Research Article
BibTex RIS Cite

YAŞ GLÜTEN MİKTARININ BUĞDAY UNU HAMURUNUN DOĞRUSAL OLMAYAN VİSKOELASTİK ÖZELLİKLERİ ÜZERİNDEKİ ETKİSİ

Year 2023, Volume: 48 Issue: 6, 1276 - 1291, 15.12.2023
https://doi.org/10.15237/gida.GD23118

Abstract

Buğday unlarındaki yaş glüten miktarının, bu unlardan elde edilen hamurların yüksek deformasyonlar altında göstermiş oldukları viskoelastik özellikleri üzerindeki etkisi Yüksek Genlikli Salınımlı Kayma (LAOS) testi ile belirlenmiştir. Bu amaçla, %29.80.15 yaş glüten içeren sert kırmızı kışlık buğday unu ve %23.90.26 yaş glüten içeren yumuşak kırmızı kışlık buğday unundan Farinograf testi ile hamur örnekleri elde edilmiştir. Sert kırmızı kışlık buğday ununun Farinograf stabilite ve optimum su kaldırma değerlerinin daha yüksek olduğu tespit edilmiştir. LAOS testleri, buğday unundaki glüten miktarının, artan deformasyonlar karşısında hamurun göstermiş olduğu mukavemete katkı sağladığını ortaya koymuştur. Daha yüksek yaş glüten miktarına sahip olan sert kırmızı kışlık buğday unu hamuru, yoğurma ve açma gibi hamur işleme aşamalarında görülen yüksek frekanslı deformasyonlar altında daha fazla gerinim katılaşması davranışı göstermiştir. Diğer taraftan, hamur örneklerinin her bir frekansta belirlenen döngü içi (salınım döngüsü) kayma incelmesi değerlerinde glüten miktarına bağlı olarak belirgin bir değişiklik gözlemlenmemiştir.

