Research Article
BibTex RIS Cite

PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ

Year 2023, Volume: 48 Issue: 1, 1 - 15, 15.02.2023
https://doi.org/10.15237/gida.GD22093

Abstract

Birikim, gıda güvenliği ve ürün kalitesi açısından ısıl işlemin gerekli olduğu süt endüstrisinde önemli bir sorundur. Özellikle paslanmaz çelik yüzeylerde uygulanan ısıl işlemler, hızla birikimler oluşturarak hem ürünlerin kalitesini değiştirebilmekte hem de gıda güvenliği açısından büyük riskler oluşturabilmektedir. Bu çalışmada, farklı sıcaklık uygulamalarının ve kalsiyum ilavesinin süt protein konsantresinin paslanmaz çelik yüzeylerdeki birikimine etkisinin incelenmesi amaçlanmıştır. Bu amaçla, laboratuvar tipi birikim modeli 3 farklı birikim sıcaklığında (65, 90 ve 110 ºC) uygulanmıştır. Ayrıca, meydana gelen kalıntının uzaklaştırılabilmesi amacıyla uygulanabilecek su ile çalkalama, alkali ve enzimatik temizleme yöntemlerinin etkinlikleri değerlendirilmiştir. Kalsiyum ilavesi ve uygulanan sıcaklığın artmasıyla yüzeyde meydana gelen birikim miktarının arttığı ve temizleme etkinliklerinin azaldığı belirlenmiştir. Temizleme etkinliği en düşük su ile çalkalama yönteminde, en yüksek ise enzimatik temizleme yönteminde belirlenmiştir. Çok değişkenli analiz teknikleri ile kombine edilerek kullanılan FTIR-ATR tekniğinin, süt protein konsantresi birikiminin veya kalıntısının olduğu paslanmaz çelik yüzeylere ait sınıflar arası ayrımlarında kullanım potansiyelinin olduğu belirlenmiştir.

