Review
BibTex RIS Cite

APTAMER BASED IDENTIFICATION METHOD AND ITS APPLICATIONS IN FOOD SAFETY

Year 2024, Volume: 49 Issue: 3, 536 - 553
https://doi.org/10.15237/gida.GD23145

Abstract

Aptamers are single-stranded, short, synthetic nucleic acid sequences. Aptamers, which show high affinity and specific binding to various target molecules, are used for the sensitive detection of various risk factors such as pathogenic microorganisms, biotoxins, allergens, pesticides and heavy metals that may be present in foods. The selection of aptamers specifically binding to molecules that pose a risk in terms of food safety is carried out through a process called SELEX. The selected aptamer interacts specifically with the target molecule and this interaction is measured using electrochemical, optical, or other biosensor techniques. There is a growing interest in aptamer-based methods with high specificity and sensitivity, which provide faster results compared to conventional methods used in food analysis. This review summarized the general properties of aptamers and their production by the SELEX principle and given examples of their applications in food safety.

References

  • Ahmadi, N., Pourghobadi, Z., Zare, H. (2021). A highly sensitive FRET biosensor based on aptamer-modified nanocrystals for determination of lysozyme. Optik, 248, 168171. https://doi.org/ 10.1016/j.ijleo.2021.168171
  • Altalbawy, F. M., Ali, E., Mustafa, Y. F., Ibrahim, A. A., Mansouri, S., Bokov, D. O., Alsaalamy, A. (2024). Comprehensive review on biosensors based on integration of aptamer and magnetic nanomaterials for food analysis. Journal of the Taiwan Institute of Chemical Engineers, 157, 105410. https://doi.org/10.1016/j.jtice.2024.105410
  • Banerjee, D., Adhikary, S., Bhattacharya, S., Chakraborty, A., Dutta, S., Chatterjee, S., Rajak, P. (2023). Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. Environmental Research, 117601. https://doi.org/10.1016/ j.envres.2023.117601
  • Bilibana, M. P., Citartan, M., Fuku, X., Jijana, A. N., Mathumba, P., Iwuoha, E. (2022). Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. Ecotoxicology and Environmental Safety, 232, 113249. https://doi.org/10.1016/ j.ecoenv.2022.113249
  • Bottari, F., Daems, E., de Vries, A. M., Van Wielendaele, P., Trashin, S., Blust, R., De Wael, K. (2020). Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds. Journal of the American Chemical Society, 142(46), 19622-19630. https://doi.org/10.1021/jacs.0c08691
  • Brown, A., Brill, J., Amini, R., Nurmi, C., Li, Y. (2024). Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angewandte Chemie International Edition, e202318665. https://doi.org/10.1002/ anie.202318665
  • Calabria, D., Zangheri, M., Pour, S. R. S., Trozzi, I., Pace, A., Lazzarini, E., Guardigli, M. (2022). Luminescent aptamer-based bioassays for sensitive detection of food allergens. Biosensors, 12(8), 644. https://doi.org/10.3390/ bios12080644
  • Chen, Q., Sheng, R., Wang, P., Ouyang, Q., Wang, A., Ali, S., Hassan, M. M. (2020). Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241, 118654. https://doi.org/10.1016/j.saa.2020.118654
  • Chen, Z., Luo, H., Gubu, A., Yu, S., Zhang, H., Dai, H., Zhang, G. (2023). Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Frontiers in Cell and Developmental Biology, 11, 1091809. https://doi.org/10.3389/ fcell.2023.1091809
  • Chinnappan, R., Eissa, S., Alotaibi, A., Siddiqua, A., Alsager, O. A., Zourob, M. (2020). In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Analytica chimica acta, 1101, 149-156. https://doi.org/ 10.1016/j.aca.2019.12.023
  • Darmostuk, M., Rimpelova, S., Gbelcova, H., Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnology advances, 33(6), 1141-1161. https://doi.org/10.1016/ j.biotechadv.2015.02.008
  • DeRosa, M. C., Lin, A., Mallikaratchy, P., McConnell, E. M., McKeague, M., Patel, R., Shigdar, S. (2023). In vitro selection of aptamers and their applications. Nature Reviews Methods Primers, 3(1), 54. https://doi.org/10.1038/ s43586-023-00247-6
  • Drees, A., Trinh, T. L., Fischer, M. (2023). The Influence of Protein Charge and Molecular Weight on the Affinity of Aptamers. Pharmaceuticals, 16(3), 457. https://doi.org/ 10.3390/ph16030457
  • El-Sayed, R. A., Jebur, A. B., Kang, W., El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91-102. https://doi.org/10.1016/j.jfutfo.2022.03.002
  • Fadeev, M., O’Hagan, M. P., Biniuri, Y., Willner, I. (2022). Aptamer–Protein Structures Guide In Silico and Experimental Discovery of Aptamer–Short Peptide Recognition Complexes or Aptamer–Amino Acid Cluster Complexes. The Journal of Physical Chemistry B, 126(44), 8931-8939. https://doi.org/10.1021/acs.jpcb.2c05624
  • Fan, Y., Li, J., Amin, K., Yu, H., Yang, H., Guo, Z., Liu, J. (2023). Advances in aptamers, and application of mycotoxins detection: a review. Food Research International, 113022. https://doi.org/10.1016/j.foodres.2023.113022
  • Fei, A., Liu, Q., Huan, J., Qian, J., Dong, X., Qiu, B., Wang, K. (2015). Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors and Bioelectronics, 70, 122-129. https://doi.org/ 10.1016/j.bios.2015.03.028
  • Gao, S., Yang, G., Zhang, X., Lu, Y., Chen, Y., Wu, X., Song, C. (2022). β-Cyclodextrin polymer-based host–guest interaction and fluorescence enhancement of pyrene for sensitive isocarbophos detection. ACS omega, 7(15), 12747-12752. https://doi.org/10.1021/ acsomega.1c07295
  • Himanshu, J. K., Lakshmi, G. B. V. S., Verma, A. K., Ahlawat, A., Solanki, P. R. (2024). Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode. Environmental Research, 240, 117478. https://doi.org/10.1016/j.envres.2023.117478
  • Hong, L., Pan, M., Xie, X., Liu, K., Yang, J., Wang, S., Wang, S. (2021). Aptamer-based fluorescent biosensor for the rapid and sensitive detection of allergens in food matrices. Foods, 10(11), 2598. https://doi.org/10.3390/ foods10112598
  • Huang, J., Wang, H., Dong, H., Liu, M., Geng, L., Sun, J., Guo, Y. (2024). Neonicotinoids: Advances in hazards of residues, screening of aptamers and design of aptasensors. Trends in Food Science & Technology, 104342. https://doi.org/ 10.1016/j.tifs.2024.104342
  • Jia, Y., Zhou, G., Wang, X., Zhang, Y., Li, Z., Liu, P., Zhang, J. (2020). A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta, 219, 121342. https://doi.org/10.1016/j.talanta.2020.121342
  • Jiang, X., Lv, Z., Rao, C., Chen, X., Zhang, Y., Lin, F. (2023). Simple and highly sensitive electrochemical detection of Listeria monocytogenes based on aptamer-regulated Pt nanoparticles/hollow carbon spheres nanozyme activity. Sensors and Actuators B: Chemical, 392, 133991. https://doi.org/10.1016/ j.snb.2023.133991
  • Kadam, U. S., Hong, J. C. (2022). Recent advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends in Environmental Analytical Chemistry, e00184. https://doi.org/10.1016/j.teac.2022.e00184
  • Kalita, J. J., Sharma, P., Bora, U. (2023). Recent developments in application of nucleic acid aptamer in food safety. Food Control, 145, 109406. https://doi.org/10.1016/j.foodcont.2022.109406
  • Kara, N., Ayoub, N., Ilgu, H., Fotiadis, D., Ilgu, M. (2023). Aptamers targeting membrane proteins for sensor and diagnostic applications. Molecules, 28(9), 3728. https://doi.org/10.3390/ molecules28093728
  • Khan, S., Hussain, A., Fahimi, H., Aliakbari, F., Bloukh, S. H., Edis, Z., Falahati, M. (2022). A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. Arabian Journal of Chemistry, 15(2), 103626. https://doi.org/10.1016/j.arabjc.2021.103626
  • Koerselman, M., Morshuis, L. C., Karperien, M. (2023). The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomaterialia. 170, 1-14. https://doi.org/ 10.1016/j.actbio.2023.07.045
  • Komarova, N., Kuznetsov, A. (2019). Inside the black box: what makes SELEX better?. Molecules, 24(19), 3598. https://doi.org/10.3390/ molecules24193598
  • Kohlberger, M., Gadermaier, G. (2022). SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnology and Applied Biochemistry, 69(5), 1771-1792. https://doi.org/10.1002/bab.2244
  • Lee, S. J., Cho, J., Lee, B. H., Hwang, D., Park, J. W. (2023). Design and prediction of aptamers assisted by in silico methods. Biomedicines, 11(2), 356. https://doi.org/10.3390/ bimedicines11020356
  • Li, L., Ma, R., Wang, W., Zhang, L., Li, J., Eltzov, E., Mao, X. (2023a). Group-targeting aptamers and aptasensors for simultaneous identification of multiple targets in foods. TrAC Trends in Analytical Chemistry, 117169. https://doi.org/10.1016/ j.trac.2023.117169
  • Li, M., Huang, R., Liao, X., Zhou, Z., Zou, L., Liu, B. (2023b). An inner filter effect-based fluorescent aptasensor for sensitive detection of kanamycin in complex samples using gold nanoparticles and graphene oxide quantum dots. Analytical Methods, 15(6), 843-848. https://doi.org/10.1039/d2ay01794f
