Research Article
BibTex RIS Cite

UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES

Year 2025, Volume: 50 Issue: 6, 961 - 978
https://doi.org/10.15237/gida.GD25073

Abstract

The grapevine and its brined leaves are important products in various regions of our country, both for their use in traditional dishes and nutritional value. This study investigated the microbiological and physicochemical properties, total phenolic, antioxidant capacity and chromatographic characteristics of unpackaged and packaged brined grape leaves sold in the Erzurum province of Turkey. Yeasts were the dominant microorganisms, ranging <1-7.20 log cfu/mL, although total viable count, mould, lactobacilli and lactococci were determined in some samples. The pH, acidity (% lactic acid) and salt content (%) of the samples ranged 2.55-3.47, 0.20-1.29 and 6.14-32.76, respectively. The total phenolic content and IC50 were found to be in the range of 509.12-1870.59 mg GAE/L and 0.054-0.249 mg/mL, respectively. The samples were found to contain different ratios of organic acids, glutamic acid, gamma-aminobutyric acid, benzoic/sorbic acid. Further analysis is required to determine the microbial content (microbiota), ingredients, and pesticide residues in the samples.

References

  • Acero, N., Manrique, J., Muñoz-Mingarro, D., Martínez Solís, I., Bosch, F. (2025). Vitis vinifera L. leaves as a source of phenolic compounds with anti-inflammatory and antioxidant potential. Antioxidants 14(3): 279, doi: 10.3390/antiox14030279.
  • Adeiza, Z.D., Olateju, K.S., Eneye, B.K., Amoka, A.G., Anoze, A.A. (2024). Hurdle concept and the role of lactic acid bacteria. Journal of Food Technology & Nutrition Sciences 6(4): 1-7.
  • Aktaş, H., Çetin, B. (2024). Multidimensional evaluation of techno-functional properties of yoghurt bacteria. International Dairy Journal 148: 105795, doi: 10.1016/j.idairyj.2023.105795.
  • Aktaş, H., Meral Aktaş, H., Ürkek, B., Şengül, M., Çetin, B. (2024). Evaluation of spreadable kefir produced from different milks in terms of some quality criteria. Probiotics and Antimicrobial Proteins 16(5): 1734-1743, doi: 10.1007/s12602-023-10129-8.
  • Akyurt, B., Başyiğit, B., Çam, M. (2018). Phenolic compounds content, antioxidant and antidiabetic potentials of seven edible leaves. The Journal of Food 43(5): 876-885, doi: 10.15237/ gida.GD18076.
  • Andarwulan, N., Batari, R., Sandrasari, D. A., Bolling, B., Wijaya, H. (2010). Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chemistry 121(4): 1231-1235, doi: 10.1016/j.foodchem.2010.01.033.
  • Ando, A., Nakamura, T. (2016). Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant. Journal of Bioscience and Bioengineering 122(4): 441-445, doi: 10.1016/j.jbiosc.2016.03.006.
  • Ashraf, R., Shah, N.P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt-A review. International Journal of Food Microbiology 149(3): 194-208, doi: 10.1016/j.ijfoodmicro.2011.07.008.
  • Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT 107: 256-263, doi: 10.1016/j.lwt.2019.03.013.
  • Ayağ, N., Dağdemir, E., Çetin, B., Hayaloğlu, A.A. (2025). Isolation and identification of lactic acid bacteria from artisanal Turkish cheeses, and evaluation of γ-aminobutyric acid (GABA) production potential. International Dairy Journal 161: 106132, doi: 10.1016/j.idairyj.2024.106132.
  • Banjanin, T., Uslu, N., Vasic, Z.R., Özcan, M.M. (2021). Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grape‐vine leaves. Journal of Food Processing and Preservation 45(2): e15159, doi: 10.1111/jfpp.15159.
  • Belessi, C.E., Chalvantzi, I., Marmaras, I., Nisiotou, A. (2022). The effect of vine variety and vintage on wine yeast community structure of grapes and ferments. Journal of Applied Microbiology 132(5): 3672-3684, doi: 10.1111/jam.15471.
