Review
BibTex RIS Cite

A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE

Year 2025, Volume: 50 Issue: 1, 56 - 73
https://doi.org/10.15237/gida.GD24094

Abstract

The objective of this paper is to review the effectiveness of ultrasound-assisted extraction, particularly targeting phenolic and flavonoid compounds from coffee waste. The mechanism, advantages, disadvantages and some of the important factors affecting ultrasound-assisted extraction are discussed. Previous studies and current applications of ultrasound-assisted extraction on the extraction of phenolics and flavonoids from various coffee wastes are reviewed. Ultrasound-assisted extraction is easier to use, can be done at the room temperature, increases efficiency, utilizes less solvent and energy, reduces operating costs, and better preserves of the bioactivity of thermosensitive compounds. This review shows that key parameters affecting the extraction of bioactive compounds using ultrasound technology are temperature, contact time, type of solvent, solid to solvent ratio, ultrasonic power and ultrasonic frequency. In conclusion, all the reported applications reveal that ultrasound-assisted extraction stands out as an emerging and green extraction technique to extract phenolic and flavonoid compounds from coffee waste.

References

  • Abdeltaif, S.A., SirElkhatim, K.A., Hassan, A.B. (2018). Estimation of phenolic and flavonoid compounds and antioxidant activity of spent coffee and black tea (processing) waste for potential recovery and reuse in Sudan. Recycling, 3(2): 27. https://doi.org/ 10.3390/recycling3020027
  • Aguilera, Y., Rebollo-Hernanz, M., Cañas, S., Taladrid, D., Martín-Cabrejas, M.A. (2019). Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food and Function, 10(8): 4739–4750. https://doi.org/10.1039/ c9fo00544g
  • Al-Dhabi, N.A., Ponmurugan, K., Jeganathan, P.M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34: 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005
  • Alves, R.C., Rodrigues, F., Nunes, M.A., Vinha, A.F., Oliveira, M.B.P. (2017). State of the art in coffee processing by-products. In: Handbook of Coffee Processing By-Products Sustainable Applications, Galanakis, C.M. (ed.), Academic Press, UK, pp. 1–26. https://doi.org/10.1016/b978-0-12-811290-8.00001-3
  • Andrade, K.S., Gonçalvez, R.T., Maraschin, M., Ribeiro-do-Valle, R.M., Martínez, J., Ferreira, S.R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88: 544–552. https://doi.org/10.1016/j.talanta.2011.11.031
  • Arya, S.S., Venkatram, R., More, P.R., Vijayan, P. (2022). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59: 422–429. https://doi.org/ 10.1007/s13197-021-05032-5
  • Battista, F., Zanzoni, S., Strazzera, G., Andreolli, M., Bolzonella, D. (2020). The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 157: 1203–1211. https://doi.org/10.1016/j.renene.2020.05.113
  • Beaudor, M., Vauchel, P., Pradal, D., Aljawish, A., Phalip, V. (2023). Comparing the efficiency of extracting antioxidant polyphenols from spent coffee grounds using an innovative ultrasound-assisted extraction equipment versus conventional method. Chemical Engineering and Processing-Process Intensification, 188: 109358. https://doi.org/10.1016/j.cep.2023.109358
  • Benincá, D.B., do Carmo, L.B., Grancieri, M., Aguiar, L.L., Lima Filho, T., Costa, A.G.V., da Silva Oliveira, D., Saraiva, S.H., Silva, P.I. (2023). Incorporation of spent coffee grounds in muffins: A promising industrial application. Food Chemistry Advances, 3: 100329. https://doi.org/10.1016/ j.focha.2023.100329
  • Benitez, V., Rebollo-Hernanz, M., Hernanz, S., Chantres, S., Aguilera, Y., Martin-Cabrejas, M.A. (2019). Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 122: 105–113. https://doi.org/10.1016/ j.foodres.2019.04.002
  • Benyelles, M., Merzouk, H., Merzouk, A.Z., Imessaoudene, A., Medjdoub, A., Mebarki, A. (2024). Valorization of encapsulated coffee parchment extracts as metabolic control for high fructose diet-induced obesity, using Wistar rat as animal model. Waste and Biomass Valorization, 15(1): 265–281. https://doi.org/ 10.21203/rs.3.rs-2327126/v1
  • Bhadange, Y.A., Saharan, V.K., Sonawane, S.H., Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chemical Engineering and Processing-Process Intensification, 181: 109147. https://doi.org/10.1016/ j.cep.2022.109147
  • Biondić Fučkar, V., Nutrizio, M., Grudenić, A., Djekić, I., Režek Jambrak, A. (2023). Sustainable ultrasound assisted extractions and valorization of coffee silver skin (CS). Sustainability, 15(10): 8198. https://doi.org/10.3390/su15108198
  • Bondam, A.F., Da Silveira, D.D., Santos, J.C.D., Hoffmann, J.F. (2022). Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 123: 172–186. https://doi.org/10.1016/ j.tifs.2022.03.013
  • Bouhzam, I., Cantero, R., Margallo, M., Aldaco, R., Bala, A., Fullana-i-Palmer, P., Puig, R. (2023). Extraction of bioactive compounds from spent coffee grounds using ethanol and acetone aqueous solutions. Foods, 12(24): 4400. https://doi.org/10.3390/ foods12244400
  • Buvaneshwaran, M., Radhakrishnan, M., Natarajan, V. (2023). Influence of ultrasound‐assisted extraction techniques on the valorization of agro‐based industrial organic waste–A review. Journal of Food Process Engineering, 46(6): e14012. https://doi.org/10.1111/jfpe.14012
  • Carrasco-Cabrera, C.P., Bell, T.L., Kertesz, M.A. (2019). Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Applied Microbiology and Biotechnology, 103: 5831–5841. https://doi.org/ 10.1007/s00253-019-09883-z
  • Carreira-Casais, A., Carpena, M., Pereira, A.G., Chamorro, F., Soria-Lopez, A., Perez, P.G., Otero, P., Cao, H., Xiao, J., Simal-Gandara, J., Prieto, M.A. (2021). Critical variables influencing the ultrasound-assisted extraction of bioactive compounds–a review. Chemistry Proceedings, 5(1): 50. https://doi.org/10.3390/CSAC2021-10562
  • Chávez-Martínez, A., Reyes-Villagrana, R.A., Rentería-Monterrubio, A.L., Sánchez-Vega, R., Tirado-Gallegos, J.M., Bolivar-Jacobo, N.A. (2020). Low and high-intensity ultrasound in dairy products: applications and effects on physicochemical and microbiological quality. Foods, 9(11): 1688. https://doi.org/10.3390/ foods9111688
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540–560. https://doi.org/10.1016/ j.ultsonch.2016.06.035
  • Chen, C.Y., Shih, C.H., Lin, T.C., Zheng, J.H., Hsu, C.C., Chen, K.M., Lin, Y.S., Wu, C.T. (2021). Antioxidation and tyrosinase inhibitory ability of coffee pulp extract by ethanol. Journal of Chemistry, 2021(1): 8649618. https://doi.org/ 10.1155/2021/8649618
