Research Article
BibTex RIS Cite

GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION

Year 2025, Volume: 50 Issue: 5, 738 - 750, 15.10.2025
https://doi.org/10.15237/gida.GD24113

Abstract

The aim of this study was to prepare some animal protein solutions-in-oil type gelled emulsions. The 5% solutions of egg white, gelatin, and fibroin proteins were used with sunflower oil, and Span 20 as emulsifier. The prepared emulsions were treated with heat, acid, and heat+acid treatments. The samples showed centrifuge stability, and had cream-yellow color (L* values of 59.46 to 76.28, a* values of -0.42 to -1.55 and b* values of 3.13 to 9.47) tones. Their melting peak temperatures and enthalpies were ranged from 74.56 to 131.87 oC, and from 2.73 to 122.31 J/g, respectively. Rheological frequency sweep test proved that they were stable gels with G´ (storage modulus) values ranging from 900 to 1500 Pa. Further, they had structural recovery ability after exposed to high shear. Further investigations on the potential food applications (dairy, meat products, spreadable fats, etc.) of these emulsions are recommended.

Project Number

TÜBİTAK TOVAG 217O094

References

  • AOCS. (2012). AOCS Official Method Cj 2-95. X-ray diffraction analysis of fats. Official Methods and Recommended Practices of the AOCS, 6th Ed. AOCS Press, Champaign, IL, USA.
  • Ashfaq, A., Osamaz, K., Yousuf, O., Younis, K. (2024). Protein-based emulsion hydrogels and their application in the development of sustainable food products. Plant Foods for Human Nutrition, 79: 759-768. Doi: 10.1007/s11130-024-01214-6
  • Chrysam, M.M. (1996). Margarines and spreads. In: Bailey's Industrial Oil & Fat Products, Y.H. Hui (Eds.), Volume 3, Wiley-Intersience Pub, New York, US, pp. 65-114.
  • Fonseca, L.R., Santos, M.A.S., Silva, T.J., Santos, T.P., Cunha, R.L. (2024). High internal phase water-in-oil emulsions: trends and challenges on production and stabilization. Journal of the American Oil Chemists’ Society, Doi: https://doi.org/10.1002/aocs.12908
  • Garg, M., Singhal, R., Swarupa, S., Thareja, P. (2024). Influence of pH and heating of ovalbumin on interfacial properties and rheology of optimized volume fraction soybean oil-water emulsion gels. ACS Food Science & Technology, 4 (1): 49-58. Doi: 10.1021/acsfoodscitech.3c00295
  • Kapoor, S., Kundu, S.C. (2016). Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomaterialia, 31: 17-32. Doi: 10.1016/j.actbio.2015.11.034
  • Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., Ngai, T., McClements, D. J. (2022). Tailoring the properties of doublecrosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/J.BIOMATERIALS.
  • Mezger, T.G. (2014). Applied rheology. 1st Edition. Anton Paar GmbH, Austria.
  • McClements, D.J. (2014). Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications. Advances in Colloid and Interface Science, 332: 103278. Doi:10.1016/j.cis.2024.103278 Minitab. (2010). Minitab Statistical Software (Version 16.1). Minitab, Inc., State. Tang, X., Qiao, X., Sun, K. (2015). Effect of pH on the interfacial viscoelasticity and stability of the silkfibroin at the oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 486: 86-95. Doi: 10.1016/j.colsurfa.2015.09.030
  • Wang, H-Y., Wei, Z-G., Zhang, Y-Q. (2020). Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials. International Journal of Biological Macromolecules, 143: 594-60. Doi: 10.1016/j.ijbiomac.2019.12.066
  • Wen, J., Jiang, L., Sui, X. (2024). Plant protein and animal protein-based Pickering emulsion: A review of preparation and modification methods. Journal of the American Oil Chemists’ Society, 101(10):1027-42. Doi: 10.1002/aocs.12779
  • WHO. (2019). Countdown to 2023: WHO Report on Global Trans Fat Elimination 2019. https://apps.who.int/iris/handle/10665/331300
  • Yılmaz, E., Keskin Uslu, E. (2024). The effects of heating and acidulation on properties and stability of plant seed protein emulsion gels. Acta Alimentaria, 53(2):237-246. Doi: 10.1556/066.2024.00002
  • Yılmaz, E., Toksöz, B. (2022). Flaxseed oil-wax oleogels replacement for tallowfat in sucuk samples provided higher concentrations of polyunsaturated fatty acids and aromatic volatiles. Meat Science, 192: 108875. Doi: 10.1016/j.meatsci.2022.108875
  • Zhang, S., Jiang, Y., Zhang, S., Chen, L. (2022). Physical properties of peanut and soy protein-based emulsion gels ınduced by various coagulants. Gels, 8: 79. Doi: 10.3390/gels8020079