References

  • AACC (2010). Approved Methods of Analysis. 11th Edition, AACC International, St. Paul, MN, the USA, 1200 p.
  • Amemiya, J.I., Menjivar, J.A. (1992). Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. Journal of Food Engineering 16: 91-108, doi: 10.1016/b978-1-85166-877-9.50011-0.
  • Best, I., Portugal, A., Casimiro-Gonzales, S., Aguilar, L., Ramos-Escudero, F., Honorio, Z., Rojas-Villa, N., Benavente, C., Muñoz, A.M. (2023). Physicochemical and rheological characteristics of commercial and monovarietal wheat flours from Peru. Foods 12: 1789, doi: 10.3390/foods12091789.
  • Bock, J.E. (2022). The Farinograph: understanding Farinograph curves. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C. (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 33-41.
  • Bonilla, J.C., Bozdoğan, N., Kokini, J.L. (2022). Advanced research applications. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C. (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 161-192.
  • Campanella, O.H., Peleg, M. (2002). Squeezing Flow Viscometry for Nonelastic Semiliquid Foods- Theory and Applications. Critical Reviews in Food Science and Nutrition 42: 241-264, doi: 10.1080/10408690290825547.
  • Cao, W., Falk, D., Bock, J.E. (2017). Protein structural features in winter wheat: Benchmarking diversity in Ontario hard and soft winter wheat. Cereal Chemistry 94(2): 199-206, doi: 10.1094/CCHEM-03-16-0073-R.
  • Delcour, J.A., Hoseney, R.C. (2010). Principles of Cereal Science and Technology. 3rd Edition, AACC International Inc, Saint Paul, MN, the USA, 222 p.
  • Dobraszczyk, B.J., Morgenstern, M.P. (2003). Rheology and the breadmaking process. Journal of Cereal Science 38: 229-245, doi: 10.1016/S0733-5210(03)00059-6.
  • Don, C. (2022). Dough rheology and the Farinograph: the mechanism underlying dough development. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C., (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 43-68.
  • Duvarcı, Ö.Ç., Yazar, G., Doğan, H., Kokini, J.L. (2019). Linear and nonlinear rheological properties of foods. In: Handbook of Food Engineering, Heldman, D.R., Lund, D.B., Sabliov, C., (eds.), 3rd Edition, CRC Press, the USA, pp. 1-152.
  • Ewoldt, R.H., Clasen, C., Hosoi, A.E., McKinley, G.H. (2007). Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3: 634-643, doi: 10.1039/b615546d.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology 52: 1427-1458, doi: 10.1122/1.2970095.
  • Finney, P.L., Bains, G.S. (1999). Protein functionality differences in eastern U.S. soft wheat cultivars and interrelation with end-use quality tests. LWT - Food Science and Technology 32: 406-415, doi: 10.1006/fstl.1999.0574.
  • Guzmán, C., Ibba, M.I., Álvarez, J.B., Sissons, M., Morris, C. (2022). Wheat quality. In: Wheat Improvement- Food Security in a Changing Climate, Reynolds, M.P., Braun, H.-J., (eds.), 1st Edition, Springer, Switzerland, pp. 177-195.
  • Hoseney, R.C., Rogers, D.E. (1990). The formation and properties of wheat flour doughs. Critical Reviews in Food Science and Nutrition 29: 73-93, doi: 10.1080/10408399009527517.
  • Hyun, K., Kim, S.H, Ahn, K.H., Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics 107(1-3): 51-65, doi: 10.1016/S0377-0257(02)00141-6.
  • Khatkar, B.S., Bell, A.E., Schofield, J.D. (1995). The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. Journal of Cereal Science 22: 29-44, doi: 10.1016/s0733-5210(05)80005-0.
  • Kim, Y.-R., Cornillon, P., Campanella, O.H., Stroshine, R.L., Lee, S., Shim, J.-Y. (2008). Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. Journal of Food Science 73(1): E1-E8, doi: 10.1111/j.1750-3841.2007.00599.x.
  • Kulkarni, R.G., Ponte Jr., J.G., Kulp, K. (1987). Significance of gluten content as an index of flour quality. Cereal Chemistry 64(1): 1-3.
  • Ma, F., Baik, B.-K. (2016). Quality requirements of soft red winter wheat for making northern-style Chinese steamed bread. Cereal Chemistry 93: 314-322, doi: 10.1094/CCHEM-06-15-0127-R.
  • Macias-Rodriguez, B.A., Ewoldt, R.H., Marangoni, A.G. (2018). Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta 57: 251-266, doi: 10.1007/s00397-018-1072-1.