  • Ben-David, A., Davidson, C.E. (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods 107: 214-221, doi: 10.1016/j.mimet.2014.08.023.
  • Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (2024). The microbiological quality of food: Foodborne spoilers. Elsevier, Amsterdam, Holland, 310 p.
  • Breksa III, A.P., Takeoka, G.R., Hidalgo, M.B., Vilches, A., Vasse, J., Ramming, D.W. (2010). Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chemistry 121(3): 740-745, doi: 10.1016/j.foodchem.2010.01.029.
  • Çağdaş, E., Seydim, A.C. (2016). Optimization of phenolic compounds from grape seed by response surface methodology. The Journal of Food 41(6): 403-410, doi: 10.15237/gida.GD16042.
  • Cakir, R., Cagri-Mehmetoglu, A. (2013). Sorbic and benzoic acid in non-preservative-added food products in Turkey. Food Additives and Contaminants: Part B 6(1): 47-54, doi: 10.1080/19393210.2012.722131.
  • Çalışkan Aydoğan, Ö. (2016). Molecular characterization of bacteria and yeast microbiota on traditionally fermented grape leaves. Master's thesis. Erci̇yes University, Kayseri, Türkiye, 86 p.
  • Cemeroglu, B. (2010). General methods in food analysis: Food analysis. Food Technology Association Publications, Ankara, Turkey.
  • Çetin, B., Aktaş, H. (2024). Investigation of consumer reactions towards yoghurts produced by using autochthonous isolates. Food Science and Engineering Research 3(1): 59-67, doi: 10.5281/zenodo.10908265.
  • Chavan, P., Mane, S., Kulkarni, G., Shaikh, S., Ghormade, V., Nerkar, D.P., Shouche, Y., Deshpande, M.V. (2009). Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiology 26(8): 801-808, doi: 10.1016/j.fm.2009.05.005.
  • Fırat, M.Ç., Çetin, B. (2014). Microbiological and some chemical properties of brined grapevine leaves produced by traditional and industrial methods. Atatürk University Journal of Agricultural Faculty 45(1): 15-19.
  • Fırat, M.Ç., Çetin, B. (2020). Molecular characterization of the yeast isolates originating from Turkish autochthonal product, brined grapeleaves. International Journal of Engineering Research & Technology 9(7): 883-886, doi: 10.17577/IJERTV9IS070280.
  • Friedman, M., Jürgens, H.S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry 48(6): 2101-2110.
  • Garde-Cerdán, T., Portu, J., López, R., Santamaría, P. (2016). Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chemistry 203: 536-539, doi: 10.1016/j.foodchem.2016.02.049.
  • Han, S.M., Jeon, S.J., Lee, H.B., Lee, J.S. (2016). Screening of γ-aminobutyric acid (GABA)-producing wild yeasts and their microbiological characteristics. The Korean Journal of Mycology 44(2): 87-93, doi: 10.4489/KJM.2016.44.2.87.
  • Hayaloğlu, A.A., (2009). Volatile composition and proteolysis in traditionally produced mature Kashar cheese. International Journal of Food Science and Technology 44: 1388-1394, doi: 10.1111/j.1365-2621.2009.01968.x.
  • ISO 21527-1 (2008). Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of yeasts and moulds-Part 1: Colony count technique in products with water activity greater than 0.95. https://www.iso.org/standard/38275.html (Accessed: 05 May 2025).
  • ISO 21528-2 (2017). Microbiology of the food chain-Horizontal method for the detection and enumeration of Enterobacteriaceae-Part 2: Colony-count technique. https://www.iso.org/standard/63504.html (Accessed: 05 May 2025).
  • ISO 4833-1 (2013). Microbiology of the food chain-Horizontal method for the enumeration of microorganisms- Part 1: Colony count at 30 °C by the pour plate technique. https://www.iso.org/standard/53728.html (Accessed: 05 May 2025).