  • Choi, B., Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology, 26(4): 921–927. https://doi.org/ 10.1007/s10068-017-0144-9
  • Costa, A.S.G., Alves, R.C., Vinha, A.F., Barreira, S.V.P., Nunes, M.A., Cunha, L.M., Oliveira, M.B.P.P. (2014). Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Industrial Crops and Products, 53: 350–357. https://doi.org/10.1016/j.indcrop.2014.01.006
  • Dauber, C., Romero, M., Chaparro, C., Ureta, C., Ferrari, C., Lans, R., Frugoni, L., Echeverry, M.V., Sánchez Calvo, B., Trostchansky, A., Miraballes, M., Gámbaro, A., Vieitez, I. (2024). Cookies enriched with coffee silverskin powder and coffee silverskin ultrasound extract to enhance fiber content and antioxidant properties. Applied Food Research, 4(1): 100373. https://doi.org/10.1016/ j.afres.2023.100373
  • Franca, A.S., Oliveira, L.S. (2022). Potential uses of spent coffee grounds in the food industry. Foods, 11(14): 2064. https://doi.org/10.3390/ foods11142064
  • Geremu, M., Tola, Y.B., Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3: 25. https://doi.org/10.1186/ s40538-016-0077-1
  • Hassan, S.R., Al-Yaqoobi, A.M. (2023). Assessment of ultrasound-assisted extraction of caffeine and its bioactivity. Journal of Ecological Engineering, 24(3): 126–133. https://doi.org/ 10.12911/22998993/157540
  • Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 221: 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067
  • Hoseini, M., Cocco, S., Casucci, C., Cardelli, V., Corti, G. (2021). Coffee by-products derived resources-A review. Biomass and Bioenergy, 148: 106009. https://doi.org/10.1016/ j.biombioe.2021.106009
  • Hu, S., Gil-Ramírez, A., Martín-Trueba, M., Benítez, V., Aguilera, Y., Martín-Cabrejas, M.A. (2023). Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Current Research in Food Science, 6: 100475. https://doi.org/10.1016/ j.crfs.2023.100475
  • Iriondo‐DeHond, A., Garcia, N.A., Fernandez-Gomez, B., Guisantes-Batan, E., Escobar, F.V., Blanch, G.P., Andres, M.I.S., Sanchez-Fortun, S., del Castillo, M.D. (2019). Validation of coffee by-products as novel food ingredients. Innovative Food Science and Emerging Technologies, 51: 194–204. https://doi.org/10.1016/j.ifset.2018.06.010
  • Janissen, B., Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128: 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
  • Jha, A.K., Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science and Technology, 119: 579–591. https://doi.org/10.1016/j.tifs.2021.11.019
  • Johnson, K., Liu, Y., Lu, M. (2022). A review of recent advances in spent coffee grounds upcycle technologies and practices. Frontiers in Chemical Engineering, 4: 838605. https://doi.org/10.3389/ fceng.2022.838605
  • Kc, Y., Subba, R., Shiwakoti, L.D., Dhungana, P.K., Bajagain, R., Chaudhary, D.K., Pant, B.R., Bajgai, T.R., Lamichhane, J., Timilsina, S., Upadhyaya, J., Dahal, R.H. (2021). Utilizing coffee pulp and mucilage for producing alcohol-based beverage. Fermentation, 7(2): 53. https://doi.org/10.3390/fermentation7020053
  • Khochapong, W., Ketnawa, S., Ogawa, Y., Punbusayakul, N. (2021). Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 348: 129094. https://doi.org/10.1016/ j.foodchem.2021.129094
  • Klingel, T., Kremer, J.I., Gottstein, V., Rajcic de Rezende, T., Schwarz, S., Lachenmeier, D. W. (2020). A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods, 9(5): 665. https://doi.org/ 10.3390/foods9050665
  • Kobus, Z., Krzywicka, M., Pecyna, A., Buczaj, A. (2021). Process efficiency and energy consumption during the ultrasound-assisted extraction of bioactive substances from hawthorn berries. Energies, 14(22): 7638. https://doi.org/ 10.3390/en14227638
  • Kovalcik, A., Obruca, S., Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing, 110: 104–119. https://doi.org/10.1016/j.fbp.2018.05.002
  • Lauberts, M., Mierina, I., Pals, M., Latheef, M.A.A., Shishkin, A. (2023). Spent coffee grounds valorization in biorefinery context to obtain valuable products using different extraction approaches and solvents. Plants, 12(1): 30. https://doi.org/10.3390/plants12010030
  • Lee, Y.G., Cho, E.J., Maskey, S., Nguyen, D.T., Bae, H.J. (2023). Value-added products from coffee waste: a review. Molecules, 28(8): 3562. https://doi.org/10.3390/molecules28083562
  • Liu, Q., Jiang, J., Tang, L., Chen, M. (2020). The effect of low frequency and low intensity ultrasound combined with microbubbles on the sonoporation efficiency of MDA-MB-231 cells. Annals of Translational Medicine, 8(6): 298. https://doi.org/10.21037/atm.2020.02.155
  • Loarca-Piña, G., Vergara-Castañeda, H., Oomah, B.D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 45(1): 24–36. https://doi.org/10.1016/j.tifs.2015.04.012
  • Machado, M., Espírito Santo, L., Machado, S., Lobo, J.C., Costa, A.S.G., Oliveira, M.B.P.P., Ferreira, H., Alves, R.C. (2023). Bioactive potential and chemical composition of coffee by-products: from pulp to silverskin. Foods, 12(12): 2354. https://doi.org/10.3390/foods12122354
  • Martinez-Saez, N., García, A.T., Pérez, I.D., Rebollo-Hernanz, M., Mesías, M., Morales, F.J., Martín-Cabrejas, M.A., del Castillo, M.D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 216: 114–122. https://doi.org/10.1016/j.foodchem.2016.07.173
  • Martuscelli, M., Esposito, L., Di Mattia, C.D., Ricci, A., Mastrocola, D. (2021). Characterization of coffee silver skin as potential food-safe ingredient. Foods, 10: 1367. https://doi.org/ 10.3390/foods10061367
  • McDonald, K., Langenbahn, H.J., Miller, J.D., McMullin, D.R. (2022). Phytosterol oxidation products from coffee silverskin. Journal of Food Science, 87(2): 728–737. https://doi.org/10.1111/ 1750-3841.16042
  • McNutt, J., He, Q. (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71: 78–88. https://doi.org/10.1016/j.jiec.2018.11.054
  • Mensah, R.Q., Tantayotai, P., Rattanaporn, K., Chuetor, S., Kirdponpattara, S., Kchaou, M., Show, P.L., Mussatto, S.I., Sriariyanun, M. (2024). Properties and applications of green-derived products from spent coffee grounds–Steps towards sustainability. Bioresource Technology Reports, 26: 101859. https://doi.org/10.1016/ j.biteb.2024.101859
  • Murthy, P.S., Naidu, M.M. (2012). Sustainable management of coffee industry by-products and value additionA review. Resources, Conservation and Recycling, 66: 45–58. https://doi.org/10.1016/ j.resconrec.2012.06.005
  • Myo, H., Khat-Udomkiri, N. (2022). Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrasonics Sonochemistry, 89: 106127. https://doi.org/10.1016/j.ultsonch.2022.106127