  • Maghirang, E.B., Lookhart, G.L., Bean, S.R., Pierce, R.O., Xie, F., Caley, M.S., Wilson, J.D., Seabourn, B.W., Ram, M.S., Park, S.H., Chung, O.K., Dowell, F.E. (2006). Comparison of quality characteristics and breadmaking functionality of hard red winter and hard red spring wheat. Cereal Chemistry 83(5): 520-528, doi: 10.1094/CC-83-0520.
  • Meerts, M., Cardinaels, R., Oosterlinck, F., Courtin, C.M., Moldenaers, P. (2017). The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough. Food Biophysics 12: 151-163, doi: 10.1007/s11483-017-9472-9.
  • Ohm, J.B., Chung, O.K. (2002). Relationships of free lipids with quality factors in hard winter wheat flours. Cereal Chemistry 79(2): 274-278, doi: 10.1094/CCHEM.2002.79.2.274.
  • Peña, R.J., Trethowan, R., Pfeiffer, W.H., Van Ginkel, M. (2002). Quality (end-use) improvement in wheat: compositional, genetic, and environmental factors. Journal of Crop Production 5(1-2): 1-37, doi: 10.1300/ J144v05n01_02.
  • Sapirstein, H.D., David, P., Preston, K.R., Dexter, J.E. (2007). Durum wheat breadmaking quality: Effects of gluten strength, protein composition, semolina particle size and fermentation time. Journal of Cereal Science 45: 150-161, doi: 10.1016/j.jcs.2006.08.006.
  • Shewry, P.R., Tatham, A.S. (1997). Biotechnology of wheat quality. Journal of the Science of Food and Agriculture 73: 397-406, doi: 10.1002/(SICI)1097-0010(199704)73:4<397::AID-JSFA758>3.0.CO;2-Q.
  • Sroan, B.S., Bean, S.R., MacRitchie, F. (2009). Mechanism of gas cell stabilization in bread making. I. The primary gluten–starch matrix. Journal of Cereal Science 49: 32-40, doi: 10.1016/j.jcs.2008.07.003.
  • Uthayakumaran, S., Newberry, M., Phan-Thien, N., Tanner, R. (2002). Small and large strain rheology of wheat gluten. Rheologica Acta 41: 162-172, doi: 10.1007/s003970200015.
  • Uthayakumaran, S., Wrigley, C. (2017). Wheat: grain-quality characteristics and management of quality requirements. In: Cereal Grains, Wrigley, C., Batey, I., Miskelly, M. (eds.) 2nd Edition, Woodhead Publishing, the UK, pp. 91-134.
  • Van Vliet, T., Janssen, A.M., Bloksma, A.H., Walstra, P. (1992). Strain hardening of dough as a requirement for gas retention. Journal of Texture Studies 23: 439-460, doi: 10.1111/j.1745-4603.1992.tb00033.x.
  • Van Vliet, T. (2008). Strain hardening as an indicator of bread-making performance: A review with discussion. Journal of Cereal Science 48: 1-9, doi: 10.1016/j.jcs.2007.08.010.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2016a). Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering 190: 195-204, doi: 10.1016/ j.jfoodeng.2016.06.011.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2016b). Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Applied Rheology 26: 1–11, doi: 10.3933/applrheol-26-52508.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2017a). Non-linear rheological behavior of gluten-free flour doughs and correlations of LAOS parameters with gluten-free bread properties. Journal of Cereal Science 74: 28-36, doi: 10.1016/j.jcs.2017.01.008.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2017b). LAOS behavior of the two major gluten fractions: Gliadin and glutenin. Journal of Cereal Science 77: 201-210, doi: 10.1016/j.jcs.2017.08.014.
  • Yazar, G. Çağlar Duvarcı, Ö., Yıldırım Ertürk, M., Kokini, J.L. (2019). LAOS (Large Amplitude Oscillatory Shear) applications for semisolid foods. In: Rheology of Semisolid Foods, Joyner, H.S. (ed.), 1st Edition, Springer, Switzerland, pp. 97-131.
  • Yazar, G., Kokini, J.L., Smith, B. (2022). Effect of endogenous wheat gluten lipids on the non-linear rheological properties of the gluten network. Food Chemistry 367: 130729, doi: 10.1016/j.foodchem.2021.130729.
  • Yazar, G., Demirkesen, I. (2023). Linear and non-linear rheological properties of gluten-free dough systems probed by fundamental methods. Food Engineering Reviews 15: 56-85, doi: 10.1007/s12393-022-09321-3.
  • Yazar, G. (2023). Wheat flour quality assessment by fundamental non-linear rheological methods: a critical review. Foods 12(18): 3353, doi: 10.3390/foods12183353.

IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS

Year 2023, Volume: 48 Issue: 6, 1276 - 1291, 15.12.2023
https://doi.org/10.15237/gida.GD23118

Abstract

The impact of wet gluten content in wheat flours on viscoelastic responses of the resulting wheat flour doughs under large deformations were studied using the Large Amplitude Oscillatory Shear (LAOS) tests. For this purpose, dough samples of hard red winter (HRW) wheat flour with 29.80.26% wet gluten and soft red winter (SRW) wheat flour with 23.90.15% wet gluten were obtained at the end of the Farinograph tests. Farinograph mixing stability and optimum water absorption capacity were higher for HRW wheat flour. LAOS tests revealed the contribution of gluten content to the resilience of wheat flour dough against the increasing deformations. Higher strain stiffening was found for HRW wheat flour dough with higher gluten content under large deformations with high frequency, resembling the deformations experienced during dough processing steps such as mixing or sheeting. Intracycle shear thinning behaviors of doughs were not affected by the gluten content at each frequency studied.

References

  • AACC (2010). Approved Methods of Analysis. 11th Edition, AACC International, St. Paul, MN, the USA, 1200 p.
  • Amemiya, J.I., Menjivar, J.A. (1992). Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. Journal of Food Engineering 16: 91-108, doi: 10.1016/b978-1-85166-877-9.50011-0.
  • Best, I., Portugal, A., Casimiro-Gonzales, S., Aguilar, L., Ramos-Escudero, F., Honorio, Z., Rojas-Villa, N., Benavente, C., Muñoz, A.M. (2023). Physicochemical and rheological characteristics of commercial and monovarietal wheat flours from Peru. Foods 12: 1789, doi: 10.3390/foods12091789.
  • Bock, J.E. (2022). The Farinograph: understanding Farinograph curves. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C. (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 33-41.
  • Bonilla, J.C., Bozdoğan, N., Kokini, J.L. (2022). Advanced research applications. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C. (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 161-192.
  • Campanella, O.H., Peleg, M. (2002). Squeezing Flow Viscometry for Nonelastic Semiliquid Foods- Theory and Applications. Critical Reviews in Food Science and Nutrition 42: 241-264, doi: 10.1080/10408690290825547.
  • Cao, W., Falk, D., Bock, J.E. (2017). Protein structural features in winter wheat: Benchmarking diversity in Ontario hard and soft winter wheat. Cereal Chemistry 94(2): 199-206, doi: 10.1094/CCHEM-03-16-0073-R.
  • Delcour, J.A., Hoseney, R.C. (2010). Principles of Cereal Science and Technology. 3rd Edition, AACC International Inc, Saint Paul, MN, the USA, 222 p.
  • Dobraszczyk, B.J., Morgenstern, M.P. (2003). Rheology and the breadmaking process. Journal of Cereal Science 38: 229-245, doi: 10.1016/S0733-5210(03)00059-6.
  • Don, C. (2022). Dough rheology and the Farinograph: the mechanism underlying dough development. In: The Farinograph Handbook- Advances in Technology, Science, and Applications, Bock, J.E., Don, C., (eds.), 4th Edition, Woodhead Publishing, the UK, pp. 43-68.
  • Duvarcı, Ö.Ç., Yazar, G., Doğan, H., Kokini, J.L. (2019). Linear and nonlinear rheological properties of foods. In: Handbook of Food Engineering, Heldman, D.R., Lund, D.B., Sabliov, C., (eds.), 3rd Edition, CRC Press, the USA, pp. 1-152.
  • Ewoldt, R.H., Clasen, C., Hosoi, A.E., McKinley, G.H. (2007). Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion. Soft Matter 3: 634-643, doi: 10.1039/b615546d.
  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology 52: 1427-1458, doi: 10.1122/1.2970095.
  • Finney, P.L., Bains, G.S. (1999). Protein functionality differences in eastern U.S. soft wheat cultivars and interrelation with end-use quality tests. LWT - Food Science and Technology 32: 406-415, doi: 10.1006/fstl.1999.0574.
  • Guzmán, C., Ibba, M.I., Álvarez, J.B., Sissons, M., Morris, C. (2022). Wheat quality. In: Wheat Improvement- Food Security in a Changing Climate, Reynolds, M.P., Braun, H.-J., (eds.), 1st Edition, Springer, Switzerland, pp. 177-195.
  • Hoseney, R.C., Rogers, D.E. (1990). The formation and properties of wheat flour doughs. Critical Reviews in Food Science and Nutrition 29: 73-93, doi: 10.1080/10408399009527517.
  • Hyun, K., Kim, S.H, Ahn, K.H., Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. Journal of Non-Newtonian Fluid Mechanics 107(1-3): 51-65, doi: 10.1016/S0377-0257(02)00141-6.
  • Khatkar, B.S., Bell, A.E., Schofield, J.D. (1995). The dynamic rheological properties of glutens and gluten sub-fractions from wheats of good and poor bread making quality. Journal of Cereal Science 22: 29-44, doi: 10.1016/s0733-5210(05)80005-0.