  • Jridi, M., Abdelhedi, O., Kchaou, H., Msaddak, L., Nasri, M., Zouari, N., Fakhfakh, N. (2019). Vine (Vitis vinifera L.) leaves as a functional ingredient in pistachio calisson formulations. Food Bioscience 31: 100436, doi: 10.1016/j.fbio.2019.100436.
  • Le, P.H., Verscheure, L., Le, T.T., Verheust, Y., Raes, K. (2020). Implementation of HPLC analysis for γ-aminobutyric acid (GABA) in fermented food matrices. Food Analytical Methods 13: 1190-1201, doi: 10.1007/s12161-020-01734-2.
  • Lee, C.H. (1997). Lactic acid fermented foods and their benefits in Asia. Food Control 8(5-6): 259-269. doi: 10.1016/S0956-7135(97)00015-7.
  • Meral-Aktaş, H., Ürkek, B., Aktaş, H., Baltacı, C., Çetin, B., Şengül, M. (2025a). Comparison of different animal milks on microbiological, physicochemical, sensory properties, and volatile component profile of Kefir. Journal of Food Measurement and Characterization, 1-16, doi: 10.1007/s11694-025-03372-w.
  • Meral-Aktaș, H., Bazu-Çırpıcı, B., Aktaș, H., Kadi̇roğlu, H., Çeti̇n, B. (2025b). Comparative quality assessment of plant-based kefir as a vegan alternative to traditional kefir. Food Bioscience 70: 107062, doi: 10.1016/j.fbio.2025.107062.
  • Mol, S., Erkan, N., Uecok, D., Tosun, Ş.Y. (2007). Effect of psychrophilic bacteria to estimate fish quality. Journal of Muscle Foods 18(1): 120-128, doi: 10.1111/j.1745-4573.2007.00071.x.
  • Ozcan, T., Sahin, S., Akpinar‐Bayizit, A., Yilmaz‐Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. International Journal of Dairy Technology 72(1): 65-73, doi: 10.1111/1471-0307.12560.
  • Pastrana-Bonilla, E., Akoh, C.C., Sellappan, S., Krewer, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of Agricultural and Food Chemistry 51(18): 5497-5503.
  • Pitt, J.I., Hocking, A.D. (2009). Fungi and food spoilage. Springer, New York, the USA, 388 p. Raymond Eder, M.L., Conti, F., Rosa, A.L. (2018). Differences between indigenous yeast populations in spontaneously fermenting musts from V. vinifera L. and V. labrusca L. Grapes harvested in the same geographic location. Frontiers in Microbiology 9: 1320, doi: 10.3389/fmicb.2018.01320.
  • Rockenbach, I.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, A.E. D.S.S., Fett, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 127(1): 174-179, doi: 10.1016/j.foodchem.2010.12.137.
  • Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G.B., Torriani, S., Felis, G.E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Frontiers in Microbiology 7: 937, doi: 10.3389/fmicb.2016.00937.
  • Savello, P.A., Ernstrom, C.A., Kalab, M. (1989). Microstructure and meltability of model process cheese made with rennet and acid casein. Journal of Dairy Science 72(1): 1-11, doi: 10.3168/jds.S0022-0302(89)79073-1.
  • Şengül, M., Karakütük, İ.A., Ay, E. (2024). Effects of sweetener type and storage conditions on physicochemical properties, phenolic compounds, and antioxidant properties of cherry laurel (Prunus laurocerasus) pulp and marmalade. Journal of Food Measurement and Characterization 18(10): 8622-8637, doi: 10.1007/s11694-024-02831-0.
  • Tokatlı, M., Dursun, D., Arslankoz, N., Şanlıbaba, P., Özçelik, F. (2012). Importance of Lactic Acid Bacteria in Pickle Production. Akademik Gıda 10(1): 70-76.
  • Tran, V.G., Zhao, H. (2022). Engineering robust microorganisms for organic acid production. Journal of Industrial Microbiology and Biotechnology 49(2): kuab067, doi: 10.1093/jimb/kuab067.
  • Tsaruk, A., Filip, K., Sibirny, A., Ruchala, J. (2025). Native and recombinant yeast producers of lactic acid: Characteristics and perspectives. International Journal of Molecular Sciences 26(5): 2007, doi: 10.3390/ijms26052007.