  • Narita, Y., Inouye, K. (2014). Review on utilization and composition of coffee silverskin. Food Research International, 61: 16–22. https://doi.org/10.1016/j.foodres.2014.01.023
  • Niazi, S., Hashemabadi, S.H., Noroozi, S. (2014). Numerical simulation of operational parameters and sonoreactor configurations for the highest possibility of acoustic cavitation in crude oil. Chemical Engineering Communications, 201(10): 1340–1359. https://doi.org/10.1080/ 00986445.2013.808999
  • Nurzyńska-Wierdak, R. (2023). Phenolic compounds from new natural sourcesPlant genotype and ontogenetic variation. Molecules, 28(4): 1731. https://doi.org/10.3390/ molecules28041731
  • Nzekoue, F.K., Angeloni, S., Navarini, L., Angeloni, C., Freschi, M., Hrelia, S., Vitali, L.A., Sagratini, G., Vittori, S., Caprioli, G. (2020). Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Research International, 133: 109128. https://doi.org/ 10.1016/j.foodres.2020.109128
  • Okur, İ., Söyler, B., Sezer, P., Öztop, M.H., Alpas, H. (2021). Improving the recovery of phenolic compounds from spent coffee grounds (SCG) by environmentally friendly extraction techniques. Molecules, 26(3): 613. https://doi.org/10.3390/ molecules26030613
  • Oliveira, G., Passos, C.P., Ferreira, P., Coimbra, M.A., Gonçalves, I. (2021). Coffee by-products and their suitability for developing active food packaging materials. Foods, 10(3): 683. https://doi.org/10.3390/foods10030683
  • Oroian, M., Ursachi, F., Dranca, F. (2020). Influence of ultrasonic amplitude, temperature, time, and solvent concentration on bioactive compounds extraction from propolis. Ultrasonics Sonochemistry, 64: 105021. https://doi.org/ 10.1016/j.ultsonch.2020.105021
  • Ozdemir, M., Gungor, V., Melikoglu, M., Aydiner, C. (2024). Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants, 38: 100525. https://doi.org/10.1016/j.jarmap.2023.100525
  • Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of Agricultural and Food Chemistry, 61(17): 4162–4168. https://doi.org/10.1021/jf4005719
  • Pimpley, V.A., Murthy, P.S. (2021). Influence of green extraction techniques on green coffee: Nutraceutical compositions, antioxidant potential and in vitro bio-accessibility of phenolics. Food Bioscience, 43: 101284. https://doi.org/10.1016/ j.fbio.2021.101284
  • Ramón-Gonçalves, M., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E., Madrid, Y. (2019). Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Management, 96: 15–24. https://doi.org/10.1016/ j.wasman.2019.07.009
  • Rebollo-Hernanz, M., Cañas, S., Taladrid, D., Benítez, V., Bartolomé, B., Aguilera, Y., Martín-Cabrejas, M.A. (2021). Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods, 10(3): 653. https://doi.org/ 10.3390/foods10030653
  • Serna-Jiménez, J.A., Siles, J.A., de los Ángeles Martín, M., Chica, A.F. (2022). A review on the applications of coffee waste derived from primary processing: Strategies for revalorization. Processes, 10(11): 2436. https://doi.org/10.3390/ pr10112436
  • Severini, C., Derossi, A., Fiore, A.G. (2017). Ultrasound-assisted extraction to improve the recovery of phenols and antioxidants from spent espresso coffee ground: a study by response surface methodology and desirability approach. European Food Research and Technology, 243(5): 835–847. https://doi.org/10.1007/s00217-016-2797-7
  • Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101: 106646. https://doi.org/ 10.1016/j.ultsonch.2023.106646
  • Silva, M.D.O., Honfoga, J.N.B., Medeiros, L.L.D., Madruga, M.S., Bezerra, T.K.A. (2020). Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules, 26(1): 46. https://doi.org/ 10.3390/molecules26010046
  • Solomakou, N., Loukri, A., Tsafrakidou, P., Michaelidou, A.-M., Mourtzinos, I., Goula, A.M. (2022). Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustainable Chemistry and Pharmacy, 25: 100592. https://doi.org/ 10.1016/j.scp.2021.100592
  • Tran, T.M.K., Akanbi, T.O., Kirkman, T., Nguyen, M.H., Vuong, Q.V. (2022). Recovery of phenolic compounds and antioxidants from coffee pulp (Coffea canephora) waste using ultrasound and microwave-assisted extraction. Processes, 10(5): 1011. https://doi.org/ 10.3390/pr10051011
  • Tran, T.M.K., Kirkman, T., Nguyen, M., Van Vuong, Q. (2020). Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon, 6(7): e04498. https://doi.org/10.1016/j.heliyon.2020.e04498
  • Wen, L., Zhang, Z., Rai, D., Sun, D.W., Tiwari, B.K. (2019). Ultrasound‐assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. Journal of Food Process Engineering, 42(6): e13191. https://doi.org/10.1111/ jfpe.13191
  • Worku, M. (2023). Production, productivity, quality and chemical composition of Ethiopian coffee. Cogent Food and Agriculture, 9(1): 2196868. https://doi.org/10.1080/23311932.2023.2196868
  • Yang, A., Zhang, Z., Jiang, K., Xu, K., Meng, F., Wu, W., Li, Z., Wang, B. (2024). Study on ultrasound-assisted extraction of cold brew coffee using physicochemical, flavor, and sensory evaluation. Food Bioscience, 61: 104455. https://doi.org/10.1016/j.fbio.2024.104455
  • Yusufoğlu, B., Kezer, G., Wang, Y., Ziora, Z.M., Esatbeyoglu, T. (2024). Bio-recycling of spent coffee grounds: Recent advances and potential applications. Current Opinion in Food Science, 55: 101111. https://doi.org/10.1016/ j.cofs.2023.101111
  • Zahari, N.A.A.R., Chong, G.H., Abdullah, L.C., Chua, B.L. (2020). Ultrasound-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes, 8(3): 322. https://doi.org/10.3390/pr8030322
  • Zamanipoor, M.H., Yakufu, B., Tse, E., Rezaeimotlagh, A., Hook, J.M., Bucknall, M.P., Thomas, D.S., Trujillo, F.J. (2020). Brewing coffee?–Ultra-sonication has clear beneficial effects on the extraction of key volatile aroma components and triglycerides. Ultrasonics Sonochemistry, 60: 104796. https://doi.org/ 10.1016/j.ultsonch.2019.104796
  • Zengin, G., Sinan, K.I., Mahomoodally, M.F., Angeloni, S., Mustafa, A.M., Vittori, S., Maggi, F., Caprioli, G. (2020). Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods, 9(6): 713. https://doi.org/10.3390/foods9060713
  • Zuorro, A. (2015). Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Separation and Purification Technology, 152: 64–69. http://dx.doi.org/ 10.1016/j.seppur.2015.08.016
  • Zuorro, A., Lavecchia, R. (2013). Influence of extraction conditions on the recovery of phenolic antioxidants from spent coffee grounds. American Journal of Applied Sciences, 10(5): 478–486. https://doi.org/10.3844/ajassp.2013.478.486
  • Zupanc, M., Pandur, Ž., Perdih, T.S., Stopar, D., Petkovšek, M., Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57: 147–165. https://doi.org/ 10.1016/j.ultsonch.2019.05.009