JELLEŞTİRİLMİŞ YUMURTA BEYAZI, JELATİN VE FİBROİN PROTEİN EMÜSİYONLARI: FİZİKOKİMYASAL VE REOLOJİK KARAKTERİZASYON

Year 2025, Volume: 50 Issue: 5, 738 - 750, 15.10.2025
https://doi.org/10.15237/gida.GD24113

Abstract

Bu çalışmanın amacı bazı yağ-içinde-hayvansal protein çözeltisi tipinde jelleştirilmiş emülsiyonların hazırlanması ve karakterize edilmesidir. Yumurta beyazı, jelatin ve fibroin proteinlerinin %5’lik çözeltisi, Span 20 emülsifiyeri eşliğinde ayçiçeği yağı ile emülsiye edilmiştir. Hazırlanan emülsiyonlar ısı, asit ve ısı+asit işlmeleriyle muamele edilmiştir. Örnekler santrifüj stabilitesine sahip olup, kremsi-sarı (L* değeri 59.46 - 76.28, a* değeri -0.42 – (-1.55) ve b* değeri 3.13 - 9.47) renklerdedirler. Ergime tepe sıcaklıkları ve entalpileri 74.56 - 131.87 oC ile 2.73 - 122.31 J/g arasında değişmektedir. Reolojik frekans tarama testi hepsinin dayanıklı jel yapısında olduğunu ve G´ (depo modül) değerlerinin 900 ile 1500 Pa arasında olduğunu göstermiştir. İlaveten, hepsinin yüksek kesme kuvvetine maruz kaldıktan sonra yapılarını yeniden geri kazanma yeteneğinde oldukları ortaya konulmuştur. Potansiyel gıda uygulamalarına (süt ürünleri, et ürünleri, sürülebilir yağlar gibi) yönelik yeni araştırmalar önerilmiştir.

