Research Article
BibTex RIS Cite

YER BADEMİ UNU İÇEREN GLUTENSİZ BİSKÜVİ HAMURUNUN DİNAMİK SALINIM VE SÜNME-İYİLEŞME VERİLERİNİN MODELLENMESİ

Year 2024, Volume: 49 Issue: 6, 1218 - 1227, 09.12.2024
https://doi.org/10.15237/gida.GD24108

Abstract

Bu çalışma, yer bademi ununun (YBU) glutensiz bisküvi hamurunun reolojik özelliklerine, özellikle sünme-iyileşme davranışına olan etkisini araştırmaktadır. YBU, diyet lifi ve temel besinler açısından zengin olup, glutensiz ürünlerde umut verici bir bileşendir. Farklı YBU yüzdeleri (%10, %20, %30, %40 ve %50) içeren hamur örnekleri, termal ve reolojik özellikler açısından analiz edilmiştir. Sonuçlar, YBU içeriği arttıkça hamurun daha fazla deforme olduğunu, bunun daha yüksek sünme uyumu ve daha düşük viskozite ile yansıtıldığını göstermektedir. Ancak hamur yeterli elastik iyileşme kabiliyetini koruyarak hem yapısal bütünlük hem de uzayabilirlik gerektiren uygulamalar için uygun hale gelmiştir. Jelatinizasyon entalpisi azalması, YBU'nun nişasta jelatinizasyonu için enerji gereksinimlerini azaltarak işlem verimliliğini artırdığını göstermektedir. Bu çalışma, YBU'nun glutensiz hamur sistemlerindeki rolü üzerine literatürdeki bir boşluğu doldurarak, gelecekteki glutensiz ürün geliştirme uygulamaları için önemli bilgiler sunmaktadır.