KAHVE ATIKLARINDAN BİYOAKTİF BİLEŞİKLERİN ULTRASES DESTEKLİ EKSTRAKSİYONUNUN İNCELENMESİ

Year 2025, Volume: 50 Issue: 1, 56 - 73
https://doi.org/10.15237/gida.GD24094

Abstract

Bu derleme makalesinin amacı, özellikle kahve atıklarından fenolik ve flavonoit bileşikleri hedef alan ultrases destekli ekstraksiyonun etkinliğini araştırmaktır. Ultrases destekli ekstraksiyonun mekanizması, avantajları, dezavantajları ve etkileyen bazı önemli faktörler tartışılmaktadır. Çeşitli kahve atıklarından fenolik ve flavonoitlerin ekstraksiyonu üzerine ultrases destekli ekstraksiyon ile ilgili çalışmalar ve mevcut uygulamalar verilmektedir. Ultrases destekli ekstraksiyonun kullanımı daha kolaydır, oda sıcaklığında yapılabilir, verimliliği artırır, daha az çözücü ve enerji kullanır, işletme maliyetlerini azaltır ve ısıya duyarlı bileşiklerin biyoaktivitesini daha iyi korur. Bu derleme çalışması, ultrases teknolojisi kullanılarak biyoaktif bileşiklerin ekstraksiyonunu etkileyen temel parametrelerin sıcaklık, temas süresi, çözücü türü, katı-çözücü oranı, ultrasonik güç ve ultrasonik frekans olduğunu göstermektedir. Sonuç olarak, mevcut tüm uygulamalar, ultrases destekli ekstraksiyonun kahve atıklarından fenolik ve flavonoit bileşiklerin ekstraksiyonu için yeni ve yeşil bir ekstraksiyon tekniği olarak öne çıktığını ortaya koymaktadır.