  • Kim, Y.-R., Cornillon, P., Campanella, O.H., Stroshine, R.L., Lee, S., Shim, J.-Y. (2008). Small and large deformation rheology for hard wheat flour dough as influenced by mixing and resting. Journal of Food Science 73(1): E1-E8, doi: 10.1111/j.1750-3841.2007.00599.x.
  • Kulkarni, R.G., Ponte Jr., J.G., Kulp, K. (1987). Significance of gluten content as an index of flour quality. Cereal Chemistry 64(1): 1-3.
  • Ma, F., Baik, B.-K. (2016). Quality requirements of soft red winter wheat for making northern-style Chinese steamed bread. Cereal Chemistry 93: 314-322, doi: 10.1094/CCHEM-06-15-0127-R.
  • Macias-Rodriguez, B.A., Ewoldt, R.H., Marangoni, A.G. (2018). Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta 57: 251-266, doi: 10.1007/s00397-018-1072-1.
  • Maghirang, E.B., Lookhart, G.L., Bean, S.R., Pierce, R.O., Xie, F., Caley, M.S., Wilson, J.D., Seabourn, B.W., Ram, M.S., Park, S.H., Chung, O.K., Dowell, F.E. (2006). Comparison of quality characteristics and breadmaking functionality of hard red winter and hard red spring wheat. Cereal Chemistry 83(5): 520-528, doi: 10.1094/CC-83-0520.
  • Meerts, M., Cardinaels, R., Oosterlinck, F., Courtin, C.M., Moldenaers, P. (2017). The impact of water content and mixing time on the linear and non-linear rheology of wheat flour dough. Food Biophysics 12: 151-163, doi: 10.1007/s11483-017-9472-9.
  • Ohm, J.B., Chung, O.K. (2002). Relationships of free lipids with quality factors in hard winter wheat flours. Cereal Chemistry 79(2): 274-278, doi: 10.1094/CCHEM.2002.79.2.274.
  • Peña, R.J., Trethowan, R., Pfeiffer, W.H., Van Ginkel, M. (2002). Quality (end-use) improvement in wheat: compositional, genetic, and environmental factors. Journal of Crop Production 5(1-2): 1-37, doi: 10.1300/ J144v05n01_02.
  • Sapirstein, H.D., David, P., Preston, K.R., Dexter, J.E. (2007). Durum wheat breadmaking quality: Effects of gluten strength, protein composition, semolina particle size and fermentation time. Journal of Cereal Science 45: 150-161, doi: 10.1016/j.jcs.2006.08.006.
  • Shewry, P.R., Tatham, A.S. (1997). Biotechnology of wheat quality. Journal of the Science of Food and Agriculture 73: 397-406, doi: 10.1002/(SICI)1097-0010(199704)73:4<397::AID-JSFA758>3.0.CO;2-Q.
  • Sroan, B.S., Bean, S.R., MacRitchie, F. (2009). Mechanism of gas cell stabilization in bread making. I. The primary gluten–starch matrix. Journal of Cereal Science 49: 32-40, doi: 10.1016/j.jcs.2008.07.003.
  • Uthayakumaran, S., Newberry, M., Phan-Thien, N., Tanner, R. (2002). Small and large strain rheology of wheat gluten. Rheologica Acta 41: 162-172, doi: 10.1007/s003970200015.
  • Uthayakumaran, S., Wrigley, C. (2017). Wheat: grain-quality characteristics and management of quality requirements. In: Cereal Grains, Wrigley, C., Batey, I., Miskelly, M. (eds.) 2nd Edition, Woodhead Publishing, the UK, pp. 91-134.
  • Van Vliet, T., Janssen, A.M., Bloksma, A.H., Walstra, P. (1992). Strain hardening of dough as a requirement for gas retention. Journal of Texture Studies 23: 439-460, doi: 10.1111/j.1745-4603.1992.tb00033.x.
  • Van Vliet, T. (2008). Strain hardening as an indicator of bread-making performance: A review with discussion. Journal of Cereal Science 48: 1-9, doi: 10.1016/j.jcs.2007.08.010.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2016a). Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering 190: 195-204, doi: 10.1016/ j.jfoodeng.2016.06.011.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2016b). Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Applied Rheology 26: 1–11, doi: 10.3933/applrheol-26-52508.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2017a). Non-linear rheological behavior of gluten-free flour doughs and correlations of LAOS parameters with gluten-free bread properties. Journal of Cereal Science 74: 28-36, doi: 10.1016/j.jcs.2017.01.008.
  • Yazar, G., Duvarcı, O., Tavman, S., Kokini, J.L. (2017b). LAOS behavior of the two major gluten fractions: Gliadin and glutenin. Journal of Cereal Science 77: 201-210, doi: 10.1016/j.jcs.2017.08.014.
  • Yazar, G. Çağlar Duvarcı, Ö., Yıldırım Ertürk, M., Kokini, J.L. (2019). LAOS (Large Amplitude Oscillatory Shear) applications for semisolid foods. In: Rheology of Semisolid Foods, Joyner, H.S. (ed.), 1st Edition, Springer, Switzerland, pp. 97-131.
  • Yazar, G., Kokini, J.L., Smith, B. (2022). Effect of endogenous wheat gluten lipids on the non-linear rheological properties of the gluten network. Food Chemistry 367: 130729, doi: 10.1016/j.foodchem.2021.130729.
  • Yazar, G., Demirkesen, I. (2023). Linear and non-linear rheological properties of gluten-free dough systems probed by fundamental methods. Food Engineering Reviews 15: 56-85, doi: 10.1007/s12393-022-09321-3.
  • Yazar, G. (2023). Wheat flour quality assessment by fundamental non-linear rheological methods: a critical review. Foods 12(18): 3353, doi: 10.3390/foods12183353.
There are 41 citations in total.