  • Li, Y., Liu, W., Xu, H., Zhou, Y., Xie, W., Guo, Y., Ren, C. (2024). Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. International Journal of Biological Macromolecules, 262 (2)130032. https://doi.org/10.1016/j.ijbiomac.2024.130032
  • Li, Z., Hu, B., Zhou, R., Zhang, X., Wang, R., Gao, Y., Wang, L. (2020). Selection and application of aptamers with high-affinity and high-specificity against dinophysistoxin-1. RSC advances, 10(14), 8181-8189. https://doi.org/ 10.1039/C9RA10600F
  • Lin, B., Xiao, F., Jiang, J., Zhao, Z., Zhou, X. (2023). Engineered aptamers for molecular imaging. Chemical Science. 14, 14039-14061. https://doi.org/10.1039/D3SC03989G
  • Liu, R., Zhang, Y., Ali, S., Haruna, S. A., He, P., Li, H., Chen, Q. (2021b). Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control, 122, 107808. https://doi.org/10.1016/ j.foodcont.2020.107808
  • Liu, S., Li, Q., Yang, H., Wang, P., Miao, X., Feng, Q. (2022). An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria. Biosensors and Bioelectronics, 196, 113744. https://doi.org/10.1016/j.bios.2021.113744
  • Liu, Y., Wang, N., Chan, C. W., Lu, A., Yu, Y., Zhang, G., Ren, K. (2021a). The application of microfluidic technologies in aptamer selection. Frontiers in Cell and Developmental Biology, 9, 730035. https://doi.org/10.3389/fcell.2021.730035
  • Liu, W., Zhu, C., Gao, S., Ma, K., Zhang, S., Du, Q., Chi, Z. (2024). A biosensor encompassing fusarinine C-magnetic nanoparticles and aptamer-red/green carbon dots for dual-channel fluorescent and RGB discrimination of Campylobacter and Aliarcobacter. Talanta, 266, 125085. https://doi.org/10.1016/ j.talanta.2023.125085
  • Nasiri, M., Bahadorani, M., Dellinger, K., Aravamudhan, S., Vivero-Escoto, J. L., Zadegan, R. (2024). Improving DNA nanostructure stability: A review of the biomedical applications and approaches. International Journal of Biological Macromolecules, 129495. https://doi.org/10.1016/ j.ijbiomac.2024.129495
  • Ma, P., Guo, H., Ye, H., Zhang, Y., Wang, Z. (2023). Aptamer-locker probe coupling with truncated aptamer for high-efficiency fluorescence polarization detection of zearalenone. Sensors and Actuators B: Chemical, 380, 133356. https://doi.org/10.1016/ j.snb.2023.133356
  • Mahmoudian, F., Ahmari, A., Shabani, S., Sadeghi, B., Fahimirad, S., Fattahi, F. (2024). Aptamers as an approach to targeted cancer therapy. Cancer Cell International, 24(1), 1-22. https://doi.org/10.1186/s12935-024-03295-4
  • Mao, Z., Zhao, Y., Dong, J., Li, L., Zhou, Y. (2023). Electrochemiluminescent silica nanoparticles encapsulating structure-optimized iridium complex to sensitively detect acetamiprid residues in tea based on aptamer sensor. Sensors and Actuators B: Chemical, 394, 134480. https://doi.org/10.1016/j.snb.2023.134480
  • Manea, I., Casian, M., Hosu-Stancioiu, O., de-los-Santos-Álvarez, N., Lobo-Castañón, M. J., Cristea, C. (2024). A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Analytica Chimica Acta, 342325. https://doi.org/10.1016/ j.aca.2024.342325
  • Mili, M., Bachu, V., Kuri, P. R., Singh, N. K., Goswami, P. (2024). Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophysical Chemistry, 107218. https://doi.org/ 10.1016/j.bpc.2024.107218
  • Mishra, A., Roy, S., Shaikh, N. I., Malave, P., Mishra, A., Alam, A., Hasan, M. R. (2023). Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches. Biosensors and Bioelectronics: X, 100417. https://doi.org/10.1016/j.biosx.2023.100417
  • Mohamad, N., Azizan, N. I., Mokhtar, N. F. K., Mustafa, S., Desa, M. N. M., Hashim, A. M. (2022). Future perspectives on aptamer for application in food authentication. Analytical Biochemistry, 114861. https://doi.org/10.1016/ j.ab.2022.114861
  • Musumeci, D., Montesarchio, D. (2023). G-Quadruplex-Based Aptamers in Therapeutic Applications. In Handbook of Chemical Biology of Nucleic Acids (pp. 1-26). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-1313-5_79-1
  • Ning, Y., Hu, J., Lu, F. (2020). Aptamers used for biosensors and targeted therapy. Biomedicine & Pharmacotherapy, 132, 110902. https://doi.org/ 10.1016/j.biopha.2020.110902
  • Oliveira, R., Pinho, E., Sousa, A. L., DeStefano, J. J., Azevedo, N. F., Almeida, C. (2022). Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends in Biotechnology, 40(5), 549-563. https://doi.org/ 10.1016/j.tibtech.2021.09.011
  • Onaş, A. M., Dascălu, C., Raicopol, M. D., Pilan, L. (2022). critical design factors for electrochemical aptasensors based on target-induced conformational changes: The case of small-molecule targets. Biosensors, 12(10), 816. https://doi.org/10.3390/bios12100816
  • Pan, M., Han, X., Chen, S., Yang, J., Wang, Y., Li, H., Wang, S. (2024). Paper-based microfluidic device for selective detection of peanut allergen Ara h1 applying black phosphorus-Au nanocomposites for signal amplification. Talanta, 267, 125188. https://doi.org/10.1016/ j.talanta.2023.125188
  • Qi, S., Duan, N., Khan, I. M., Dong, X., Zhang, Y., Wu, S., Wang, Z. (2022). Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology advances, 55, 107902. https://doi.org/10.1016/j.biotechadv.2021.107902
  • Qian, S., Han, Y., Xu, F., Feng, D., Yang, X., Wu, X., Yuan, M. (2022). A fast, sensitive, low-cost electrochemical paper-based chip for real-time simultaneous detection of cadmium (Ⅱ) and lead (Ⅱ) via aptamer. Talanta, 247, 123548. https://doi.org/10.1016/j.talanta.2022.123548
  • Qiao, Z., Xue, L., Sun, M., Zhang, M., Chen, M., Xu, X., Wang, R. (2023). Highly sensitive detection of Salmonella based on dual-functional HCR-mediated multivalent aptamer and amplification-free Crispr/Cas12a system. Analytica Chimica Acta, 1284, 341998. https://doi.org/10.1016/j.aca.2023.341998
  • Rong, Y., Li, H., Ouyang, Q., Ali, S., Chen, Q. (2020). Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118500. https://doi.org/10.1016/j.saa.2020.118500
  • Sawan, S., Errachid, A., Maalouf, R., Jaffrezic-Renault, N. (2022). Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends in Analytical Chemistry, 157, 116748. https://doi.org/10.1016/j.trac.2022.116748
  • Schmitz, F. R. W., Valério, A., de Oliveira, D., Hotza, D. (2020). An overview and future prospects on aptamers for food safety. Applied microbiology and biotechnology, 104, 6929-6939. https://doi.org/10.1007/s00253-020-10747-0
  • Scutarașu, E. C., Trincă, L. C. (2023). Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods, 12(18), 3340. https://doi.org/10.3390/ foods12183340
  • Seelam, P. P., Mitra, A., Sharma, P. (2019). Pairing interactions between nucleobases and ligands in aptamer: ligand complexes of riboswitches: Crystal structure analysis, classification, optimal structures, and accurate interaction energies. RNA, 25(10), 1274-1290. https://doi.org/ 10.1261/rna.071530.119
  • Shen, Z., Xu, D., Wang, G., Geng, L., Xu, R., Wang, G., Sun, X. (2022). Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. Journal of Hazardous Materials, 440, 129707. https://doi.org/10.1016/ j.jhazmat.2022.129707
  • Sola, M., Menon, A. P., Moreno, B., Meraviglia-Crivelli, D., Soldevilla, M. M., Cartón García, F., Pastor, F. (2020). Aptamers against live targets: is in vivo SELEX finally coming to the edge? Molecular Therapy-Nucleic Acids, 21, 192-204. https://doi.org/10.1016/j.omtn.2020.05.025
  • Srinivasan, S., Ranganathan, V., McConnell, E. M., Murari, B. M., DeRosa, M. C. (2023). Aptamer-based colorimetric and lateral flow assay approaches for the detection of toxic metal ions, thallium (i) and lead (ii). RSC advances, 13(29), 20040-20049. https://10.1039/d3ra01658g
  • Su, L., Wang, S., Wang, L., Yan, Z., Yi, H., Zhang, D., Ma, Y. (2020). Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117511. https://doi.org/10.1016/j.saa.2019.117511
  • Sun, J., Liu, W., He, Z., Li, B., Dong, H., Liu, M., Sun, X. (2024). Novel electrochemiluminescence aptasensor based on AuNPs-ABEI encapsulated TiO2 nanorod for the detection of acetamiprid residues in vegetables. Talanta, 269, 125471. https://doi.org/10.1016/j.talanta.2023.125471
  • Sun, C., Su, R., Bie, J., Sun, H., Qiao, S., Ma, X., Zhang, T. (2018). Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes and Pigments, 149, 867-875. https://doi.org/10.1016/ j.dyepig.2017.11.031
  • Svigelj, R., Dossi, N., Pizzolato, S., Toniolo, R., Miranda-Castro, R., de-Los-Santos-Álvarez, N., Lobo-Castañón, M. J. (2020). Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent. Biosensors and Bioelectronics, 165, 112339. https://doi.org/10.1016/j.bios.2020.112339
  • Tang, X., Zuo, J., Yang, C., Jiang, J., Zhang, Q., Ping, J., Li, P. (2023a). Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): principles, application, and perspective. TrAC Trends in Analytical Chemistry, 117144. https://doi.org/ 10.1016/j.trac.2023.117144