References

  • Anonymous (2015). Chemical disinfectants and antiseptics - Quantitative non-porous surface test for the evaluation of bactericidal and/or fungicidal activity of chemical disinfectants used in food, industrial, domestic and institutional areas - Test method and requirements without mechanical action (Phase 2, Step 2). European Standard JNE-EN 13697:2015, 26 p.
  • AOAC (2012). Official Methods of Analysis the Association of Analytical Chemists. 19th Edition, Gaithersburg, MD, the USA.
  • Bansal, B., Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5: 27–33. doi: 10.1111/j.1541-4337.2006.tb00080.x
  • Barish, J.A., Goddard, J.M. (2013). Anti-fouling surface modified stainless steel for food processing. Food and Bioproducts Processing, 91(4): 352–361. doi: 10.1016/j.fbp.2013.01.003
  • Barish, J.A., Goddard, J.M. (2014). Stability of nonfouling stainless steel heat exchanger plates against commercial cleaning agents. Journal of Food Engineering, 124: 143–151. doi: 10.1016/j.jfoodeng.2013.10.009
  • Blanpain-Avet, P., Hédoux, A., Guinet, Y., Paccou, L., Petit, J., Six, T., Delaplace, G. (2012). Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger. Journal of Food Engineering, 110(1): 86–94. doi: 10.1016/j.jfoodeng.2011.12.005
  • Boxler, C., Augustin, W., Scholl, S. (2013). Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures. Food and Bioproducts Processing, 91(4): 336–347. doi: 10.1016/j.fbp.2012.11.012
  • Boxler, C., Augustin, W., Scholl, S. (2014). Composition of milk fouling deposits in a plate heat exchanger under pulsed flow conditions. Journal of Food Engineering, 121: 1–8. doi: 10.1016/j.jfoodeng.2013.08.003
  • Burton, H. (1968). Deposits from whole milk in heat treatment plant – A review and discussion. Journal of Dairy Research, 35: 317–330.
  • Chang, I., Le Clech, P., Jefferson, B., Judd, S. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128 (11): 1018–1029. doi: 10.1061/(ASCE)0733-9372(2002)128:11(1018)
  • Changani, S.D., Belmar-Beiny, M.T., Fryer, P.J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14(4): 392–406. doi: 10.1016/S0894-1777(96)00141-0
  • Deniz, E., Altuntaş, E.G., Ayhan, B., İğci, N., Özel Demiralp, D., Candoğan, K. (2018). Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation, 42: 13767. doi: 10.1111/jfpp.13767
  • Foster, C.L., Britten, M., Green, M. (1989). A model heat-exchange apparatus for the investigation of fouling of stainless steel surfaces by milk. I. Deposit formation at 100 C. Journal of Dairy Research, 56: 201–209. doi: doi.org/10.1017/S002202990002642X
  • Fryer, P.J., Robbins, P.T., Asteriadou, I.K. (2013). Current knowledge in hygienic design: Can we minimise fouling and speed cleaning?. Food Engineering Series, 1: 209–227. doi: 10.1016/j.profoo.2011.09.258
  • Guerrero-Navarro, A.E., Ríos-castillo, A.G., Avila, C.R., Hascoët, A.S., Felipe, X., Jerez, J.J.R. (2019). Development of a dairy fouling model to assess the efficacy of cleaning procedures using alkaline and enzymatic products. LWT - Food Science and Technology, 106: 44–49. doi: 10.1016/j.lwt.2019.02.057
  • Guerrero-Navarro, A.E., Ríos-Castillo, A.G., Ripolles-Avila, C., Felipe, X., Rodrigues-Jerez, J.J. (2020). Microscopic analysis and microstructural characterization of the organic and inorganic components of dairy fouling during the cleaning process. Journal of Dairy Science, 103: 2117-2127. doi: 10.3168/jds.2019-16957
  • Guerrero-Navarro, A.E., Ríos-Castillo, A.G., Ripolles-Avila, C., Zamora, A., Hascoet, A.S., Felipe, X., Castillo, M., Rodrigues-Jerez, J.J. (2022). Effectiveness of enzymatic treatment for reducing dairy fouling at pilot-plant scale under real cleaning conditions. LWT- Food Science and Technology, 154: 112634. doi: 10.1016/j.lwt.2021.112634
  • Hagsten, C., Altskär, A., Gustafsson, S., Lorén, N., Hamberg, L., Innings, F., Paulsson, M., Nylander, T. (2016). Composition and structure of high temperature dairy fouling. Food Structure, 7: 13–20. doi: 10.1016/j.foostr.2015.12.002
  • IDF (1981). Milk—Determination of fat content–Gerber butyrometers. IDF Standard 4A, International Dairy Federation (IDF), Brussels, Belgium.
  • IDF (1982). Determination of the total solid content (Cheese and processed cheese). IDF Standard 105, IDF International Dairy Federation (IDF), Brussels, Belgium.
  • Jimenez, M., Delaplace, G., Nuns, N., Bellayer, S., Deresmes, D., Ronse, G., Alogaili, G. (2013). Toward the understanding of the interfacial dairy fouling deposition and growth mechanisms at a stainless steel surface: A multiscale approach. Journal of Colloid and Interface Science, 404: 192–200. doi: 10.1016/j.jcis.2013.04.021