  • Vermeulen, A., Devlieghere, F., Bernaerts, K., Van Impe, J., Debevere, J. (2007). Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces. International Journal of Food Microbiology 119(3): 258-269, doi: 10.1016/ j.ijfoodmicro.2007.08.003.
  • Vilela, A. (2018). Lachancea thermotolerans, the non-Saccharomyces yeast that reduces the volatile acidity of wines. Fermentation 4(3): 56, doi: 10.3390/fermentation4030056.
  • Yaşa, E.N. (2019). Determination of the microbial profile during the fermantation process of grape leaves brine. Master's thesis. Yildiz Technical University, İstanbul, Türkiye, 107 p.
  • Zengin Yılmaz, M. (2022). Determination of heavy metal content, some physicochemical and microbiological characteristics of Tokat narince brine vine leaves. Master's thesis. Tokat Gaziosmanpaşa University, Tokat, Türkiye, 56 p.
  • Zhu, L., Wang, Z., Gao, L., Chen, X. (2024). Unraveling the Potential of γ-Aminobutyric Acid: Insights into Its Biosynthesis and Biotechnological Applications. Nutrients 16(16): 2760, doi: 10.3390/nu16162760.
  • Zorlu Ünlü, T. (2021). Determination of physicochemical characteristics and pesticide residue quantities of brine vine leaves of Narince. Master's thesis. Tokat Gaziosmanpaşa University, Tokat, Türkiye, 69 p.
  • Zorlu Ünlü, T., Topuz, S., Bayram, M., Balkan, T., Kaya, C. (2023). Determination of pesticide residues in pickled vine (Vitis vinifera L.) leaves by a validated LC-MS/MS method. The Journal of Food 48(6): 1335-1350, doi: 10.15237/gida.GD23096.

SALAMURA ÜZÜM YAPRAKLARININ (Vitis vinifera L.) KALİTE VE SAĞLIK POTANSİYELİNİN ORTAYA ÇIKARILMASI: MİKROBİYOLOJİK, FİZİKOKİMYASAL VE BİYOFONKSİYONEL ÖZELLİKLER

Year 2025, Volume: 50 Issue: 6, 961 - 978
https://doi.org/10.15237/gida.GD25073

Abstract

Asma üzümü ve salamura yaprakları hem geleneksel yemeklerde kullanımı hem de besin değeri açısından ülkemizde çeşitli yörelerde üretilen önemli ürünlerdendir. Bu çalışmada, Türkiye'nin Erzurum ilinde ambalajsız ve ambalajlı şekilde satılan salamura üzüm yapraklarının mikrobiyolojik ve fizikokimyasal özellikleri, toplam fenolik, antioksidan kapasitesi ve kromatografik özellikleri araştırılmıştır. Bazı örneklerde toplam canlı sayısı, küf, laktobasil ve laktokok tespit edilmesine rağmen, <1-7.20 log kob/mL arasında değişen yoğunlukta mayalar baskın mikroorganizma grubunu oluşturduğu tespit edilmiştir. Örneklerin pH, asitlik (% laktik asit) ve tuz içeriğinin (%) sırasıyla 2.55-3.47, 0.20-1.29 ve 6.14-32.76 arasında değiştiği belirlenmiştir. Toplam fenolik içerik ve IC50 değeri sırasıyla 509.12-1870.59 mg GAE/L ve 0.054-0.249 mg/mL aralığında bulunmuştur. Örneklerin farklı oranlarda organik asit, glutamik asit, gama-aminobütirik asit, benzoik/sorbik asit içerdiği tespit edilmiştir. Bu örneklerde mikrobiyal içeriğin (mikrobiyota), bileşenlerin ve pestisit kalıntılarının belirlenmesi için daha fazla analiz yapılması gerekmektedir.