  • Tang, Y., Yuan, J., Zhang, Y., Khan, I. M., Ma, P., Wang, Z. (2023b). Lateral flow assays based on aptamers for food safety applications. Food Control, 110051. https://doi.org/10.1016/ j.foodcont.2023.110051
  • Teng, Y., Liu, S., Yang, S., Guo, X., Zhang, Y., Song, Y., Cui, Y. (2019). Computer-designed orthogonal RNA aptamers programmed to recognize Ebola virus glycoproteins. Biosafety and Health, 1(2), 105-111. https://doi.org/ 10.1016/j.bsheal.2019.11.001
  • Torregrosa, D., Jauset-Rubio, M., Serrano, R., Svobodová, M., Grindlay, G., O'Sullivan, C. K., Mora, J. (2023). Ultrasensitive determination of β-conglutin food allergen by means an aptamer assay based on inductively coupled plasma mass spectrometry detection. Analytica Chimica Acta, 1252, 341042. https://doi.org/10.1016/ j.aca.2023.341042
  • Uğurlu, Ö., Man, E., Gök, O., Ülker, G., Soytürk, H., Özyurt, C., Evran, S. (2023). A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Analytica Chimica Acta, 342001. https://doi.org/10.1016/ j.aca.2023.342001
  • Verdian, A., Fooladi, E., Rouhbakhsh, Z. (2019). Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta, 202, 123-135. https://doi.org/ 10.1016/j.talanta.2019.04.059
  • Wang, B., Kobeissy, F., Golpich, M., Cai, G., Li, X., Abedi, R., Wang, K. K. (2024). Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules, 29(5), 1124. https://doi.org/ 10.3390/molecules29051124
  • Wang, L., Liu, G., Ren, Y., Feng, Y., Zhao, X., Zhu, Y., Chen, X. (2020). Integrating target-triggered aptamer-capped HRP@ metal–organic frameworks with a colorimeter readout for on-site sensitive detection of antibiotics. Analytical Chemistry, 92(20), 14259-14266. https://doi.org/ 10.1021/acs.analchem.0c03723
  • Wang, J., Chen, D., Huang, W., Yang, N., Yuan, Q., Yang, Y. (2023a). Aptamer‐functionalized field‐effect transistor biosensors for disease diagnosis and environmental monitoring. In Exploration, 3 (3), p. 20210027. https://doi.org/ 10.1002/EXP.20210027
  • Wang, T., Chen, C., Larcher, L. M., Barrero, R. A., Veedu, R. N. (2019). Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnology advances, 37(1), 28-50. https://doi.org/10.1016/j.biotechadv.2018.11.001
  • Wang, Y., He, D., Du, Z., Xu, E., Jin, Z., Wu, Z., Cui, B. (2022). Ultrasensitive Detection of Staphylococcal Enterotoxin B with an AuNPs@ MIL-101 Nanohybrid-Based Dual-Modal Aptasensor. Food Analytical Methods, 15, 1368–1376. https://doi.org/10.1007/s12161-021-02204-z
  • Wang, Y. L., Zeng, G. C., Lee, C. T., Lin, C. K., Kuo, T. H., Paulose, A. K., Hung, S. C. (2023b). Fabrication of Aptamer-based Field Effect Transistor Sensors for Detecting Mercury Ions. ECS Transactions, 111(3), 63. https://doi.org/10.1149/11103.0063ecst
  • Wei, W., Lin, H., Hao, T., Wang, S., Hu, Y., Guo, Z., Luo, X. (2021). DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosensors and Bioelectronics, 186, 113305. https://doi.org/ 10.1016/j.bios.2021.113305
  • Wei, X., Ma, P., Mahmood, K. I., Zhang, Y., Wang, Z. (2023). A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta, 253, 124003. https://doi.org/10.1016/ j.talanta.2022.124003,
  • Wei, S., Su, Z., Bu, X., Shi, X., Pang, B., Zhang, L., Zhao, C. (2022). On-site colorimetric detection of Salmonella typhimurium. Science of Food, 6(1), 48. https://doi.org/10.1038/s41538-022-00164-0
  • Wolter, O., Mayer, G. (2017). Aptamers as valuable molecular tools in neurosciences. Journal of Neuroscience, 37(10), 2517-2523. https://doi.org/10.1523/JNEUROSCI.1969-16.2017
  • Xie, M., Zhao, F., Zhang, Y., Xiong, Y., Han, S. (2022). Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control, 131, 108399. https://doi.org/10.1016/ j.foodcont.2021.108399
  • Xu, Y., Cheng, N., Luo, Y., Huang, K., Chang, Q., Pang, G., Xu, W. (2022). An Exo III-assisted catalytic hairpin assembly-based self-fluorescence aptasensor for pesticide detection. Sensors and Actuators B: Chemical, 358, 131441. https://doi.org/10.1016/j.snb.2022.131441
  • Yadav, R., Berlina, A. N., Zherdev, A. V., Gaur, M. S., Dzantiev, B. B. (2020). Rapid and selective electrochemical detection of pb 2+ ions using aptamer-conjugated alloy nanoparticles. SN Applied Sciences, 2, 1-11. https://doi.org/ 10.1007/s42452-020-03840-6
  • Yalagandula, B. P., Mohanty, S., Goswami, P. P., Singh, S. G. (2024). Optimizations towards a nearly invariable WO3-functionalized electrochemical aptasensor for ultra-trace identification of arsenic in lake water. Sensors and Actuators B: Chemical, 398, 134730. https://doi.org/10.1016/j.snb.2023.134730
  • Yan, M., Wang, H., Li, M., Zhang, W., Du, H., Chen, Z., She, Y. (2023). Multicolor aptasensors for pesticide multiresidues detection in agricultural products using bioorthogonal surface-enhanced Raman scattering tags. Talanta, 265, 124800. https://doi.org/10.1016/ j.talanta.2023.124800
  • Yang, S., Li, C., Zhan, H., Liu, R., Chen, W., Wang, X., Xu, K. (2023). A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline. Journal of Nanobiotechnology, 21(1), 22. https://doi.org/10.1186/s12951-023-01785-7
  • Yao, X., Shen, J., Liu, Q., Fa, H., Yang, M., Hou, C. (2020). A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH 2/MCA/MWCNT@ rGONR nanocomposites. Analytical Methods, 12(41), 4967-4976. https://doi.org/10.1039/D0AY01503B
  • Yu, H., Zhao, Q. (2022). Aptamer molecular beacon sensor for rapid and sensitive detection of ochratoxin A. Molecules, 27(23), 8267. https://doi.org/10.3390/molecules27238267
  • Yu, H., Zhao, Q. (2024). Sensitive electrochemical sensor for Cd2+ with engineered short high-affinity aptamer undergoing large conformation change. Talanta, 271, 125642.https://doi.org/10.1016/j.talanta.2024.125642
  • Zhang, H. L., Lv, C., Li, Z. H., Jiang, S., Cai, D., Liu, S. S., Zhang, K. H. (2023a). Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Frontiers in Chemistry, 11, 1144347. https://doi.org/10.3389/ fchem.2023.1144347
  • Zhang, J., Liu, X., Shi, W., Wei, Y., Wu, Z., Li, J., Xu, K. (2022). Rapid and sensitive detection of Escherichia coli O157: H7 based on silver nanocluster fluorescent probe. Journal of the Iranian Chemical Society, 19(4), 1339-1346. https://doi.org/10.1007/s13738-021-02384-9
  • Zhang, N., Chen, Z., Liu, D., Jiang, H., Zhang, Z. K., Lu, A., Zhang, G. (2021a). Structural biology for the molecular insight between aptamers and target proteins. International Journal of Molecular Sciences, 22(8), 4093. https://doi.org/ 10.3390/ijms22084093
  • Zhang, N., Lv, H., Wang, J., Yang, Z., Ding, Y., Zhao, B., Tian, Y. (2023b). An aptamer-based colorimetric/SERS dual-mode sensing strategy for the detection of sulfadimethoxine residues in animal-derived foods. Analytical Methods, 15(8), 1047-1053. https://doi.org/10.1039/d2ay01825j
  • Zhang, W., Wang, Y., Nan, M., Li, Y., Yun, J., Wang, Y., Bi, Y. (2021b). Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Food Chemistry, 348, 129128. https://doi.org/10.1016/ j.foodchem.2021.129128
  • Zhao, L., Li, L., Zhao, Y., Zhu, C., Yang, R., Fang, M., Luan, Y. (2023). Aptamer-based point-of-care-testing for small molecule targets: From aptamers to aptasensors, devices and applications. TrAC Trends in Analytical Chemistry, 117408. https://doi.org/10.1016/j.trac.2023.117408
  • Zheng, Y., Shi, Z., Wu, W., He, C., Zhang, H. (2021). Label-free DNA electrochemical aptasensor for fumonisin B 1 detection in maize based on graphene and gold nanocomposite. Journal of Analytical Chemistry, 76, 252-257. https://doi.org/10.1134/S1061934821020167
  • Zhong, Z., Gao, R., Chen, Q., Jia, L. (2020). Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117417. https://doi.org/10.1016/j.saa.2019.117417
  • Zhou, E., Li, Q., Zhu, D., Chen, G., Wu, L. (2024a). Characterization of physicochemical and immunogenic properties of allergenic proteins altered by food processing: a review. Food Science and Human Wellness, 13(3), 1135-1151. https://doi.org/10.26599/FSHW.2022.9250095
  • Zhou, J., Zhang, C., Hu, C., Li, S., Liu, Y., Chen, Z., Deng, Y. (2024b). Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 109561. https://doi.org/10.1016/j.cclet.2024.109561
  • Zhou, Y., Mahapatra, C., Chen, H., Peng, X., Ramakrishna, S., Nanda, H. S. (2020). Recent developments in fluorescent aptasensors for detection of antibiotics. Current Opinion in Biomedical Engineering, 13, 16-24. https://doi.org/ 10.1016/j.cobme.2019.08.003
  • Zhu, C., Feng, Z., Qin, H., Chen, L., Yan, M., Li, L., Qu, F. (2023). Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta, 124998. https://doi.org/10.1016/ j.talanta.2023.124998
  • Zou, XM., Zou, J., Song, S., Guan-Hua, C. (2019). Screening of oligonucleotide aptamers and application in detection of pesticide and veterinary drug residues. Chinese Journal of Analytical Chemistry. Chinese Journal of Analytical Chemistry, 47(4), 488-499. https://doi.org/ 10.1016/S1872-2040(19)61153-9

APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI

Year 2024, Volume: 49 Issue: 3, 536 - 553
https://doi.org/10.15237/gida.GD23145

Abstract

Aptamerler, tek sarmallı, kısa, sentetik nükleik asit dizileridir. Çeşitli hedef moleküllere karşı yüksek afinite gösteren ve spesifik olarak bağlanan aptamerler, gıdalarda bulunabilecek patojen mikroorganizmalar, biyotoksinler, alerjenler, pestisitler ve ağır metaller gibi çeşitli risk faktörlerinin hassas bir şekilde tespiti için kullanılmaktadır. Gıda güvenliği açısından risk oluşturan moleküllere spesifik olarak bağlanan aptamerlerin seçilmesi SELEX adı verilen bir süreçle gerçekleştirilir. Seçilen aptamer, hedef molekül ile özgün olarak etkileşime girer ve bu etkileşim elektrokimyasal, optik veya diğer biyosensör teknikler kullanılarak ölçülür. Gıda analizlerinde kullanılan geleneksel yöntemlere kıyasla daha hızlı sonuçlar veren, yüksek özgüllüğe ve duyarlılığa sahip aptamer tabanlı yöntemlere duyulan ilgi giderek artmaktadır. Bu derlemede aptamerlerin genel özellikleri ve SELEX prensibiyle üretimleri özetlenmiş ve gıda güvenliği alanındaki uygulamalarına örnekler verilmiştir.