References

  • Abdeltaif, S.A., SirElkhatim, K.A., Hassan, A.B. (2018). Estimation of phenolic and flavonoid compounds and antioxidant activity of spent coffee and black tea (processing) waste for potential recovery and reuse in Sudan. Recycling, 3(2): 27. https://doi.org/ 10.3390/recycling3020027
  • Aguilera, Y., Rebollo-Hernanz, M., Cañas, S., Taladrid, D., Martín-Cabrejas, M.A. (2019). Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food and Function, 10(8): 4739–4750. https://doi.org/10.1039/ c9fo00544g
  • Al-Dhabi, N.A., Ponmurugan, K., Jeganathan, P.M. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34: 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005
  • Alves, R.C., Rodrigues, F., Nunes, M.A., Vinha, A.F., Oliveira, M.B.P. (2017). State of the art in coffee processing by-products. In: Handbook of Coffee Processing By-Products Sustainable Applications, Galanakis, C.M. (ed.), Academic Press, UK, pp. 1–26. https://doi.org/10.1016/b978-0-12-811290-8.00001-3
  • Andrade, K.S., Gonçalvez, R.T., Maraschin, M., Ribeiro-do-Valle, R.M., Martínez, J., Ferreira, S.R. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition. Talanta, 88: 544–552. https://doi.org/10.1016/j.talanta.2011.11.031
  • Arya, S.S., Venkatram, R., More, P.R., Vijayan, P. (2022). The wastes of coffee bean processing for utilization in food: a review. Journal of Food Science and Technology, 59: 422–429. https://doi.org/ 10.1007/s13197-021-05032-5
  • Battista, F., Zanzoni, S., Strazzera, G., Andreolli, M., Bolzonella, D. (2020). The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 157: 1203–1211. https://doi.org/10.1016/j.renene.2020.05.113
  • Beaudor, M., Vauchel, P., Pradal, D., Aljawish, A., Phalip, V. (2023). Comparing the efficiency of extracting antioxidant polyphenols from spent coffee grounds using an innovative ultrasound-assisted extraction equipment versus conventional method. Chemical Engineering and Processing-Process Intensification, 188: 109358. https://doi.org/10.1016/j.cep.2023.109358
  • Benincá, D.B., do Carmo, L.B., Grancieri, M., Aguiar, L.L., Lima Filho, T., Costa, A.G.V., da Silva Oliveira, D., Saraiva, S.H., Silva, P.I. (2023). Incorporation of spent coffee grounds in muffins: A promising industrial application. Food Chemistry Advances, 3: 100329. https://doi.org/10.1016/ j.focha.2023.100329
  • Benitez, V., Rebollo-Hernanz, M., Hernanz, S., Chantres, S., Aguilera, Y., Martin-Cabrejas, M.A. (2019). Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 122: 105–113. https://doi.org/10.1016/ j.foodres.2019.04.002
  • Benyelles, M., Merzouk, H., Merzouk, A.Z., Imessaoudene, A., Medjdoub, A., Mebarki, A. (2024). Valorization of encapsulated coffee parchment extracts as metabolic control for high fructose diet-induced obesity, using Wistar rat as animal model. Waste and Biomass Valorization, 15(1): 265–281. https://doi.org/ 10.21203/rs.3.rs-2327126/v1
  • Bhadange, Y.A., Saharan, V.K., Sonawane, S.H., Boczkaj, G. (2022). Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chemical Engineering and Processing-Process Intensification, 181: 109147. https://doi.org/10.1016/ j.cep.2022.109147
  • Biondić Fučkar, V., Nutrizio, M., Grudenić, A., Djekić, I., Režek Jambrak, A. (2023). Sustainable ultrasound assisted extractions and valorization of coffee silver skin (CS). Sustainability, 15(10): 8198. https://doi.org/10.3390/su15108198
  • Bondam, A.F., Da Silveira, D.D., Santos, J.C.D., Hoffmann, J.F. (2022). Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends in Food Science and Technology, 123: 172–186. https://doi.org/10.1016/ j.tifs.2022.03.013
  • Bouhzam, I., Cantero, R., Margallo, M., Aldaco, R., Bala, A., Fullana-i-Palmer, P., Puig, R. (2023). Extraction of bioactive compounds from spent coffee grounds using ethanol and acetone aqueous solutions. Foods, 12(24): 4400. https://doi.org/10.3390/ foods12244400
  • Buvaneshwaran, M., Radhakrishnan, M., Natarajan, V. (2023). Influence of ultrasound‐assisted extraction techniques on the valorization of agro‐based industrial organic waste–A review. Journal of Food Process Engineering, 46(6): e14012. https://doi.org/10.1111/jfpe.14012
  • Carrasco-Cabrera, C.P., Bell, T.L., Kertesz, M.A. (2019). Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Applied Microbiology and Biotechnology, 103: 5831–5841. https://doi.org/ 10.1007/s00253-019-09883-z
  • Carreira-Casais, A., Carpena, M., Pereira, A.G., Chamorro, F., Soria-Lopez, A., Perez, P.G., Otero, P., Cao, H., Xiao, J., Simal-Gandara, J., Prieto, M.A. (2021). Critical variables influencing the ultrasound-assisted extraction of bioactive compounds–a review. Chemistry Proceedings, 5(1): 50. https://doi.org/10.3390/CSAC2021-10562
  • Chávez-Martínez, A., Reyes-Villagrana, R.A., Rentería-Monterrubio, A.L., Sánchez-Vega, R., Tirado-Gallegos, J.M., Bolivar-Jacobo, N.A. (2020). Low and high-intensity ultrasound in dairy products: applications and effects on physicochemical and microbiological quality. Foods, 9(11): 1688. https://doi.org/10.3390/ foods9111688
  • Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540–560. https://doi.org/10.1016/ j.ultsonch.2016.06.035
  • Chen, C.Y., Shih, C.H., Lin, T.C., Zheng, J.H., Hsu, C.C., Chen, K.M., Lin, Y.S., Wu, C.T. (2021). Antioxidation and tyrosinase inhibitory ability of coffee pulp extract by ethanol. Journal of Chemistry, 2021(1): 8649618. https://doi.org/ 10.1155/2021/8649618
  • Choi, B., Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology, 26(4): 921–927. https://doi.org/ 10.1007/s10068-017-0144-9
  • Costa, A.S.G., Alves, R.C., Vinha, A.F., Barreira, S.V.P., Nunes, M.A., Cunha, L.M., Oliveira, M.B.P.P. (2014). Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Industrial Crops and Products, 53: 350–357. https://doi.org/10.1016/j.indcrop.2014.01.006
  • Dauber, C., Romero, M., Chaparro, C., Ureta, C., Ferrari, C., Lans, R., Frugoni, L., Echeverry, M.V., Sánchez Calvo, B., Trostchansky, A., Miraballes, M., Gámbaro, A., Vieitez, I. (2024). Cookies enriched with coffee silverskin powder and coffee silverskin ultrasound extract to enhance fiber content and antioxidant properties. Applied Food Research, 4(1): 100373. https://doi.org/10.1016/ j.afres.2023.100373
  • Franca, A.S., Oliveira, L.S. (2022). Potential uses of spent coffee grounds in the food industry. Foods, 11(14): 2064. https://doi.org/10.3390/ foods11142064