  • Khaldi, M., Blanpain-Avet, P., Guérin, R., Ronse, G., Bouvier, L., André, C., Bornaz, S. (2015). Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger. Journal of Food Engineering, 147: 68–78. doi: 10.1016/j.jfoodeng.2014.09.020
  • Khaldi, M., Croguennec, T., Andre, C., Ronse, G., Jimenez, M., Bellayer, S., Blanpain-Avet, P., Bouvier, L., Six, T., Bornaz, S., Jeantet, R., Delaplace, G. (2018). Effect of the calcium / protein molar ratio on b -lactoglobulin denaturation kinetics and fouling phenomena. International Dairy Journal, 78: 1–10. doi: 10.1016/j.idairyj.2017.10.002
  • Lalande, M., René, F., Tissier, J.P. (1989). Fouling and its control in heat exchangers in the dairy industry, Biofouling, 1: 233–250. doi: 10.1080/08927018909378111
  • Liu, D. Z., Jindal, S., Amamcharla, J., Anand, S., Metzger, L. (2017). Evaluation of a sol-gel–based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk. Journal of Dairy Science, 100(4): 2577–2581. doi: 10.3168/jds.2016-12141
  • Magens, O.M., Hofmans, J.F.A., Adriaenssens, Y., Wilson, D.I. (2019). Comparison of fouling of raw milk and whey protein solution on stainless steel and fluorocarbon coated surfaces: Effects on fouling performance, deposit structure and composition. Chemical Engineering Science, 195: 423–432. doi: 10.1016/j.ces.2018.09.039
  • Nielsen, B.T., Singh, H., Latham, J.M. (1995). Aggregation of bovine β-lactoglobulin A and B on heating at 75 ºC. International Dairy Journal, 6: 519-527. doi: 10.1016/0958-6946(95)00022-4
  • Petit, J., Herbig, A., Moreau, A., Delaplace, G. (2011). Influence of calcium on β-lactoglobulin denaturation kinetics: Implications in unfolding and aggregation mechanisms. Journal of Dairy Science, 94(12): 5794–5810. doi: 10.3168/jds.2011-4470
  • Petit, J., Six, T., Moreau, A., Ronse, G., Delaplace, G. (2013). β -lactoglobulin denaturation, aggregation, and fouling in a plate heat exchanger: Pilot-scale experiments and dimensional analysis. Chemical Engineering Science, 101: 432–450. doi: 10.1016/j.ces.2013.06.045
  • Santos, P.M., Pereira-Filho, E.R., Rodriguez-Saona, L.E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chemistry, 138(1): 19–24. doi: 10.1016/j.foodchem.2012.10.024
  • Stuart, B. (2004). Infrared spectroscopy: Fundamentals and applications. John Wiley and Sons Ltd, Chichester, the UK, 248 p.
  • Su, J.F., Huang, Z., Yuan, X.Y., Wang, X.Y., Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1): 145–153. doi: 10.1016/j.carbpol.2009.07.035
  • Visser, J., Jeurnink, T.J.M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14(4): 407–424. doi: 10.1016/S0894-1777(96)00142-2
  • Vladisavljevic´, G.T., Surh, J., McClements, J.D. (2006). Effect of emulsifier type on droplet disruption in repeated Shirasu porous glass membrane homogenization. Langmuir, 22 (10), 4526–4533. doi: 10.1021/la053410f
  • Wallhäußer, E., Hussein, M.A., Becker, T. (2012). Detection methods of fouling in heat exchangers in the food industry. Food Control, 27(1): 1–10. doi: 10.1016/j.foodcont.2012.02.033
  • Wemsy Diagne, N., Rabiller-Baudry, M., Paugam, L. (2013). On the actual clean-ability of polyethersulfone membrane fouled by proteins at critical or limiting flux. Journal of Membran Science, 425–426: 40–47. doi: 10.1016/j.memsci.2012.09.001
  • Wilson, D.I. (2018). Fouling during food processing – progress in tackling this inconvenient truth. Current Opinion in Food Science, 23: 105–112. doi: 10.1016/j.cofs.2018.10.002
  • Wu, D., He, Y., Feng, S. and Sun, D.W. (2007). Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. Journal of Food Engineering, 84(1): 124-131. doi: 10.1016/j.jfoodeng.2007.04.031
  • Yang, W., Li, D., Dong, X., Mercadé-Prieto, R. (2018). Effect of calcium on the fouling of whey protein isolate on stainless steel using QCM-D. Chemical Engineering Science, 177: 501–508. doi: 10.1016/j.ces.2017.12.004
  • Zhou, Q., Sun, S.Q., Yu, L., Xu, C.H., Noda, I. and Zhang, X.R. (2006). Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis. Journal of Molecular Structure, 799: 77-84. doi: 10.1016/j.molstruc.2006.03.025
  • Zouaghi, S., Bellayer, S., Thomy, V., Daargent, T., Coffinier, Y., Andre, C., Delaplace, G., Jimenez, M. (2019). Biomimetic surface modifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion. Food and Bioproducts Processing, 113: 32–38. doi: 10.1016/j.fbp.2018.10.012
  • Zouaghi, S., Six, T., Nuns, N., Simon, P., Delaplace, G. (2018). Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions. Journal of Food Engineering, 228: 38–49. doi: 10.1016/j.jfoodeng.2018.02.009