Project Number

TÜBİTAK TOVAG 217O094

References

  • AOCS. (2012). AOCS Official Method Cj 2-95. X-ray diffraction analysis of fats. Official Methods and Recommended Practices of the AOCS, 6th Ed. AOCS Press, Champaign, IL, USA.
  • Ashfaq, A., Osamaz, K., Yousuf, O., Younis, K. (2024). Protein-based emulsion hydrogels and their application in the development of sustainable food products. Plant Foods for Human Nutrition, 79: 759-768. Doi: 10.1007/s11130-024-01214-6
  • Chrysam, M.M. (1996). Margarines and spreads. In: Bailey's Industrial Oil & Fat Products, Y.H. Hui (Eds.), Volume 3, Wiley-Intersience Pub, New York, US, pp. 65-114.
  • Fonseca, L.R., Santos, M.A.S., Silva, T.J., Santos, T.P., Cunha, R.L. (2024). High internal phase water-in-oil emulsions: trends and challenges on production and stabilization. Journal of the American Oil Chemists’ Society, Doi: https://doi.org/10.1002/aocs.12908
  • Garg, M., Singhal, R., Swarupa, S., Thareja, P. (2024). Influence of pH and heating of ovalbumin on interfacial properties and rheology of optimized volume fraction soybean oil-water emulsion gels. ACS Food Science & Technology, 4 (1): 49-58. Doi: 10.1021/acsfoodscitech.3c00295
  • Kapoor, S., Kundu, S.C. (2016). Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomaterialia, 31: 17-32. Doi: 10.1016/j.actbio.2015.11.034
  • Liu, F., Liang, X., Yan, J., Zhao, S., Li, S., Liu, X., Ngai, T., McClements, D. J. (2022). Tailoring the properties of doublecrosslinked emulsion gels using structural design principles: Physical characteristics, stability, and delivery of lycopene. Biomaterials, 280, 121265. https://doi.org/10.1016/J.BIOMATERIALS.
  • Mezger, T.G. (2014). Applied rheology. 1st Edition. Anton Paar GmbH, Austria.
  • McClements, D.J. (2014). Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications. Advances in Colloid and Interface Science, 332: 103278. Doi:10.1016/j.cis.2024.103278 Minitab. (2010). Minitab Statistical Software (Version 16.1). Minitab, Inc., State. Tang, X., Qiao, X., Sun, K. (2015). Effect of pH on the interfacial viscoelasticity and stability of the silkfibroin at the oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 486: 86-95. Doi: 10.1016/j.colsurfa.2015.09.030
  • Wang, H-Y., Wei, Z-G., Zhang, Y-Q. (2020). Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials. International Journal of Biological Macromolecules, 143: 594-60. Doi: 10.1016/j.ijbiomac.2019.12.066
  • Wen, J., Jiang, L., Sui, X. (2024). Plant protein and animal protein-based Pickering emulsion: A review of preparation and modification methods. Journal of the American Oil Chemists’ Society, 101(10):1027-42. Doi: 10.1002/aocs.12779
  • WHO. (2019). Countdown to 2023: WHO Report on Global Trans Fat Elimination 2019. https://apps.who.int/iris/handle/10665/331300
  • Yılmaz, E., Keskin Uslu, E. (2024). The effects of heating and acidulation on properties and stability of plant seed protein emulsion gels. Acta Alimentaria, 53(2):237-246. Doi: 10.1556/066.2024.00002
  • Yılmaz, E., Toksöz, B. (2022). Flaxseed oil-wax oleogels replacement for tallowfat in sucuk samples provided higher concentrations of polyunsaturated fatty acids and aromatic volatiles. Meat Science, 192: 108875. Doi: 10.1016/j.meatsci.2022.108875
  • Zhang, S., Jiang, Y., Zhang, S., Chen, L. (2022). Physical properties of peanut and soy protein-based emulsion gels ınduced by various coagulants. Gels, 8: 79. Doi: 10.3390/gels8020079
There are 15 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Articles
Authors

Emin Yılmaz 0000-0003-1527-5042

Eda Keskin Uslu 0000-0002-8266-7137

Project Number TÜBİTAK TOVAG 217O094
Publication Date October 15, 2025
Submission Date December 5, 2024
Acceptance Date August 14, 2025
Published in Issue Year 2025 Volume: 50 Issue: 5

Cite

APA Yılmaz, E., & Keskin Uslu, E. (2025). GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION. Gıda, 50(5), 738-750. https://doi.org/10.15237/gida.GD24113
AMA Yılmaz E, Keskin Uslu E. GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION. The Journal of Food. October 2025;50(5):738-750. doi:10.15237/gida.GD24113
Chicago Yılmaz, Emin, and Eda Keskin Uslu. “GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION”. Gıda 50, no. 5 (October 2025): 738-50. https://doi.org/10.15237/gida.GD24113.
EndNote Yılmaz E, Keskin Uslu E (October 1, 2025) GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION. Gıda 50 5 738–750.
IEEE E. Yılmaz and E. Keskin Uslu, “GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION”, The Journal of Food, vol. 50, no. 5, pp. 738–750, 2025, doi: 10.15237/gida.GD24113.
ISNAD Yılmaz, Emin - Keskin Uslu, Eda. “GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION”. Gıda 50/5 (October2025), 738-750. https://doi.org/10.15237/gida.GD24113.
JAMA Yılmaz E, Keskin Uslu E. GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION. The Journal of Food. 2025;50:738–750.
MLA Yılmaz, Emin and Eda Keskin Uslu. “GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION”. Gıda, vol. 50, no. 5, 2025, pp. 738-50, doi:10.15237/gida.GD24113.
Vancouver Yılmaz E, Keskin Uslu E. GELLED EGG WHITE, GELATIN, AND FIBROIN PROTEIN EMULSIONS: PHYSICO-CHEMICAL AND RHEOLOGICAL CHARACTERIZATION. The Journal of Food. 2025;50(5):738-50.