References

  • Ahmadi, N., Pourghobadi, Z., Zare, H. (2021). A highly sensitive FRET biosensor based on aptamer-modified nanocrystals for determination of lysozyme. Optik, 248, 168171. https://doi.org/ 10.1016/j.ijleo.2021.168171
  • Altalbawy, F. M., Ali, E., Mustafa, Y. F., Ibrahim, A. A., Mansouri, S., Bokov, D. O., Alsaalamy, A. (2024). Comprehensive review on biosensors based on integration of aptamer and magnetic nanomaterials for food analysis. Journal of the Taiwan Institute of Chemical Engineers, 157, 105410. https://doi.org/10.1016/j.jtice.2024.105410
  • Banerjee, D., Adhikary, S., Bhattacharya, S., Chakraborty, A., Dutta, S., Chatterjee, S., Rajak, P. (2023). Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. Environmental Research, 117601. https://doi.org/10.1016/ j.envres.2023.117601
  • Bilibana, M. P., Citartan, M., Fuku, X., Jijana, A. N., Mathumba, P., Iwuoha, E. (2022). Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: Current progress, opportunities, and challenges. Ecotoxicology and Environmental Safety, 232, 113249. https://doi.org/10.1016/ j.ecoenv.2022.113249
  • Bottari, F., Daems, E., de Vries, A. M., Van Wielendaele, P., Trashin, S., Blust, R., De Wael, K. (2020). Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds. Journal of the American Chemical Society, 142(46), 19622-19630. https://doi.org/10.1021/jacs.0c08691
  • Brown, A., Brill, J., Amini, R., Nurmi, C., Li, Y. (2024). Development of Better Aptamers: Structured Library Approaches, Selection Methods, and Chemical Modifications. Angewandte Chemie International Edition, e202318665. https://doi.org/10.1002/ anie.202318665
  • Calabria, D., Zangheri, M., Pour, S. R. S., Trozzi, I., Pace, A., Lazzarini, E., Guardigli, M. (2022). Luminescent aptamer-based bioassays for sensitive detection of food allergens. Biosensors, 12(8), 644. https://doi.org/10.3390/ bios12080644
  • Chen, Q., Sheng, R., Wang, P., Ouyang, Q., Wang, A., Ali, S., Hassan, M. M. (2020). Ultra-sensitive detection of malathion residues using FRET-based upconversion fluorescence sensor in food. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241, 118654. https://doi.org/10.1016/j.saa.2020.118654
  • Chen, Z., Luo, H., Gubu, A., Yu, S., Zhang, H., Dai, H., Zhang, G. (2023). Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Frontiers in Cell and Developmental Biology, 11, 1091809. https://doi.org/10.3389/ fcell.2023.1091809
  • Chinnappan, R., Eissa, S., Alotaibi, A., Siddiqua, A., Alsager, O. A., Zourob, M. (2020). In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Analytica chimica acta, 1101, 149-156. https://doi.org/ 10.1016/j.aca.2019.12.023
  • Darmostuk, M., Rimpelova, S., Gbelcova, H., Ruml, T. (2015). Current approaches in SELEX: An update to aptamer selection technology. Biotechnology advances, 33(6), 1141-1161. https://doi.org/10.1016/ j.biotechadv.2015.02.008
  • DeRosa, M. C., Lin, A., Mallikaratchy, P., McConnell, E. M., McKeague, M., Patel, R., Shigdar, S. (2023). In vitro selection of aptamers and their applications. Nature Reviews Methods Primers, 3(1), 54. https://doi.org/10.1038/ s43586-023-00247-6
  • Drees, A., Trinh, T. L., Fischer, M. (2023). The Influence of Protein Charge and Molecular Weight on the Affinity of Aptamers. Pharmaceuticals, 16(3), 457. https://doi.org/ 10.3390/ph16030457
  • El-Sayed, R. A., Jebur, A. B., Kang, W., El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91-102. https://doi.org/10.1016/j.jfutfo.2022.03.002
  • Fadeev, M., O’Hagan, M. P., Biniuri, Y., Willner, I. (2022). Aptamer–Protein Structures Guide In Silico and Experimental Discovery of Aptamer–Short Peptide Recognition Complexes or Aptamer–Amino Acid Cluster Complexes. The Journal of Physical Chemistry B, 126(44), 8931-8939. https://doi.org/10.1021/acs.jpcb.2c05624
  • Fan, Y., Li, J., Amin, K., Yu, H., Yang, H., Guo, Z., Liu, J. (2023). Advances in aptamers, and application of mycotoxins detection: a review. Food Research International, 113022. https://doi.org/10.1016/j.foodres.2023.113022
  • Fei, A., Liu, Q., Huan, J., Qian, J., Dong, X., Qiu, B., Wang, K. (2015). Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosensors and Bioelectronics, 70, 122-129. https://doi.org/ 10.1016/j.bios.2015.03.028
  • Gao, S., Yang, G., Zhang, X., Lu, Y., Chen, Y., Wu, X., Song, C. (2022). β-Cyclodextrin polymer-based host–guest interaction and fluorescence enhancement of pyrene for sensitive isocarbophos detection. ACS omega, 7(15), 12747-12752. https://doi.org/10.1021/ acsomega.1c07295
  • Himanshu, J. K., Lakshmi, G. B. V. S., Verma, A. K., Ahlawat, A., Solanki, P. R. (2024). Development of aptasensor for chlorpyrifos detection using paper-based screen-printed electrode. Environmental Research, 240, 117478. https://doi.org/10.1016/j.envres.2023.117478
  • Hong, L., Pan, M., Xie, X., Liu, K., Yang, J., Wang, S., Wang, S. (2021). Aptamer-based fluorescent biosensor for the rapid and sensitive detection of allergens in food matrices. Foods, 10(11), 2598. https://doi.org/10.3390/ foods10112598
  • Huang, J., Wang, H., Dong, H., Liu, M., Geng, L., Sun, J., Guo, Y. (2024). Neonicotinoids: Advances in hazards of residues, screening of aptamers and design of aptasensors. Trends in Food Science & Technology, 104342. https://doi.org/ 10.1016/j.tifs.2024.104342
  • Jia, Y., Zhou, G., Wang, X., Zhang, Y., Li, Z., Liu, P., Zhang, J. (2020). A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta, 219, 121342. https://doi.org/10.1016/j.talanta.2020.121342
  • Jiang, X., Lv, Z., Rao, C., Chen, X., Zhang, Y., Lin, F. (2023). Simple and highly sensitive electrochemical detection of Listeria monocytogenes based on aptamer-regulated Pt nanoparticles/hollow carbon spheres nanozyme activity. Sensors and Actuators B: Chemical, 392, 133991. https://doi.org/10.1016/ j.snb.2023.133991
  • Kadam, U. S., Hong, J. C. (2022). Recent advances in aptameric biosensors designed to detect toxic contaminants from food, water, human fluids, and the environment. Trends in Environmental Analytical Chemistry, e00184. https://doi.org/10.1016/j.teac.2022.e00184
  • Kalita, J. J., Sharma, P., Bora, U. (2023). Recent developments in application of nucleic acid aptamer in food safety. Food Control, 145, 109406. https://doi.org/10.1016/j.foodcont.2022.109406
  • Kara, N., Ayoub, N., Ilgu, H., Fotiadis, D., Ilgu, M. (2023). Aptamers targeting membrane proteins for sensor and diagnostic applications. Molecules, 28(9), 3728. https://doi.org/10.3390/ molecules28093728
  • Khan, S., Hussain, A., Fahimi, H., Aliakbari, F., Bloukh, S. H., Edis, Z., Falahati, M. (2022). A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. Arabian Journal of Chemistry, 15(2), 103626. https://doi.org/10.1016/j.arabjc.2021.103626
  • Koerselman, M., Morshuis, L. C., Karperien, M. (2023). The use of peptides, aptamers, and variable domains of heavy chain only antibodies in tissue engineering and regenerative medicine. Acta Biomaterialia. 170, 1-14. https://doi.org/ 10.1016/j.actbio.2023.07.045
  • Komarova, N., Kuznetsov, A. (2019). Inside the black box: what makes SELEX better?. Molecules, 24(19), 3598. https://doi.org/10.3390/ molecules24193598
  • Kohlberger, M., Gadermaier, G. (2022). SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnology and Applied Biochemistry, 69(5), 1771-1792. https://doi.org/10.1002/bab.2244
  • Lee, S. J., Cho, J., Lee, B. H., Hwang, D., Park, J. W. (2023). Design and prediction of aptamers assisted by in silico methods. Biomedicines, 11(2), 356. https://doi.org/10.3390/ bimedicines11020356
  • Li, L., Ma, R., Wang, W., Zhang, L., Li, J., Eltzov, E., Mao, X. (2023a). Group-targeting aptamers and aptasensors for simultaneous identification of multiple targets in foods. TrAC Trends in Analytical Chemistry, 117169. https://doi.org/10.1016/ j.trac.2023.117169
  • Li, M., Huang, R., Liao, X., Zhou, Z., Zou, L., Liu, B. (2023b). An inner filter effect-based fluorescent aptasensor for sensitive detection of kanamycin in complex samples using gold nanoparticles and graphene oxide quantum dots. Analytical Methods, 15(6), 843-848. https://doi.org/10.1039/d2ay01794f
  • Li, Y., Liu, W., Xu, H., Zhou, Y., Xie, W., Guo, Y., Ren, C. (2024). Aptamers combined with immune checkpoints for cancer detection and targeted therapy: A review. International Journal of Biological Macromolecules, 262 (2)130032. https://doi.org/10.1016/j.ijbiomac.2024.130032
  • Li, Z., Hu, B., Zhou, R., Zhang, X., Wang, R., Gao, Y., Wang, L. (2020). Selection and application of aptamers with high-affinity and high-specificity against dinophysistoxin-1. RSC advances, 10(14), 8181-8189. https://doi.org/ 10.1039/C9RA10600F
  • Lin, B., Xiao, F., Jiang, J., Zhao, Z., Zhou, X. (2023). Engineered aptamers for molecular imaging. Chemical Science. 14, 14039-14061. https://doi.org/10.1039/D3SC03989G