EVALUATION OF FOULING WITH MILK PROTEIN CONCENTRATE ON THE STAINLESS STEEL SURFACES AND THE EFFICIENCIES OF RINSING, ALKALINE AND ENZYMATIC CLEANING METHODS BY USING FTIR–ATR AS A TOOL

Year 2023, Volume: 48 Issue: 1, 1 - 15, 15.02.2023
https://doi.org/10.15237/gida.GD22093

Abstract

Fouling is an important problem in the dairy industry where heat treatment is necessary for food safety and quality. The fouling may affect product quality and food safety. This study aimed to investigate the effects of different fouling temperatures and calcium addition on the fouling amount of milk protein concentrate on stainless steel surfaces. For these purposes, laboratory-scale fouling model was applied at three different temperatures (~65, 90, 110˚C) on the surfaces. Then, the efficiencies of rinsing with water, alkaline and enzymatic cleaning methods were evaluated. The addition of calcium and an increase in the applied temperature increased the fouling amount while decreasing cleaning efficiency. The lowest cleaning efficiency was determined in the rinsing method, whereas the highest was observed using enzymatic cleaning method. The study showed the potential of applying FTIR-ATR combined with multivariate analysis to discriminate the classes of fouled with milk protein concetrate or cleaned surfaces.

References

  • Anonymous (2015). Chemical disinfectants and antiseptics - Quantitative non-porous surface test for the evaluation of bactericidal and/or fungicidal activity of chemical disinfectants used in food, industrial, domestic and institutional areas - Test method and requirements without mechanical action (Phase 2, Step 2). European Standard JNE-EN 13697:2015, 26 p.
  • AOAC (2012). Official Methods of Analysis the Association of Analytical Chemists. 19th Edition, Gaithersburg, MD, the USA.
  • Bansal, B., Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Comprehensive Reviews in Food Science and Food Safety, 5: 27–33. doi: 10.1111/j.1541-4337.2006.tb00080.x
  • Barish, J.A., Goddard, J.M. (2013). Anti-fouling surface modified stainless steel for food processing. Food and Bioproducts Processing, 91(4): 352–361. doi: 10.1016/j.fbp.2013.01.003
  • Barish, J.A., Goddard, J.M. (2014). Stability of nonfouling stainless steel heat exchanger plates against commercial cleaning agents. Journal of Food Engineering, 124: 143–151. doi: 10.1016/j.jfoodeng.2013.10.009
  • Blanpain-Avet, P., Hédoux, A., Guinet, Y., Paccou, L., Petit, J., Six, T., Delaplace, G. (2012). Analysis by Raman spectroscopy of the conformational structure of whey proteins constituting fouling deposits during the processing in a heat exchanger. Journal of Food Engineering, 110(1): 86–94. doi: 10.1016/j.jfoodeng.2011.12.005
  • Boxler, C., Augustin, W., Scholl, S. (2013). Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures. Food and Bioproducts Processing, 91(4): 336–347. doi: 10.1016/j.fbp.2012.11.012
  • Boxler, C., Augustin, W., Scholl, S. (2014). Composition of milk fouling deposits in a plate heat exchanger under pulsed flow conditions. Journal of Food Engineering, 121: 1–8. doi: 10.1016/j.jfoodeng.2013.08.003
  • Burton, H. (1968). Deposits from whole milk in heat treatment plant – A review and discussion. Journal of Dairy Research, 35: 317–330.
  • Chang, I., Le Clech, P., Jefferson, B., Judd, S. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. Journal of Environmental Engineering, 128 (11): 1018–1029. doi: 10.1061/(ASCE)0733-9372(2002)128:11(1018)
  • Changani, S.D., Belmar-Beiny, M.T., Fryer, P.J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14(4): 392–406. doi: 10.1016/S0894-1777(96)00141-0
  • Deniz, E., Altuntaş, E.G., Ayhan, B., İğci, N., Özel Demiralp, D., Candoğan, K. (2018). Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. Journal of Food Processing and Preservation, 42: 13767. doi: 10.1111/jfpp.13767
  • Foster, C.L., Britten, M., Green, M. (1989). A model heat-exchange apparatus for the investigation of fouling of stainless steel surfaces by milk. I. Deposit formation at 100 C. Journal of Dairy Research, 56: 201–209. doi: doi.org/10.1017/S002202990002642X
  • Fryer, P.J., Robbins, P.T., Asteriadou, I.K. (2013). Current knowledge in hygienic design: Can we minimise fouling and speed cleaning?. Food Engineering Series, 1: 209–227. doi: 10.1016/j.profoo.2011.09.258
  • Guerrero-Navarro, A.E., Ríos-castillo, A.G., Avila, C.R., Hascoët, A.S., Felipe, X., Jerez, J.J.R. (2019). Development of a dairy fouling model to assess the efficacy of cleaning procedures using alkaline and enzymatic products. LWT - Food Science and Technology, 106: 44–49. doi: 10.1016/j.lwt.2019.02.057
  • Guerrero-Navarro, A.E., Ríos-Castillo, A.G., Ripolles-Avila, C., Felipe, X., Rodrigues-Jerez, J.J. (2020). Microscopic analysis and microstructural characterization of the organic and inorganic components of dairy fouling during the cleaning process. Journal of Dairy Science, 103: 2117-2127. doi: 10.3168/jds.2019-16957
  • Guerrero-Navarro, A.E., Ríos-Castillo, A.G., Ripolles-Avila, C., Zamora, A., Hascoet, A.S., Felipe, X., Castillo, M., Rodrigues-Jerez, J.J. (2022). Effectiveness of enzymatic treatment for reducing dairy fouling at pilot-plant scale under real cleaning conditions. LWT- Food Science and Technology, 154: 112634. doi: 10.1016/j.lwt.2021.112634
  • Hagsten, C., Altskär, A., Gustafsson, S., Lorén, N., Hamberg, L., Innings, F., Paulsson, M., Nylander, T. (2016). Composition and structure of high temperature dairy fouling. Food Structure, 7: 13–20. doi: 10.1016/j.foostr.2015.12.002