  • Geremu, M., Tola, Y.B., Sualeh, A. (2016). Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture, 3: 25. https://doi.org/10.1186/ s40538-016-0077-1
  • Hassan, S.R., Al-Yaqoobi, A.M. (2023). Assessment of ultrasound-assisted extraction of caffeine and its bioactivity. Journal of Ecological Engineering, 24(3): 126–133. https://doi.org/ 10.12911/22998993/157540
  • Heeger, A., Kosińska-Cagnazzo, A., Cantergiani, E., Andlauer, W. (2017). Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chemistry, 221: 969–975. https://doi.org/10.1016/j.foodchem.2016.11.067
  • Hoseini, M., Cocco, S., Casucci, C., Cardelli, V., Corti, G. (2021). Coffee by-products derived resources-A review. Biomass and Bioenergy, 148: 106009. https://doi.org/10.1016/ j.biombioe.2021.106009
  • Hu, S., Gil-Ramírez, A., Martín-Trueba, M., Benítez, V., Aguilera, Y., Martín-Cabrejas, M.A. (2023). Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Current Research in Food Science, 6: 100475. https://doi.org/10.1016/ j.crfs.2023.100475
  • Iriondo‐DeHond, A., Garcia, N.A., Fernandez-Gomez, B., Guisantes-Batan, E., Escobar, F.V., Blanch, G.P., Andres, M.I.S., Sanchez-Fortun, S., del Castillo, M.D. (2019). Validation of coffee by-products as novel food ingredients. Innovative Food Science and Emerging Technologies, 51: 194–204. https://doi.org/10.1016/j.ifset.2018.06.010
  • Janissen, B., Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128: 110–117. https://doi.org/10.1016/j.resconrec.2017.10.001
  • Jha, A.K., Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science and Technology, 119: 579–591. https://doi.org/10.1016/j.tifs.2021.11.019
  • Johnson, K., Liu, Y., Lu, M. (2022). A review of recent advances in spent coffee grounds upcycle technologies and practices. Frontiers in Chemical Engineering, 4: 838605. https://doi.org/10.3389/ fceng.2022.838605
  • Kc, Y., Subba, R., Shiwakoti, L.D., Dhungana, P.K., Bajagain, R., Chaudhary, D.K., Pant, B.R., Bajgai, T.R., Lamichhane, J., Timilsina, S., Upadhyaya, J., Dahal, R.H. (2021). Utilizing coffee pulp and mucilage for producing alcohol-based beverage. Fermentation, 7(2): 53. https://doi.org/10.3390/fermentation7020053
  • Khochapong, W., Ketnawa, S., Ogawa, Y., Punbusayakul, N. (2021). Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, 348: 129094. https://doi.org/10.1016/ j.foodchem.2021.129094
  • Klingel, T., Kremer, J.I., Gottstein, V., Rajcic de Rezende, T., Schwarz, S., Lachenmeier, D. W. (2020). A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods, 9(5): 665. https://doi.org/ 10.3390/foods9050665
  • Kobus, Z., Krzywicka, M., Pecyna, A., Buczaj, A. (2021). Process efficiency and energy consumption during the ultrasound-assisted extraction of bioactive substances from hawthorn berries. Energies, 14(22): 7638. https://doi.org/ 10.3390/en14227638
  • Kovalcik, A., Obruca, S., Marova, I. (2018). Valorization of spent coffee grounds: A review. Food and Bioproducts Processing, 110: 104–119. https://doi.org/10.1016/j.fbp.2018.05.002
  • Lauberts, M., Mierina, I., Pals, M., Latheef, M.A.A., Shishkin, A. (2023). Spent coffee grounds valorization in biorefinery context to obtain valuable products using different extraction approaches and solvents. Plants, 12(1): 30. https://doi.org/10.3390/plants12010030
  • Lee, Y.G., Cho, E.J., Maskey, S., Nguyen, D.T., Bae, H.J. (2023). Value-added products from coffee waste: a review. Molecules, 28(8): 3562. https://doi.org/10.3390/molecules28083562
  • Liu, Q., Jiang, J., Tang, L., Chen, M. (2020). The effect of low frequency and low intensity ultrasound combined with microbubbles on the sonoporation efficiency of MDA-MB-231 cells. Annals of Translational Medicine, 8(6): 298. https://doi.org/10.21037/atm.2020.02.155
  • Loarca-Piña, G., Vergara-Castañeda, H., Oomah, B.D. (2015). Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology, 45(1): 24–36. https://doi.org/10.1016/j.tifs.2015.04.012
  • Machado, M., Espírito Santo, L., Machado, S., Lobo, J.C., Costa, A.S.G., Oliveira, M.B.P.P., Ferreira, H., Alves, R.C. (2023). Bioactive potential and chemical composition of coffee by-products: from pulp to silverskin. Foods, 12(12): 2354. https://doi.org/10.3390/foods12122354
  • Martinez-Saez, N., García, A.T., Pérez, I.D., Rebollo-Hernanz, M., Mesías, M., Morales, F.J., Martín-Cabrejas, M.A., del Castillo, M.D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chemistry, 216: 114–122. https://doi.org/10.1016/j.foodchem.2016.07.173
  • Martuscelli, M., Esposito, L., Di Mattia, C.D., Ricci, A., Mastrocola, D. (2021). Characterization of coffee silver skin as potential food-safe ingredient. Foods, 10: 1367. https://doi.org/ 10.3390/foods10061367
  • McDonald, K., Langenbahn, H.J., Miller, J.D., McMullin, D.R. (2022). Phytosterol oxidation products from coffee silverskin. Journal of Food Science, 87(2): 728–737. https://doi.org/10.1111/ 1750-3841.16042
  • McNutt, J., He, Q. (2019). Spent coffee grounds: A review on current utilization. Journal of Industrial and Engineering Chemistry, 71: 78–88. https://doi.org/10.1016/j.jiec.2018.11.054
  • Mensah, R.Q., Tantayotai, P., Rattanaporn, K., Chuetor, S., Kirdponpattara, S., Kchaou, M., Show, P.L., Mussatto, S.I., Sriariyanun, M. (2024). Properties and applications of green-derived products from spent coffee grounds–Steps towards sustainability. Bioresource Technology Reports, 26: 101859. https://doi.org/10.1016/ j.biteb.2024.101859
  • Murthy, P.S., Naidu, M.M. (2012). Sustainable management of coffee industry by-products and value additionA review. Resources, Conservation and Recycling, 66: 45–58. https://doi.org/10.1016/ j.resconrec.2012.06.005
  • Myo, H., Khat-Udomkiri, N. (2022). Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrasonics Sonochemistry, 89: 106127. https://doi.org/10.1016/j.ultsonch.2022.106127
  • Narita, Y., Inouye, K. (2014). Review on utilization and composition of coffee silverskin. Food Research International, 61: 16–22. https://doi.org/10.1016/j.foodres.2014.01.023
  • Niazi, S., Hashemabadi, S.H., Noroozi, S. (2014). Numerical simulation of operational parameters and sonoreactor configurations for the highest possibility of acoustic cavitation in crude oil. Chemical Engineering Communications, 201(10): 1340–1359. https://doi.org/10.1080/ 00986445.2013.808999