Supporting Institution

Hacettepe University BAP

Project Number

FHD-2016-10059

References

  • AACC. (1990). Approved methods of the AACC (8th ed.). St. Paul, MN: American Association of Cereal Chemists. Adejuyitan, J. A., Otunola, E. T., Akande, E. A., Bolarinwa, I. F., Oladokun, F. M. (2018). Effect of fermentation on the proximate composition of tigernut flour and its potentials in food formulation. African Journal of Food Science Research, 6, 368–372.
  • Aguilar, N., Albanell, E., Miñarro, B., Guamis, B., Capellas, M. (2015). Effect of tiger nut-derived products in gluten-free batter and bread. Food Science and Technology International, 21(4), 323–331. https://doi.org/10.1177/1082013214535615
  • Ahmed, Z., and Hussein, A. (2014). Exploring the suitability of incorporating tiger nut flour as a novel ingredient in gluten-free biscuit. Journal of Food Science and Technology, 64(1), 27–33. https://doi.org/10.2478/v10222-012-0087-z
  • Bamishaiye, E. I., and Bamishaiye, O. M. (2011). Tiger nut: As a plant, its derivatives and benefits. African Journal of Food, Agriculture, Nutrition and Development, 11(5), 5157-5170.
  • Çinar, A. T., Turabi Yolacaner, E., Ateş, E. G. (2023). Rheological and quality properties of tiger nut-containing biscuit dough baked in IR-MW combination oven. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.12610
  • Chompoorat, P., Hernández-Estrada, Z., Mulvaney, S., Payton, M., Lavine, B., Fasasi, A., Rayas-Duarte, P. (2018). Comparison of rheological properties of wet gluten: Creep-recovery and biaxial compression. LWT. https://doi.org/10.1016/J.LWT.2018.08.036.
  • Demirkesen, I., Sumnu, G., Sahin, S. (2013). Quality of Gluten-Free Bread Formulations Baked in Different Ovens. Food and Bioprocess Technology, 6, 746-753. https://doi.org/ 10.1007/s11947-011-0712-6.
  • Ejiofor, J., and Deedam, J. N. (2015). Effect of tiger nut residue flour inclusion on the baking quality of confectionaries. Journal of Food Research, 4(5), 172–180. https://doi.org/10.5539/ jfr.v4n5p172
  • Gasparre, N., Pan, J., Alves, P. L. S., Rosell, C., Berrios, J. D. J. (2020). Tiger Nut (Cyperus esculentus) as a Functional Ingredient in Gluten-Free Extruded Snacks. Foods, 9(12), 1770. https://doi.org/10.3390/foods9121770
  • Gao, Z., Fang, Y., Cao, Y., Liao, H., Nishinari, K., Phillips, G. O. (2017). Hydrocolloid-food component interactions. Food Hydrocolloids, 68, 149–156. https://doi.org/10.1016/ j.foodhyd.2016.08.005
  • Horstmann, S., Foschia, M., Arendt, E. (2017). Correlation analysis of protein quality characteristics with gluten-free bread properties. Food and Function, 8(7), 2465-2474. https://doi.org/10.1039/c7fo00415j
  • Laguna, L., Salvador, A., Sanz, T., Fiszman, S. (2011). Performance of a resistant starch rich ingredient in the baking and eating quality of short-dough biscuits. LWT- Food Science and Technology, 44, 737-746. https://doi.org/ 10.1016/J.LWT.2010.05.034.
  • Larrosa, V. J., Lorenzo, G., Zaritzky, N., Califano, A. (2013). Optimization of rheological properties of gluten-free pasta dough using mixture design. Journal of Cereal Science, 57(4), 520-526. https://doi.org/10.1016/j.jcs.2013.03.003
  • Maduka, N., and Ire, F. S. (2018). Nutritional evaluation of raw and roasted tiger nut tubers. Journal of Food and Nutrition Research, 6(8), 444-449.
  • Mariotti, M., Lucisano, M., Pagani, M. A., Ng, P. (2009). The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Research International, 42(7), 963-975. https://doi.org/10.1016/j.foodres.2009.04.017
  • Megušar, P., Stopar, D., Poklar Ulrih, N., Dogša, I., Prislan, I. (2022). Thermal and Rheological Properties of Gluten-Free, Starch-Based Model Systems Modified by Hydrocolloids. Polymers, 14(16), 3242. https://doi.org/10.3390/ polym14163242
  • Moiraghi, M., Vanzetti, L., Bainotti, C., Helguera, M., León, A., Pérez, G. (2010). Relationship between soft wheat flour physicochemical composition and cookie-making performance. Cereal Chemistry Journal, 88(2), 130–136. https://doi.org/10.1094/CCHEM-01-10-0011
  • Moreira, R., Chenlo, F., Torres, M. D. (2013). Rheology of gluten-free doughs from blends of chestnut and rice flours. Food and Bioprocess Technology, 6(6), 1476–1485. https://doi.org/ 10.1007/s11947-012-0927-1
  • Niro, S., D’Agostino, A., Fratianni, A., Cinquanta, L., Panfili, G. (2019). Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods, 8(6), 208. https://doi.org/ 10.3390/foods8060208
  • Pejcz, E., and Burešová, I. (2022). Rheological characteristics of model gluten-free dough with Plantago seeds and husk incorporation. Foods, 11(4), 536. https://doi.org/10.3390/ foods11040536.
  • Pellegrini, N., and Agostoni, C. (2015). Nutritional aspects of gluten-free products. Journal of the Science of Food and Agriculture, 95(12), 2380–2385. https://doi.org/10.1002/jsfa.7101
  • Ren, Y.-H., Linter, B., Linforth, R., Foster, T. (2020). A comprehensive investigation of gluten-free bread dough rheology, proving and baking performance, and bread qualities by response surface design and principal component analysis. Food and Function. https://doi.org/10.1039/ d0fo00115e
  • Rezaei, R., Khomeiri, M., Kashaninejad, M., Aalami, M., Mazaheri-Tehrani, M. (2017). Steady and dynamic rheological behaviour of frozen soy yogurt mix affected by resistant starch and β-glucan. International Journal of Food Properties, 20(S2), S2688–S2695. https://doi.org/10.1080/ 10942912.2017.1397692
  • Rybicka, I. (2018). The Handbook of Minerals on a Gluten-Free Diet. Nutrients, 10(11), 1683. https://doi.org/10.3390/nu10111683
  • Rybicka, I., and Gliszczyńska-Świgło, A. (2017). Gluten-Free Flours from Different Raw Materials as the Source of Vitamin B1, B2, B3, and B6. Journal of Nutritional Science and Vitaminology, 63(2), 125–132. https://doi.org/10.3177/jnsv.63.125
  • Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23, 849-855. https://doi.org/10.1016/j.foodhyd.2008.03.016
  • Steffe, J. F. (1996). Rheological methods in food process engineering (pp. 294-348). USA: Freeman Press.
  • Tarancón, P., Hernández, M., Salvador, A., Sanz, T. (2015). Relevance of creep and oscillatory tests for understanding how cellulose emulsions function as fat replacers in biscuits. LWT - Food Science and Technology, 62, 640-646. https://doi.org/10.1016/J.LWT.2014.06.029.
  • Theethira, T., and Dennis, M. (2015). Celiac Disease and the Gluten-Free Diet: Consequences and Recommendations for Improvement. Digestive Diseases, 33, 175–182. https://doi.org/ 10.1159/000369504
  • Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., Mandala, I. (2014). Effect of carob flour addition on the rheological properties of gluten-free breads. Food and Bioprocess Technology, 7(4), 868–876. https://doi.org/10.1007/s11947-013-1104-x
  • Xu, F., Hu, H., Liu, Q., Dai, X., Zhang, H. (2017). Rheological and microstructural properties of wheat flour dough systems added with potato granules. International Journal of Food Properties,
  • Zannini, E., Jones, J. M., Renzetti, S., Arendt, E. K. (2012). Functional replacements for gluten. Annual Review of Food Science and Technology, 3(1), 227–245. https://doi.org/10.1146/annurev-food-022811-101203

MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR

Year 2024, Volume: 49 Issue: 6, 1218 - 1227, 09.12.2024
https://doi.org/10.15237/gida.GD24108

Abstract

This study investigates the impact of tiger nut flour (TNF) on the rheological properties of gluten-free biscuit dough, focusing on creep-recovery behavior. TNF is a rich source of dietary fiber and essential nutrients, making it a promising ingredient in gluten-free products. The dough samples, with varying TNF percentages (10%, 20%, 30%, 40%, and 50%), were analyzed for their thermal and rheological properties. Results show that as TNF content increases, the dough becomes more deformable, reflected in higher creep compliance and lower viscosity. However, the dough retained sufficient elastic recovery, making it suitable for applications requiring structural integrity and extensibility. The reduction in gelatinization enthalpy suggests that TNF enhances processing efficiency by lowering energy requirements for starch gelatinization. This study fills a gap in the literature on TNF's role in gluten-free dough systems, offering insights for future applications in gluten-free product development.

Supporting Institution

Hacettepe University BAP

Project Number

FHD-2016-10059

References

  • AACC. (1990). Approved methods of the AACC (8th ed.). St. Paul, MN: American Association of Cereal Chemists. Adejuyitan, J. A., Otunola, E. T., Akande, E. A., Bolarinwa, I. F., Oladokun, F. M. (2018). Effect of fermentation on the proximate composition of tigernut flour and its potentials in food formulation. African Journal of Food Science Research, 6, 368–372.
  • Aguilar, N., Albanell, E., Miñarro, B., Guamis, B., Capellas, M. (2015). Effect of tiger nut-derived products in gluten-free batter and bread. Food Science and Technology International, 21(4), 323–331. https://doi.org/10.1177/1082013214535615
  • Ahmed, Z., and Hussein, A. (2014). Exploring the suitability of incorporating tiger nut flour as a novel ingredient in gluten-free biscuit. Journal of Food Science and Technology, 64(1), 27–33. https://doi.org/10.2478/v10222-012-0087-z
  • Bamishaiye, E. I., and Bamishaiye, O. M. (2011). Tiger nut: As a plant, its derivatives and benefits. African Journal of Food, Agriculture, Nutrition and Development, 11(5), 5157-5170.
  • Çinar, A. T., Turabi Yolacaner, E., Ateş, E. G. (2023). Rheological and quality properties of tiger nut-containing biscuit dough baked in IR-MW combination oven. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.12610
  • Chompoorat, P., Hernández-Estrada, Z., Mulvaney, S., Payton, M., Lavine, B., Fasasi, A., Rayas-Duarte, P. (2018). Comparison of rheological properties of wet gluten: Creep-recovery and biaxial compression. LWT. https://doi.org/10.1016/J.LWT.2018.08.036.
  • Demirkesen, I., Sumnu, G., Sahin, S. (2013). Quality of Gluten-Free Bread Formulations Baked in Different Ovens. Food and Bioprocess Technology, 6, 746-753. https://doi.org/ 10.1007/s11947-011-0712-6.
  • Ejiofor, J., and Deedam, J. N. (2015). Effect of tiger nut residue flour inclusion on the baking quality of confectionaries. Journal of Food Research, 4(5), 172–180. https://doi.org/10.5539/ jfr.v4n5p172
  • Gasparre, N., Pan, J., Alves, P. L. S., Rosell, C., Berrios, J. D. J. (2020). Tiger Nut (Cyperus esculentus) as a Functional Ingredient in Gluten-Free Extruded Snacks. Foods, 9(12), 1770. https://doi.org/10.3390/foods9121770
  • Gao, Z., Fang, Y., Cao, Y., Liao, H., Nishinari, K., Phillips, G. O. (2017). Hydrocolloid-food component interactions. Food Hydrocolloids, 68, 149–156. https://doi.org/10.1016/ j.foodhyd.2016.08.005
  • Horstmann, S., Foschia, M., Arendt, E. (2017). Correlation analysis of protein quality characteristics with gluten-free bread properties. Food and Function, 8(7), 2465-2474. https://doi.org/10.1039/c7fo00415j
  • Laguna, L., Salvador, A., Sanz, T., Fiszman, S. (2011). Performance of a resistant starch rich ingredient in the baking and eating quality of short-dough biscuits. LWT- Food Science and Technology, 44, 737-746. https://doi.org/ 10.1016/J.LWT.2010.05.034.
  • Larrosa, V. J., Lorenzo, G., Zaritzky, N., Califano, A. (2013). Optimization of rheological properties of gluten-free pasta dough using mixture design. Journal of Cereal Science, 57(4), 520-526. https://doi.org/10.1016/j.jcs.2013.03.003