References

  • Acero, N., Manrique, J., Muñoz-Mingarro, D., Martínez Solís, I., Bosch, F. (2025). Vitis vinifera L. leaves as a source of phenolic compounds with anti-inflammatory and antioxidant potential. Antioxidants 14(3): 279, doi: 10.3390/antiox14030279.
  • Adeiza, Z.D., Olateju, K.S., Eneye, B.K., Amoka, A.G., Anoze, A.A. (2024). Hurdle concept and the role of lactic acid bacteria. Journal of Food Technology & Nutrition Sciences 6(4): 1-7.
  • Aktaş, H., Çetin, B. (2024). Multidimensional evaluation of techno-functional properties of yoghurt bacteria. International Dairy Journal 148: 105795, doi: 10.1016/j.idairyj.2023.105795.
  • Aktaş, H., Meral Aktaş, H., Ürkek, B., Şengül, M., Çetin, B. (2024). Evaluation of spreadable kefir produced from different milks in terms of some quality criteria. Probiotics and Antimicrobial Proteins 16(5): 1734-1743, doi: 10.1007/s12602-023-10129-8.
  • Akyurt, B., Başyiğit, B., Çam, M. (2018). Phenolic compounds content, antioxidant and antidiabetic potentials of seven edible leaves. The Journal of Food 43(5): 876-885, doi: 10.15237/ gida.GD18076.
  • Andarwulan, N., Batari, R., Sandrasari, D. A., Bolling, B., Wijaya, H. (2010). Flavonoid content and antioxidant activity of vegetables from Indonesia. Food Chemistry 121(4): 1231-1235, doi: 10.1016/j.foodchem.2010.01.033.
  • Ando, A., Nakamura, T. (2016). Prevention of GABA reduction during dough fermentation using a baker's yeast dal81 mutant. Journal of Bioscience and Bioengineering 122(4): 441-445, doi: 10.1016/j.jbiosc.2016.03.006.
  • Ashraf, R., Shah, N.P. (2011). Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt-A review. International Journal of Food Microbiology 149(3): 194-208, doi: 10.1016/j.ijfoodmicro.2011.07.008.
  • Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT 107: 256-263, doi: 10.1016/j.lwt.2019.03.013.
  • Ayağ, N., Dağdemir, E., Çetin, B., Hayaloğlu, A.A. (2025). Isolation and identification of lactic acid bacteria from artisanal Turkish cheeses, and evaluation of γ-aminobutyric acid (GABA) production potential. International Dairy Journal 161: 106132, doi: 10.1016/j.idairyj.2024.106132.
  • Banjanin, T., Uslu, N., Vasic, Z.R., Özcan, M.M. (2021). Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grape‐vine leaves. Journal of Food Processing and Preservation 45(2): e15159, doi: 10.1111/jfpp.15159.
  • Belessi, C.E., Chalvantzi, I., Marmaras, I., Nisiotou, A. (2022). The effect of vine variety and vintage on wine yeast community structure of grapes and ferments. Journal of Applied Microbiology 132(5): 3672-3684, doi: 10.1111/jam.15471.
  • Ben-David, A., Davidson, C.E. (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods 107: 214-221, doi: 10.1016/j.mimet.2014.08.023.
  • Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (2024). The microbiological quality of food: Foodborne spoilers. Elsevier, Amsterdam, Holland, 310 p.
  • Breksa III, A.P., Takeoka, G.R., Hidalgo, M.B., Vilches, A., Vasse, J., Ramming, D.W. (2010). Antioxidant activity and phenolic content of 16 raisin grape (Vitis vinifera L.) cultivars and selections. Food Chemistry 121(3): 740-745, doi: 10.1016/j.foodchem.2010.01.029.
  • Çağdaş, E., Seydim, A.C. (2016). Optimization of phenolic compounds from grape seed by response surface methodology. The Journal of Food 41(6): 403-410, doi: 10.15237/gida.GD16042.
  • Cakir, R., Cagri-Mehmetoglu, A. (2013). Sorbic and benzoic acid in non-preservative-added food products in Turkey. Food Additives and Contaminants: Part B 6(1): 47-54, doi: 10.1080/19393210.2012.722131.