  • Liu, R., Zhang, Y., Ali, S., Haruna, S. A., He, P., Li, H., Chen, Q. (2021b). Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control, 122, 107808. https://doi.org/10.1016/ j.foodcont.2020.107808
  • Liu, S., Li, Q., Yang, H., Wang, P., Miao, X., Feng, Q. (2022). An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria. Biosensors and Bioelectronics, 196, 113744. https://doi.org/10.1016/j.bios.2021.113744
  • Liu, Y., Wang, N., Chan, C. W., Lu, A., Yu, Y., Zhang, G., Ren, K. (2021a). The application of microfluidic technologies in aptamer selection. Frontiers in Cell and Developmental Biology, 9, 730035. https://doi.org/10.3389/fcell.2021.730035
  • Liu, W., Zhu, C., Gao, S., Ma, K., Zhang, S., Du, Q., Chi, Z. (2024). A biosensor encompassing fusarinine C-magnetic nanoparticles and aptamer-red/green carbon dots for dual-channel fluorescent and RGB discrimination of Campylobacter and Aliarcobacter. Talanta, 266, 125085. https://doi.org/10.1016/ j.talanta.2023.125085
  • Nasiri, M., Bahadorani, M., Dellinger, K., Aravamudhan, S., Vivero-Escoto, J. L., Zadegan, R. (2024). Improving DNA nanostructure stability: A review of the biomedical applications and approaches. International Journal of Biological Macromolecules, 129495. https://doi.org/10.1016/ j.ijbiomac.2024.129495
  • Ma, P., Guo, H., Ye, H., Zhang, Y., Wang, Z. (2023). Aptamer-locker probe coupling with truncated aptamer for high-efficiency fluorescence polarization detection of zearalenone. Sensors and Actuators B: Chemical, 380, 133356. https://doi.org/10.1016/ j.snb.2023.133356
  • Mahmoudian, F., Ahmari, A., Shabani, S., Sadeghi, B., Fahimirad, S., Fattahi, F. (2024). Aptamers as an approach to targeted cancer therapy. Cancer Cell International, 24(1), 1-22. https://doi.org/10.1186/s12935-024-03295-4
  • Mao, Z., Zhao, Y., Dong, J., Li, L., Zhou, Y. (2023). Electrochemiluminescent silica nanoparticles encapsulating structure-optimized iridium complex to sensitively detect acetamiprid residues in tea based on aptamer sensor. Sensors and Actuators B: Chemical, 394, 134480. https://doi.org/10.1016/j.snb.2023.134480
  • Manea, I., Casian, M., Hosu-Stancioiu, O., de-los-Santos-Álvarez, N., Lobo-Castañón, M. J., Cristea, C. (2024). A review on magnetic beads-based SELEX technologies: Applications from small to large target molecules. Analytica Chimica Acta, 342325. https://doi.org/10.1016/ j.aca.2024.342325
  • Mili, M., Bachu, V., Kuri, P. R., Singh, N. K., Goswami, P. (2024). Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications. Biophysical Chemistry, 107218. https://doi.org/ 10.1016/j.bpc.2024.107218
  • Mishra, A., Roy, S., Shaikh, N. I., Malave, P., Mishra, A., Alam, A., Hasan, M. R. (2023). Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches. Biosensors and Bioelectronics: X, 100417. https://doi.org/10.1016/j.biosx.2023.100417
  • Mohamad, N., Azizan, N. I., Mokhtar, N. F. K., Mustafa, S., Desa, M. N. M., Hashim, A. M. (2022). Future perspectives on aptamer for application in food authentication. Analytical Biochemistry, 114861. https://doi.org/10.1016/ j.ab.2022.114861
  • Musumeci, D., Montesarchio, D. (2023). G-Quadruplex-Based Aptamers in Therapeutic Applications. In Handbook of Chemical Biology of Nucleic Acids (pp. 1-26). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-1313-5_79-1
  • Ning, Y., Hu, J., Lu, F. (2020). Aptamers used for biosensors and targeted therapy. Biomedicine & Pharmacotherapy, 132, 110902. https://doi.org/ 10.1016/j.biopha.2020.110902
  • Oliveira, R., Pinho, E., Sousa, A. L., DeStefano, J. J., Azevedo, N. F., Almeida, C. (2022). Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends in Biotechnology, 40(5), 549-563. https://doi.org/ 10.1016/j.tibtech.2021.09.011
  • Onaş, A. M., Dascălu, C., Raicopol, M. D., Pilan, L. (2022). critical design factors for electrochemical aptasensors based on target-induced conformational changes: The case of small-molecule targets. Biosensors, 12(10), 816. https://doi.org/10.3390/bios12100816
  • Pan, M., Han, X., Chen, S., Yang, J., Wang, Y., Li, H., Wang, S. (2024). Paper-based microfluidic device for selective detection of peanut allergen Ara h1 applying black phosphorus-Au nanocomposites for signal amplification. Talanta, 267, 125188. https://doi.org/10.1016/ j.talanta.2023.125188
  • Qi, S., Duan, N., Khan, I. M., Dong, X., Zhang, Y., Wu, S., Wang, Z. (2022). Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnology advances, 55, 107902. https://doi.org/10.1016/j.biotechadv.2021.107902
  • Qian, S., Han, Y., Xu, F., Feng, D., Yang, X., Wu, X., Yuan, M. (2022). A fast, sensitive, low-cost electrochemical paper-based chip for real-time simultaneous detection of cadmium (Ⅱ) and lead (Ⅱ) via aptamer. Talanta, 247, 123548. https://doi.org/10.1016/j.talanta.2022.123548
  • Qiao, Z., Xue, L., Sun, M., Zhang, M., Chen, M., Xu, X., Wang, R. (2023). Highly sensitive detection of Salmonella based on dual-functional HCR-mediated multivalent aptamer and amplification-free Crispr/Cas12a system. Analytica Chimica Acta, 1284, 341998. https://doi.org/10.1016/j.aca.2023.341998
  • Rong, Y., Li, H., Ouyang, Q., Ali, S., Chen, Q. (2020). Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118500. https://doi.org/10.1016/j.saa.2020.118500
  • Sawan, S., Errachid, A., Maalouf, R., Jaffrezic-Renault, N. (2022). Aptamers functionalized metal and metal oxide nanoparticles: Recent advances in heavy metal monitoring. TrAC Trends in Analytical Chemistry, 157, 116748. https://doi.org/10.1016/j.trac.2022.116748
  • Schmitz, F. R. W., Valério, A., de Oliveira, D., Hotza, D. (2020). An overview and future prospects on aptamers for food safety. Applied microbiology and biotechnology, 104, 6929-6939. https://doi.org/10.1007/s00253-020-10747-0
  • Scutarașu, E. C., Trincă, L. C. (2023). Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods, 12(18), 3340. https://doi.org/10.3390/ foods12183340
  • Seelam, P. P., Mitra, A., Sharma, P. (2019). Pairing interactions between nucleobases and ligands in aptamer: ligand complexes of riboswitches: Crystal structure analysis, classification, optimal structures, and accurate interaction energies. RNA, 25(10), 1274-1290. https://doi.org/ 10.1261/rna.071530.119
  • Shen, Z., Xu, D., Wang, G., Geng, L., Xu, R., Wang, G., Sun, X. (2022). Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. Journal of Hazardous Materials, 440, 129707. https://doi.org/10.1016/ j.jhazmat.2022.129707
  • Sola, M., Menon, A. P., Moreno, B., Meraviglia-Crivelli, D., Soldevilla, M. M., Cartón García, F., Pastor, F. (2020). Aptamers against live targets: is in vivo SELEX finally coming to the edge? Molecular Therapy-Nucleic Acids, 21, 192-204. https://doi.org/10.1016/j.omtn.2020.05.025
  • Srinivasan, S., Ranganathan, V., McConnell, E. M., Murari, B. M., DeRosa, M. C. (2023). Aptamer-based colorimetric and lateral flow assay approaches for the detection of toxic metal ions, thallium (i) and lead (ii). RSC advances, 13(29), 20040-20049. https://10.1039/d3ra01658g
  • Su, L., Wang, S., Wang, L., Yan, Z., Yi, H., Zhang, D., Ma, Y. (2020). Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225, 117511. https://doi.org/10.1016/j.saa.2019.117511
  • Sun, J., Liu, W., He, Z., Li, B., Dong, H., Liu, M., Sun, X. (2024). Novel electrochemiluminescence aptasensor based on AuNPs-ABEI encapsulated TiO2 nanorod for the detection of acetamiprid residues in vegetables. Talanta, 269, 125471. https://doi.org/10.1016/j.talanta.2023.125471
  • Sun, C., Su, R., Bie, J., Sun, H., Qiao, S., Ma, X., Zhang, T. (2018). Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes and Pigments, 149, 867-875. https://doi.org/10.1016/ j.dyepig.2017.11.031
  • Svigelj, R., Dossi, N., Pizzolato, S., Toniolo, R., Miranda-Castro, R., de-Los-Santos-Álvarez, N., Lobo-Castañón, M. J. (2020). Truncated aptamers as selective receptors in a gluten sensor supporting direct measurement in a deep eutectic solvent. Biosensors and Bioelectronics, 165, 112339. https://doi.org/10.1016/j.bios.2020.112339
  • Tang, X., Zuo, J., Yang, C., Jiang, J., Zhang, Q., Ping, J., Li, P. (2023a). Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): principles, application, and perspective. TrAC Trends in Analytical Chemistry, 117144. https://doi.org/ 10.1016/j.trac.2023.117144
  • Tang, Y., Yuan, J., Zhang, Y., Khan, I. M., Ma, P., Wang, Z. (2023b). Lateral flow assays based on aptamers for food safety applications. Food Control, 110051. https://doi.org/10.1016/ j.foodcont.2023.110051
  • Teng, Y., Liu, S., Yang, S., Guo, X., Zhang, Y., Song, Y., Cui, Y. (2019). Computer-designed orthogonal RNA aptamers programmed to recognize Ebola virus glycoproteins. Biosafety and Health, 1(2), 105-111. https://doi.org/ 10.1016/j.bsheal.2019.11.001