  • Maduka, N., and Ire, F. S. (2018). Nutritional evaluation of raw and roasted tiger nut tubers. Journal of Food and Nutrition Research, 6(8), 444-449.
  • Mariotti, M., Lucisano, M., Pagani, M. A., Ng, P. (2009). The role of corn starch, amaranth flour, pea isolate, and Psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Research International, 42(7), 963-975. https://doi.org/10.1016/j.foodres.2009.04.017
  • Megušar, P., Stopar, D., Poklar Ulrih, N., Dogša, I., Prislan, I. (2022). Thermal and Rheological Properties of Gluten-Free, Starch-Based Model Systems Modified by Hydrocolloids. Polymers, 14(16), 3242. https://doi.org/10.3390/ polym14163242
  • Moiraghi, M., Vanzetti, L., Bainotti, C., Helguera, M., León, A., Pérez, G. (2010). Relationship between soft wheat flour physicochemical composition and cookie-making performance. Cereal Chemistry Journal, 88(2), 130–136. https://doi.org/10.1094/CCHEM-01-10-0011
  • Moreira, R., Chenlo, F., Torres, M. D. (2013). Rheology of gluten-free doughs from blends of chestnut and rice flours. Food and Bioprocess Technology, 6(6), 1476–1485. https://doi.org/ 10.1007/s11947-012-0927-1
  • Niro, S., D’Agostino, A., Fratianni, A., Cinquanta, L., Panfili, G. (2019). Gluten-Free Alternative Grains: Nutritional Evaluation and Bioactive Compounds. Foods, 8(6), 208. https://doi.org/ 10.3390/foods8060208
  • Pejcz, E., and Burešová, I. (2022). Rheological characteristics of model gluten-free dough with Plantago seeds and husk incorporation. Foods, 11(4), 536. https://doi.org/10.3390/ foods11040536.
  • Pellegrini, N., and Agostoni, C. (2015). Nutritional aspects of gluten-free products. Journal of the Science of Food and Agriculture, 95(12), 2380–2385. https://doi.org/10.1002/jsfa.7101
  • Ren, Y.-H., Linter, B., Linforth, R., Foster, T. (2020). A comprehensive investigation of gluten-free bread dough rheology, proving and baking performance, and bread qualities by response surface design and principal component analysis. Food and Function. https://doi.org/10.1039/ d0fo00115e
  • Rezaei, R., Khomeiri, M., Kashaninejad, M., Aalami, M., Mazaheri-Tehrani, M. (2017). Steady and dynamic rheological behaviour of frozen soy yogurt mix affected by resistant starch and β-glucan. International Journal of Food Properties, 20(S2), S2688–S2695. https://doi.org/10.1080/ 10942912.2017.1397692
  • Rybicka, I. (2018). The Handbook of Minerals on a Gluten-Free Diet. Nutrients, 10(11), 1683. https://doi.org/10.3390/nu10111683
  • Rybicka, I., and Gliszczyńska-Świgło, A. (2017). Gluten-Free Flours from Different Raw Materials as the Source of Vitamin B1, B2, B3, and B6. Journal of Nutritional Science and Vitaminology, 63(2), 125–132. https://doi.org/10.3177/jnsv.63.125
  • Sozer, N. (2009). Rheological properties of rice pasta dough supplemented with proteins and gums. Food Hydrocolloids, 23, 849-855. https://doi.org/10.1016/j.foodhyd.2008.03.016
  • Steffe, J. F. (1996). Rheological methods in food process engineering (pp. 294-348). USA: Freeman Press.
  • Tarancón, P., Hernández, M., Salvador, A., Sanz, T. (2015). Relevance of creep and oscillatory tests for understanding how cellulose emulsions function as fat replacers in biscuits. LWT - Food Science and Technology, 62, 640-646. https://doi.org/10.1016/J.LWT.2014.06.029.
  • Theethira, T., and Dennis, M. (2015). Celiac Disease and the Gluten-Free Diet: Consequences and Recommendations for Improvement. Digestive Diseases, 33, 175–182. https://doi.org/ 10.1159/000369504
  • Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., Mandala, I. (2014). Effect of carob flour addition on the rheological properties of gluten-free breads. Food and Bioprocess Technology, 7(4), 868–876. https://doi.org/10.1007/s11947-013-1104-x
  • Xu, F., Hu, H., Liu, Q., Dai, X., Zhang, H. (2017). Rheological and microstructural properties of wheat flour dough systems added with potato granules. International Journal of Food Properties,
  • Zannini, E., Jones, J. M., Renzetti, S., Arendt, E. K. (2012). Functional replacements for gluten. Annual Review of Food Science and Technology, 3(1), 227–245. https://doi.org/10.1146/annurev-food-022811-101203
There are 32 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Technology
Journal Section Articles
Authors