Details

Primary Language English
Subjects Food Engineering, Grain Technology, Basic Food Processes
Journal Section Articles
Authors

Gamze Yazar 0000-0002-9463-2425

Early Pub Date November 29, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Volume: 48 Issue: 6

Cite

APA Yazar, G. (2023). IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS. Gıda, 48(6), 1276-1291. https://doi.org/10.15237/gida.GD23118
AMA Yazar G. IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS. The Journal of Food. December 2023;48(6):1276-1291. doi:10.15237/gida.GD23118
Chicago Yazar, Gamze. “IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS”. Gıda 48, no. 6 (December 2023): 1276-91. https://doi.org/10.15237/gida.GD23118.
EndNote Yazar G (December 1, 2023) IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS. Gıda 48 6 1276–1291.
IEEE G. Yazar, “IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS”, The Journal of Food, vol. 48, no. 6, pp. 1276–1291, 2023, doi: 10.15237/gida.GD23118.
ISNAD Yazar, Gamze. “IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS”. Gıda 48/6 (December 2023), 1276-1291. https://doi.org/10.15237/gida.GD23118.
JAMA Yazar G. IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS. The Journal of Food. 2023;48:1276–1291.
MLA Yazar, Gamze. “IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS”. Gıda, vol. 48, no. 6, 2023, pp. 1276-91, doi:10.15237/gida.GD23118.
Vancouver Yazar G. IMPACT OF WET GLUTEN CONTENT ON NON-LINEAR VISCOELASTIC PROPERTIES OF WHEAT FLOUR DOUGHS. The Journal of Food. 2023;48(6):1276-91.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/