of fresh lean beef and external beef fat. Journal of Food Engineering, 60, 357-366. doi:10.1016/S0260-8774(03)00058-X
  • Vega-Galvez, A., Lopez, J., Miranda, M., Di Scala, K., Yagnam, F., & Uribe, E. (2009). Mathematical modelling of moisture sorption isotherms and determination of isosteric heat of blueberry variety O’Neil. International Journal of Food Science and Technology, 44, 2033–2041. https://doi.org/10.1111/j.1365-2621.2009.02027.x
There are 20 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Nesimi Aktaş 0000-0002-4741-9867

Project Number NEÜBAP16/2F9
Publication Date October 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 5

Cite

APA Aktaş, N. (2022). MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT. Gıda, 47(5), 717-728. https://doi.org/10.15237/gida.GD22043
AMA Aktaş N. MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT. The Journal of Food. October 2022;47(5):717-728. doi:10.15237/gida.GD22043
Chicago Aktaş, Nesimi. “MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT”. Gıda 47, no. 5 (October 2022): 717-28. https://doi.org/10.15237/gida.GD22043.
EndNote Aktaş N (October 1, 2022) MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT. Gıda 47 5 717–728.
IEEE N. Aktaş, “MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT”, The Journal of Food, vol. 47, no. 5, pp. 717–728, 2022, doi: 10.15237/gida.GD22043.
ISNAD Aktaş, Nesimi. “MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT”. Gıda 47/5 (October 2022), 717-728. https://doi.org/10.15237/gida.GD22043.
JAMA Aktaş N. MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT. The Journal of Food. 2022;47:717–728.
MLA Aktaş, Nesimi. “MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT”. Gıda, vol. 47, no. 5, 2022, pp. 717-28, doi:10.15237/gida.GD22043.
Vancouver Aktaş N. MOISTURE ADSORPTION ISOTHERMS AND ADSORPTION ISOSTERIC HEAT OF DRY GROUND MEAT. The Journal of Food. 2022;47(5):717-28.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/