  • Nurzyńska-Wierdak, R. (2023). Phenolic compounds from new natural sourcesPlant genotype and ontogenetic variation. Molecules, 28(4): 1731. https://doi.org/10.3390/ molecules28041731
  • Nzekoue, F.K., Angeloni, S., Navarini, L., Angeloni, C., Freschi, M., Hrelia, S., Vitali, L.A., Sagratini, G., Vittori, S., Caprioli, G. (2020). Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Research International, 133: 109128. https://doi.org/ 10.1016/j.foodres.2020.109128
  • Okur, İ., Söyler, B., Sezer, P., Öztop, M.H., Alpas, H. (2021). Improving the recovery of phenolic compounds from spent coffee grounds (SCG) by environmentally friendly extraction techniques. Molecules, 26(3): 613. https://doi.org/10.3390/ molecules26030613
  • Oliveira, G., Passos, C.P., Ferreira, P., Coimbra, M.A., Gonçalves, I. (2021). Coffee by-products and their suitability for developing active food packaging materials. Foods, 10(3): 683. https://doi.org/10.3390/foods10030683
  • Oroian, M., Ursachi, F., Dranca, F. (2020). Influence of ultrasonic amplitude, temperature, time, and solvent concentration on bioactive compounds extraction from propolis. Ultrasonics Sonochemistry, 64: 105021. https://doi.org/ 10.1016/j.ultsonch.2020.105021
  • Ozdemir, M., Gungor, V., Melikoglu, M., Aydiner, C. (2024). Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants, 38: 100525. https://doi.org/10.1016/j.jarmap.2023.100525
  • Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of Agricultural and Food Chemistry, 61(17): 4162–4168. https://doi.org/10.1021/jf4005719
  • Pimpley, V.A., Murthy, P.S. (2021). Influence of green extraction techniques on green coffee: Nutraceutical compositions, antioxidant potential and in vitro bio-accessibility of phenolics. Food Bioscience, 43: 101284. https://doi.org/10.1016/ j.fbio.2021.101284
  • Ramón-Gonçalves, M., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E., Madrid, Y. (2019). Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Management, 96: 15–24. https://doi.org/10.1016/ j.wasman.2019.07.009
  • Rebollo-Hernanz, M., Cañas, S., Taladrid, D., Benítez, V., Bartolomé, B., Aguilera, Y., Martín-Cabrejas, M.A. (2021). Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods, 10(3): 653. https://doi.org/ 10.3390/foods10030653
  • Serna-Jiménez, J.A., Siles, J.A., de los Ángeles Martín, M., Chica, A.F. (2022). A review on the applications of coffee waste derived from primary processing: Strategies for revalorization. Processes, 10(11): 2436. https://doi.org/10.3390/ pr10112436
  • Severini, C., Derossi, A., Fiore, A.G. (2017). Ultrasound-assisted extraction to improve the recovery of phenols and antioxidants from spent espresso coffee ground: a study by response surface methodology and desirability approach. European Food Research and Technology, 243(5): 835–847. https://doi.org/10.1007/s00217-016-2797-7
  • Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101: 106646. https://doi.org/ 10.1016/j.ultsonch.2023.106646
  • Silva, M.D.O., Honfoga, J.N.B., Medeiros, L.L.D., Madruga, M.S., Bezerra, T.K.A. (2020). Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules, 26(1): 46. https://doi.org/ 10.3390/molecules26010046
  • Solomakou, N., Loukri, A., Tsafrakidou, P., Michaelidou, A.-M., Mourtzinos, I., Goula, A.M. (2022). Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustainable Chemistry and Pharmacy, 25: 100592. https://doi.org/ 10.1016/j.scp.2021.100592
  • Tran, T.M.K., Akanbi, T.O., Kirkman, T., Nguyen, M.H., Vuong, Q.V. (2022). Recovery of phenolic compounds and antioxidants from coffee pulp (Coffea canephora) waste using ultrasound and microwave-assisted extraction. Processes, 10(5): 1011. https://doi.org/ 10.3390/pr10051011
  • Tran, T.M.K., Kirkman, T., Nguyen, M., Van Vuong, Q. (2020). Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon, 6(7): e04498. https://doi.org/10.1016/j.heliyon.2020.e04498
  • Wen, L., Zhang, Z., Rai, D., Sun, D.W., Tiwari, B.K. (2019). Ultrasound‐assisted extraction (UAE) of bioactive compounds from coffee silverskin: Impact on phenolic content, antioxidant activity, and morphological characteristics. Journal of Food Process Engineering, 42(6): e13191. https://doi.org/10.1111/ jfpe.13191
  • Worku, M. (2023). Production, productivity, quality and chemical composition of Ethiopian coffee. Cogent Food and Agriculture, 9(1): 2196868. https://doi.org/10.1080/23311932.2023.2196868
  • Yang, A., Zhang, Z., Jiang, K., Xu, K., Meng, F., Wu, W., Li, Z., Wang, B. (2024). Study on ultrasound-assisted extraction of cold brew coffee using physicochemical, flavor, and sensory evaluation. Food Bioscience, 61: 104455. https://doi.org/10.1016/j.fbio.2024.104455
  • Yusufoğlu, B., Kezer, G., Wang, Y., Ziora, Z.M., Esatbeyoglu, T. (2024). Bio-recycling of spent coffee grounds: Recent advances and potential applications. Current Opinion in Food Science, 55: 101111. https://doi.org/10.1016/ j.cofs.2023.101111
  • Zahari, N.A.A.R., Chong, G.H., Abdullah, L.C., Chua, B.L. (2020). Ultrasound-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes, 8(3): 322. https://doi.org/10.3390/pr8030322
  • Zamanipoor, M.H., Yakufu, B., Tse, E., Rezaeimotlagh, A., Hook, J.M., Bucknall, M.P., Thomas, D.S., Trujillo, F.J. (2020). Brewing coffee?–Ultra-sonication has clear beneficial effects on the extraction of key volatile aroma components and triglycerides. Ultrasonics Sonochemistry, 60: 104796. https://doi.org/ 10.1016/j.ultsonch.2019.104796
  • Zengin, G., Sinan, K.I., Mahomoodally, M.F., Angeloni, S., Mustafa, A.M., Vittori, S., Maggi, F., Caprioli, G. (2020). Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods, 9(6): 713. https://doi.org/10.3390/foods9060713
  • Zuorro, A. (2015). Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Separation and Purification Technology, 152: 64–69. http://dx.doi.org/ 10.1016/j.seppur.2015.08.016
  • Zuorro, A., Lavecchia, R. (2013). Influence of extraction conditions on the recovery of phenolic antioxidants from spent coffee grounds. American Journal of Applied Sciences, 10(5): 478–486. https://doi.org/10.3844/ajassp.2013.478.486
  • Zupanc, M., Pandur, Ž., Perdih, T.S., Stopar, D., Petkovšek, M., Dular, M. (2019). Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrasonics Sonochemistry, 57: 147–165. https://doi.org/ 10.1016/j.ultsonch.2019.05.009
There are 80 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Technology
Journal Section Articles
Authors