  • Çalışkan Aydoğan, Ö. (2016). Molecular characterization of bacteria and yeast microbiota on traditionally fermented grape leaves. Master's thesis. Erci̇yes University, Kayseri, Türkiye, 86 p.
  • Cemeroglu, B. (2010). General methods in food analysis: Food analysis. Food Technology Association Publications, Ankara, Turkey.
  • Çetin, B., Aktaş, H. (2024). Investigation of consumer reactions towards yoghurts produced by using autochthonous isolates. Food Science and Engineering Research 3(1): 59-67, doi: 10.5281/zenodo.10908265.
  • Chavan, P., Mane, S., Kulkarni, G., Shaikh, S., Ghormade, V., Nerkar, D.P., Shouche, Y., Deshpande, M.V. (2009). Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiology 26(8): 801-808, doi: 10.1016/j.fm.2009.05.005.
  • Fırat, M.Ç., Çetin, B. (2014). Microbiological and some chemical properties of brined grapevine leaves produced by traditional and industrial methods. Atatürk University Journal of Agricultural Faculty 45(1): 15-19.
  • Fırat, M.Ç., Çetin, B. (2020). Molecular characterization of the yeast isolates originating from Turkish autochthonal product, brined grapeleaves. International Journal of Engineering Research & Technology 9(7): 883-886, doi: 10.17577/IJERTV9IS070280.
  • Friedman, M., Jürgens, H.S. (2000). Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry 48(6): 2101-2110.
  • Garde-Cerdán, T., Portu, J., López, R., Santamaría, P. (2016). Effect of methyl jasmonate application to grapevine leaves on grape amino acid content. Food Chemistry 203: 536-539, doi: 10.1016/j.foodchem.2016.02.049.
  • Han, S.M., Jeon, S.J., Lee, H.B., Lee, J.S. (2016). Screening of γ-aminobutyric acid (GABA)-producing wild yeasts and their microbiological characteristics. The Korean Journal of Mycology 44(2): 87-93, doi: 10.4489/KJM.2016.44.2.87.
  • Hayaloğlu, A.A., (2009). Volatile composition and proteolysis in traditionally produced mature Kashar cheese. International Journal of Food Science and Technology 44: 1388-1394, doi: 10.1111/j.1365-2621.2009.01968.x.
  • ISO 21527-1 (2008). Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of yeasts and moulds-Part 1: Colony count technique in products with water activity greater than 0.95. https://www.iso.org/standard/38275.html (Accessed: 05 May 2025).
  • ISO 21528-2 (2017). Microbiology of the food chain-Horizontal method for the detection and enumeration of Enterobacteriaceae-Part 2: Colony-count technique. https://www.iso.org/standard/63504.html (Accessed: 05 May 2025).
  • ISO 4833-1 (2013). Microbiology of the food chain-Horizontal method for the enumeration of microorganisms- Part 1: Colony count at 30 °C by the pour plate technique. https://www.iso.org/standard/53728.html (Accessed: 05 May 2025).
  • Jridi, M., Abdelhedi, O., Kchaou, H., Msaddak, L., Nasri, M., Zouari, N., Fakhfakh, N. (2019). Vine (Vitis vinifera L.) leaves as a functional ingredient in pistachio calisson formulations. Food Bioscience 31: 100436, doi: 10.1016/j.fbio.2019.100436.
  • Le, P.H., Verscheure, L., Le, T.T., Verheust, Y., Raes, K. (2020). Implementation of HPLC analysis for γ-aminobutyric acid (GABA) in fermented food matrices. Food Analytical Methods 13: 1190-1201, doi: 10.1007/s12161-020-01734-2.
  • Lee, C.H. (1997). Lactic acid fermented foods and their benefits in Asia. Food Control 8(5-6): 259-269. doi: 10.1016/S0956-7135(97)00015-7.
  • Meral-Aktaş, H., Ürkek, B., Aktaş, H., Baltacı, C., Çetin, B., Şengül, M. (2025a). Comparison of different animal milks on microbiological, physicochemical, sensory properties, and volatile component profile of Kefir. Journal of Food Measurement and Characterization, 1-16, doi: 10.1007/s11694-025-03372-w.