  • Torregrosa, D., Jauset-Rubio, M., Serrano, R., Svobodová, M., Grindlay, G., O'Sullivan, C. K., Mora, J. (2023). Ultrasensitive determination of β-conglutin food allergen by means an aptamer assay based on inductively coupled plasma mass spectrometry detection. Analytica Chimica Acta, 1252, 341042. https://doi.org/10.1016/ j.aca.2023.341042
  • Uğurlu, Ö., Man, E., Gök, O., Ülker, G., Soytürk, H., Özyurt, C., Evran, S. (2023). A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Analytica Chimica Acta, 342001. https://doi.org/10.1016/ j.aca.2023.342001
  • Verdian, A., Fooladi, E., Rouhbakhsh, Z. (2019). Recent progress in the development of recognition bioelements for polychlorinated biphenyls detection: Antibodies and aptamers. Talanta, 202, 123-135. https://doi.org/ 10.1016/j.talanta.2019.04.059
  • Wang, B., Kobeissy, F., Golpich, M., Cai, G., Li, X., Abedi, R., Wang, K. K. (2024). Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules, 29(5), 1124. https://doi.org/ 10.3390/molecules29051124
  • Wang, L., Liu, G., Ren, Y., Feng, Y., Zhao, X., Zhu, Y., Chen, X. (2020). Integrating target-triggered aptamer-capped HRP@ metal–organic frameworks with a colorimeter readout for on-site sensitive detection of antibiotics. Analytical Chemistry, 92(20), 14259-14266. https://doi.org/ 10.1021/acs.analchem.0c03723
  • Wang, J., Chen, D., Huang, W., Yang, N., Yuan, Q., Yang, Y. (2023a). Aptamer‐functionalized field‐effect transistor biosensors for disease diagnosis and environmental monitoring. In Exploration, 3 (3), p. 20210027. https://doi.org/ 10.1002/EXP.20210027
  • Wang, T., Chen, C., Larcher, L. M., Barrero, R. A., Veedu, R. N. (2019). Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnology advances, 37(1), 28-50. https://doi.org/10.1016/j.biotechadv.2018.11.001
  • Wang, Y., He, D., Du, Z., Xu, E., Jin, Z., Wu, Z., Cui, B. (2022). Ultrasensitive Detection of Staphylococcal Enterotoxin B with an AuNPs@ MIL-101 Nanohybrid-Based Dual-Modal Aptasensor. Food Analytical Methods, 15, 1368–1376. https://doi.org/10.1007/s12161-021-02204-z
  • Wang, Y. L., Zeng, G. C., Lee, C. T., Lin, C. K., Kuo, T. H., Paulose, A. K., Hung, S. C. (2023b). Fabrication of Aptamer-based Field Effect Transistor Sensors for Detecting Mercury Ions. ECS Transactions, 111(3), 63. https://doi.org/10.1149/11103.0063ecst
  • Wei, W., Lin, H., Hao, T., Wang, S., Hu, Y., Guo, Z., Luo, X. (2021). DNA walker-mediated biosensor for target-triggered triple-mode detection of Vibrio parahaemolyticus. Biosensors and Bioelectronics, 186, 113305. https://doi.org/ 10.1016/j.bios.2021.113305
  • Wei, X., Ma, P., Mahmood, K. I., Zhang, Y., Wang, Z. (2023). A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta, 253, 124003. https://doi.org/10.1016/ j.talanta.2022.124003,
  • Wei, S., Su, Z., Bu, X., Shi, X., Pang, B., Zhang, L., Zhao, C. (2022). On-site colorimetric detection of Salmonella typhimurium. Science of Food, 6(1), 48. https://doi.org/10.1038/s41538-022-00164-0
  • Wolter, O., Mayer, G. (2017). Aptamers as valuable molecular tools in neurosciences. Journal of Neuroscience, 37(10), 2517-2523. https://doi.org/10.1523/JNEUROSCI.1969-16.2017
  • Xie, M., Zhao, F., Zhang, Y., Xiong, Y., Han, S. (2022). Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control, 131, 108399. https://doi.org/10.1016/ j.foodcont.2021.108399
  • Xu, Y., Cheng, N., Luo, Y., Huang, K., Chang, Q., Pang, G., Xu, W. (2022). An Exo III-assisted catalytic hairpin assembly-based self-fluorescence aptasensor for pesticide detection. Sensors and Actuators B: Chemical, 358, 131441. https://doi.org/10.1016/j.snb.2022.131441
  • Yadav, R., Berlina, A. N., Zherdev, A. V., Gaur, M. S., Dzantiev, B. B. (2020). Rapid and selective electrochemical detection of pb 2+ ions using aptamer-conjugated alloy nanoparticles. SN Applied Sciences, 2, 1-11. https://doi.org/ 10.1007/s42452-020-03840-6
  • Yalagandula, B. P., Mohanty, S., Goswami, P. P., Singh, S. G. (2024). Optimizations towards a nearly invariable WO3-functionalized electrochemical aptasensor for ultra-trace identification of arsenic in lake water. Sensors and Actuators B: Chemical, 398, 134730. https://doi.org/10.1016/j.snb.2023.134730
  • Yan, M., Wang, H., Li, M., Zhang, W., Du, H., Chen, Z., She, Y. (2023). Multicolor aptasensors for pesticide multiresidues detection in agricultural products using bioorthogonal surface-enhanced Raman scattering tags. Talanta, 265, 124800. https://doi.org/10.1016/ j.talanta.2023.124800
  • Yang, S., Li, C., Zhan, H., Liu, R., Chen, W., Wang, X., Xu, K. (2023). A label-free fluorescent biosensor based on specific aptamer-templated silver nanoclusters for the detection of tetracycline. Journal of Nanobiotechnology, 21(1), 22. https://doi.org/10.1186/s12951-023-01785-7
  • Yao, X., Shen, J., Liu, Q., Fa, H., Yang, M., Hou, C. (2020). A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH 2/MCA/MWCNT@ rGONR nanocomposites. Analytical Methods, 12(41), 4967-4976. https://doi.org/10.1039/D0AY01503B
  • Yu, H., Zhao, Q. (2022). Aptamer molecular beacon sensor for rapid and sensitive detection of ochratoxin A. Molecules, 27(23), 8267. https://doi.org/10.3390/molecules27238267
  • Yu, H., Zhao, Q. (2024). Sensitive electrochemical sensor for Cd2+ with engineered short high-affinity aptamer undergoing large conformation change. Talanta, 271, 125642.https://doi.org/10.1016/j.talanta.2024.125642
  • Zhang, H. L., Lv, C., Li, Z. H., Jiang, S., Cai, D., Liu, S. S., Zhang, K. H. (2023a). Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Frontiers in Chemistry, 11, 1144347. https://doi.org/10.3389/ fchem.2023.1144347
  • Zhang, J., Liu, X., Shi, W., Wei, Y., Wu, Z., Li, J., Xu, K. (2022). Rapid and sensitive detection of Escherichia coli O157: H7 based on silver nanocluster fluorescent probe. Journal of the Iranian Chemical Society, 19(4), 1339-1346. https://doi.org/10.1007/s13738-021-02384-9
  • Zhang, N., Chen, Z., Liu, D., Jiang, H., Zhang, Z. K., Lu, A., Zhang, G. (2021a). Structural biology for the molecular insight between aptamers and target proteins. International Journal of Molecular Sciences, 22(8), 4093. https://doi.org/ 10.3390/ijms22084093
  • Zhang, N., Lv, H., Wang, J., Yang, Z., Ding, Y., Zhao, B., Tian, Y. (2023b). An aptamer-based colorimetric/SERS dual-mode sensing strategy for the detection of sulfadimethoxine residues in animal-derived foods. Analytical Methods, 15(8), 1047-1053. https://doi.org/10.1039/d2ay01825j
  • Zhang, W., Wang, Y., Nan, M., Li, Y., Yun, J., Wang, Y., Bi, Y. (2021b). Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Food Chemistry, 348, 129128. https://doi.org/10.1016/ j.foodchem.2021.129128
  • Zhao, L., Li, L., Zhao, Y., Zhu, C., Yang, R., Fang, M., Luan, Y. (2023). Aptamer-based point-of-care-testing for small molecule targets: From aptamers to aptasensors, devices and applications. TrAC Trends in Analytical Chemistry, 117408. https://doi.org/10.1016/j.trac.2023.117408
  • Zheng, Y., Shi, Z., Wu, W., He, C., Zhang, H. (2021). Label-free DNA electrochemical aptasensor for fumonisin B 1 detection in maize based on graphene and gold nanocomposite. Journal of Analytical Chemistry, 76, 252-257. https://doi.org/10.1134/S1061934821020167
  • Zhong, Z., Gao, R., Chen, Q., Jia, L. (2020). Dual-aptamers labeled polydopamine-polyethyleneimine copolymer dots assisted engineering a fluorescence biosensor for sensitive detection of Pseudomonas aeruginosa in food samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117417. https://doi.org/10.1016/j.saa.2019.117417
  • Zhou, E., Li, Q., Zhu, D., Chen, G., Wu, L. (2024a). Characterization of physicochemical and immunogenic properties of allergenic proteins altered by food processing: a review. Food Science and Human Wellness, 13(3), 1135-1151. https://doi.org/10.26599/FSHW.2022.9250095
  • Zhou, J., Zhang, C., Hu, C., Li, S., Liu, Y., Chen, Z., Deng, Y. (2024b). Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 109561. https://doi.org/10.1016/j.cclet.2024.109561
  • Zhou, Y., Mahapatra, C., Chen, H., Peng, X., Ramakrishna, S., Nanda, H. S. (2020). Recent developments in fluorescent aptasensors for detection of antibiotics. Current Opinion in Biomedical Engineering, 13, 16-24. https://doi.org/ 10.1016/j.cobme.2019.08.003
  • Zhu, C., Feng, Z., Qin, H., Chen, L., Yan, M., Li, L., Qu, F. (2023). Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta, 124998. https://doi.org/10.1016/ j.talanta.2023.124998
  • Zou, XM., Zou, J., Song, S., Guan-Hua, C. (2019). Screening of oligonucleotide aptamers and application in detection of pesticide and veterinary drug residues. Chinese Journal of Analytical Chemistry. Chinese Journal of Analytical Chemistry, 47(4), 488-499. https://doi.org/ 10.1016/S1872-2040(19)61153-9
There are 106 citations in total.