Azra Tuğçe Çınar 0009-0004-6766-8934

Elif Turabi Yolaçaner 0000-0001-6300-8921

Project Number FHD-2016-10059
Publication Date December 9, 2024
Submission Date October 28, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2024 Volume: 49 Issue: 6

Cite

APA Çınar, A. T., & Turabi Yolaçaner, E. (2024). MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR. Gıda, 49(6), 1218-1227. https://doi.org/10.15237/gida.GD24108
AMA Çınar AT, Turabi Yolaçaner E. MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR. The Journal of Food. December 2024;49(6):1218-1227. doi:10.15237/gida.GD24108
Chicago Çınar, Azra Tuğçe, and Elif Turabi Yolaçaner. “MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR”. Gıda 49, no. 6 (December 2024): 1218-27. https://doi.org/10.15237/gida.GD24108.
EndNote Çınar AT, Turabi Yolaçaner E (December 1, 2024) MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR. Gıda 49 6 1218–1227.
IEEE A. T. Çınar and E. Turabi Yolaçaner, “MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR”, The Journal of Food, vol. 49, no. 6, pp. 1218–1227, 2024, doi: 10.15237/gida.GD24108.
ISNAD Çınar, Azra Tuğçe - Turabi Yolaçaner, Elif. “MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR”. Gıda 49/6 (December 2024), 1218-1227. https://doi.org/10.15237/gida.GD24108.
JAMA Çınar AT, Turabi Yolaçaner E. MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR. The Journal of Food. 2024;49:1218–1227.
MLA Çınar, Azra Tuğçe and Elif Turabi Yolaçaner. “MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR”. Gıda, vol. 49, no. 6, 2024, pp. 1218-27, doi:10.15237/gida.GD24108.
Vancouver Çınar AT, Turabi Yolaçaner E. MODELING OF DYNAMIC OSCILLATION AND CREEP-RECOVERY DATA OF GLUTEN-FREE BISCUIT DOUGH CONTAINING TIGER-NUT FLOUR. The Journal of Food. 2024;49(6):1218-27.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/