  • IDF (1981). Milk—Determination of fat content–Gerber butyrometers. IDF Standard 4A, International Dairy Federation (IDF), Brussels, Belgium.
  • IDF (1982). Determination of the total solid content (Cheese and processed cheese). IDF Standard 105, IDF International Dairy Federation (IDF), Brussels, Belgium.
  • Jimenez, M., Delaplace, G., Nuns, N., Bellayer, S., Deresmes, D., Ronse, G., Alogaili, G. (2013). Toward the understanding of the interfacial dairy fouling deposition and growth mechanisms at a stainless steel surface: A multiscale approach. Journal of Colloid and Interface Science, 404: 192–200. doi: 10.1016/j.jcis.2013.04.021
  • Khaldi, M., Blanpain-Avet, P., Guérin, R., Ronse, G., Bouvier, L., André, C., Bornaz, S. (2015). Effect of calcium content and flow regime on whey protein fouling and cleaning in a plate heat exchanger. Journal of Food Engineering, 147: 68–78. doi: 10.1016/j.jfoodeng.2014.09.020
  • Khaldi, M., Croguennec, T., Andre, C., Ronse, G., Jimenez, M., Bellayer, S., Blanpain-Avet, P., Bouvier, L., Six, T., Bornaz, S., Jeantet, R., Delaplace, G. (2018). Effect of the calcium / protein molar ratio on b -lactoglobulin denaturation kinetics and fouling phenomena. International Dairy Journal, 78: 1–10. doi: 10.1016/j.idairyj.2017.10.002
  • Lalande, M., René, F., Tissier, J.P. (1989). Fouling and its control in heat exchangers in the dairy industry, Biofouling, 1: 233–250. doi: 10.1080/08927018909378111
  • Liu, D. Z., Jindal, S., Amamcharla, J., Anand, S., Metzger, L. (2017). Evaluation of a sol-gel–based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk. Journal of Dairy Science, 100(4): 2577–2581. doi: 10.3168/jds.2016-12141
  • Magens, O.M., Hofmans, J.F.A., Adriaenssens, Y., Wilson, D.I. (2019). Comparison of fouling of raw milk and whey protein solution on stainless steel and fluorocarbon coated surfaces: Effects on fouling performance, deposit structure and composition. Chemical Engineering Science, 195: 423–432. doi: 10.1016/j.ces.2018.09.039
  • Nielsen, B.T., Singh, H., Latham, J.M. (1995). Aggregation of bovine β-lactoglobulin A and B on heating at 75 ºC. International Dairy Journal, 6: 519-527. doi: 10.1016/0958-6946(95)00022-4
  • Petit, J., Herbig, A., Moreau, A., Delaplace, G. (2011). Influence of calcium on β-lactoglobulin denaturation kinetics: Implications in unfolding and aggregation mechanisms. Journal of Dairy Science, 94(12): 5794–5810. doi: 10.3168/jds.2011-4470
  • Petit, J., Six, T., Moreau, A., Ronse, G., Delaplace, G. (2013). β -lactoglobulin denaturation, aggregation, and fouling in a plate heat exchanger: Pilot-scale experiments and dimensional analysis. Chemical Engineering Science, 101: 432–450. doi: 10.1016/j.ces.2013.06.045
  • Santos, P.M., Pereira-Filho, E.R., Rodriguez-Saona, L.E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chemistry, 138(1): 19–24. doi: 10.1016/j.foodchem.2012.10.024
  • Stuart, B. (2004). Infrared spectroscopy: Fundamentals and applications. John Wiley and Sons Ltd, Chichester, the UK, 248 p.
  • Su, J.F., Huang, Z., Yuan, X.Y., Wang, X.Y., Li, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1): 145–153. doi: 10.1016/j.carbpol.2009.07.035
  • Visser, J., Jeurnink, T.J.M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14(4): 407–424. doi: 10.1016/S0894-1777(96)00142-2
  • Vladisavljevic´, G.T., Surh, J., McClements, J.D. (2006). Effect of emulsifier type on droplet disruption in repeated Shirasu porous glass membrane homogenization. Langmuir, 22 (10), 4526–4533. doi: 10.1021/la053410f
  • Wallhäußer, E., Hussein, M.A., Becker, T. (2012). Detection methods of fouling in heat exchangers in the food industry. Food Control, 27(1): 1–10. doi: 10.1016/j.foodcont.2012.02.033
  • Wemsy Diagne, N., Rabiller-Baudry, M., Paugam, L. (2013). On the actual clean-ability of polyethersulfone membrane fouled by proteins at critical or limiting flux. Journal of Membran Science, 425–426: 40–47. doi: 10.1016/j.memsci.2012.09.001
  • Wilson, D.I. (2018). Fouling during food processing – progress in tackling this inconvenient truth. Current Opinion in Food Science, 23: 105–112. doi: 10.1016/j.cofs.2018.10.002
  • Wu, D., He, Y., Feng, S. and Sun, D.W. (2007). Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on LS-SVM. Journal of Food Engineering, 84(1): 124-131. doi: 10.1016/j.jfoodeng.2007.04.031
  • Yang, W., Li, D., Dong, X., Mercadé-Prieto, R. (2018). Effect of calcium on the fouling of whey protein isolate on stainless steel using QCM-D. Chemical Engineering Science, 177: 501–508. doi: 10.1016/j.ces.2017.12.004
  • Zhou, Q., Sun, S.Q., Yu, L., Xu, C.H., Noda, I. and Zhang, X.R. (2006). Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis. Journal of Molecular Structure, 799: 77-84. doi: 10.1016/j.molstruc.2006.03.025
  • Zouaghi, S., Bellayer, S., Thomy, V., Daargent, T., Coffinier, Y., Andre, C., Delaplace, G., Jimenez, M. (2019). Biomimetic surface modifications of stainless steel targeting dairy fouling mitigation and bacterial adhesion. Food and Bioproducts Processing, 113: 32–38. doi: 10.1016/j.fbp.2018.10.012
  • Zouaghi, S., Six, T., Nuns, N., Simon, P., Delaplace, G. (2018). Influence of stainless steel surface properties on whey protein fouling under industrial processing conditions. Journal of Food Engineering, 228: 38–49. doi: 10.1016/j.jfoodeng.2018.02.009
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Muge Urgu Ozturk 0000-0002-6345-9252