Details

Primary Language Turkish
Subjects Food Biotechnology
Journal Section Articles
Authors

Melike Canpolat 0000-0003-0345-465X

Zülal Kesmen 0000-0002-4505-6871

Publication Date
Submission Date December 26, 2023
Acceptance Date April 30, 2024
Published in Issue Year 2024 Volume: 49 Issue: 3

Cite

APA Canpolat, M., & Kesmen, Z. (n.d.). APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI. Gıda, 49(3), 536-553. https://doi.org/10.15237/gida.GD23145
AMA Canpolat M, Kesmen Z. APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI. The Journal of Food. 49(3):536-553. doi:10.15237/gida.GD23145
Chicago Canpolat, Melike, and Zülal Kesmen. “APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI”. Gıda 49, no. 3 n.d.: 536-53. https://doi.org/10.15237/gida.GD23145.
EndNote Canpolat M, Kesmen Z APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI. Gıda 49 3 536–553.
IEEE M. Canpolat and Z. Kesmen, “APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI”, The Journal of Food, vol. 49, no. 3, pp. 536–553, doi: 10.15237/gida.GD23145.
ISNAD Canpolat, Melike - Kesmen, Zülal. “APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI”. Gıda 49/3 (n.d.), 536-553. https://doi.org/10.15237/gida.GD23145.
JAMA Canpolat M, Kesmen Z. APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI. The Journal of Food.;49:536–553.
MLA Canpolat, Melike and Zülal Kesmen. “APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI”. Gıda, vol. 49, no. 3, pp. 536-53, doi:10.15237/gida.GD23145.
Vancouver Canpolat M, Kesmen Z. APTAMER TABANLI TANIMLAMA YÖNTEMİ VE GIDA GÜVENLİĞİNDEKİ UYGULAMALARI. The Journal of Food. 49(3):536-53.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/