Murat Özdemir 0000-0001-9025-3068

Rabia Yıldırım This is me 0009-0007-0716-2597

Rümeysa Yurttaş This is me 0009-0006-9582-1101

Duygu Başargan This is me 0009-0006-9569-6216

Mustafa Barış Hakcı This is me 0009-0007-7043-3556

Publication Date
Submission Date September 9, 2024
Acceptance Date January 7, 2025
Published in Issue Year 2025 Volume: 50 Issue: 1

Cite

APA Özdemir, M., Yıldırım, R., Yurttaş, R., Başargan, D., et al. (n.d.). A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE. Gıda, 50(1), 56-73. https://doi.org/10.15237/gida.GD24094
AMA Özdemir M, Yıldırım R, Yurttaş R, Başargan D, Hakcı MB. A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE. The Journal of Food. 50(1):56-73. doi:10.15237/gida.GD24094
Chicago Özdemir, Murat, Rabia Yıldırım, Rümeysa Yurttaş, Duygu Başargan, and Mustafa Barış Hakcı. “A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE”. Gıda 50, no. 1 n.d.: 56-73. https://doi.org/10.15237/gida.GD24094.
EndNote Özdemir M, Yıldırım R, Yurttaş R, Başargan D, Hakcı MB A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE. Gıda 50 1 56–73.
IEEE M. Özdemir, R. Yıldırım, R. Yurttaş, D. Başargan, and M. B. Hakcı, “A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE”, The Journal of Food, vol. 50, no. 1, pp. 56–73, doi: 10.15237/gida.GD24094.
ISNAD Özdemir, Murat et al. “A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE”. Gıda 50/1 (n.d.), 56-73. https://doi.org/10.15237/gida.GD24094.
JAMA Özdemir M, Yıldırım R, Yurttaş R, Başargan D, Hakcı MB. A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE. The Journal of Food.;50:56–73.
MLA Özdemir, Murat et al. “A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE”. Gıda, vol. 50, no. 1, pp. 56-73, doi:10.15237/gida.GD24094.
Vancouver Özdemir M, Yıldırım R, Yurttaş R, Başargan D, Hakcı MB. A REVIEW OF ULTRASOUND-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM COFFEE WASTE. The Journal of Food. 50(1):56-73.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/