Early Pub Date December 20, 2022
Publication Date February 15, 2023
Published in Issue Year 2023 Volume: 48 Issue: 1

Cite

APA Urgu Ozturk, M. (2023). PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ. Gıda, 48(1), 1-15. https://doi.org/10.15237/gida.GD22093
AMA Urgu Ozturk M. PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ. The Journal of Food. February 2023;48(1):1-15. doi:10.15237/gida.GD22093
Chicago Urgu Ozturk, Muge. “PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ”. Gıda 48, no. 1 (February 2023): 1-15. https://doi.org/10.15237/gida.GD22093.
EndNote Urgu Ozturk M (February 1, 2023) PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ. Gıda 48 1 1–15.
IEEE M. Urgu Ozturk, “PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ”, The Journal of Food, vol. 48, no. 1, pp. 1–15, 2023, doi: 10.15237/gida.GD22093.
ISNAD Urgu Ozturk, Muge. “PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ”. Gıda 48/1 (February 2023), 1-15. https://doi.org/10.15237/gida.GD22093.
JAMA Urgu Ozturk M. PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ. The Journal of Food. 2023;48:1–15.
MLA Urgu Ozturk, Muge. “PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ”. Gıda, vol. 48, no. 1, 2023, pp. 1-15, doi:10.15237/gida.GD22093.
Vancouver Urgu Ozturk M. PASLANMAZ ÇELİK YÜZEYLERDE SÜT PROTEİN KONSANTRESİ BİRİKİMİNİN VE SU İLE ÇALKALAMA, ALKALİ VE ENZİMATİK TEMİZLEME YÖNTEMLERİNİN ETKİNLİĞİNİN FTIR-ATR İLE DEĞERLENDİRİLMESİ. The Journal of Food. 2023;48(1):1-15.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/