  • Meral-Aktaș, H., Bazu-Çırpıcı, B., Aktaș, H., Kadi̇roğlu, H., Çeti̇n, B. (2025b). Comparative quality assessment of plant-based kefir as a vegan alternative to traditional kefir. Food Bioscience 70: 107062, doi: 10.1016/j.fbio.2025.107062.
  • Mol, S., Erkan, N., Uecok, D., Tosun, Ş.Y. (2007). Effect of psychrophilic bacteria to estimate fish quality. Journal of Muscle Foods 18(1): 120-128, doi: 10.1111/j.1745-4573.2007.00071.x.
  • Ozcan, T., Sahin, S., Akpinar‐Bayizit, A., Yilmaz‐Ersan, L. (2019). Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. International Journal of Dairy Technology 72(1): 65-73, doi: 10.1111/1471-0307.12560.
  • Pastrana-Bonilla, E., Akoh, C.C., Sellappan, S., Krewer, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of Agricultural and Food Chemistry 51(18): 5497-5503.
  • Pitt, J.I., Hocking, A.D. (2009). Fungi and food spoilage. Springer, New York, the USA, 388 p. Raymond Eder, M.L., Conti, F., Rosa, A.L. (2018). Differences between indigenous yeast populations in spontaneously fermenting musts from V. vinifera L. and V. labrusca L. Grapes harvested in the same geographic location. Frontiers in Microbiology 9: 1320, doi: 10.3389/fmicb.2018.01320.
  • Rockenbach, I.I., Rodrigues, E., Gonzaga, L.V., Caliari, V., Genovese, M.I., Gonçalves, A.E. D.S.S., Fett, R. (2011). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 127(1): 174-179, doi: 10.1016/j.foodchem.2010.12.137.
  • Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G.B., Torriani, S., Felis, G.E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina berries withered in two post-harvest conditions. Frontiers in Microbiology 7: 937, doi: 10.3389/fmicb.2016.00937.
  • Savello, P.A., Ernstrom, C.A., Kalab, M. (1989). Microstructure and meltability of model process cheese made with rennet and acid casein. Journal of Dairy Science 72(1): 1-11, doi: 10.3168/jds.S0022-0302(89)79073-1.
  • Şengül, M., Karakütük, İ.A., Ay, E. (2024). Effects of sweetener type and storage conditions on physicochemical properties, phenolic compounds, and antioxidant properties of cherry laurel (Prunus laurocerasus) pulp and marmalade. Journal of Food Measurement and Characterization 18(10): 8622-8637, doi: 10.1007/s11694-024-02831-0.
  • Tokatlı, M., Dursun, D., Arslankoz, N., Şanlıbaba, P., Özçelik, F. (2012). Importance of Lactic Acid Bacteria in Pickle Production. Akademik Gıda 10(1): 70-76.
  • Tran, V.G., Zhao, H. (2022). Engineering robust microorganisms for organic acid production. Journal of Industrial Microbiology and Biotechnology 49(2): kuab067, doi: 10.1093/jimb/kuab067.
  • Tsaruk, A., Filip, K., Sibirny, A., Ruchala, J. (2025). Native and recombinant yeast producers of lactic acid: Characteristics and perspectives. International Journal of Molecular Sciences 26(5): 2007, doi: 10.3390/ijms26052007.
  • Vermeulen, A., Devlieghere, F., Bernaerts, K., Van Impe, J., Debevere, J. (2007). Growth/no growth models describing the influence of pH, lactic and acetic acid on lactic acid bacteria developed to determine the stability of acidified sauces. International Journal of Food Microbiology 119(3): 258-269, doi: 10.1016/ j.ijfoodmicro.2007.08.003.
  • Vilela, A. (2018). Lachancea thermotolerans, the non-Saccharomyces yeast that reduces the volatile acidity of wines. Fermentation 4(3): 56, doi: 10.3390/fermentation4030056.
  • Yaşa, E.N. (2019). Determination of the microbial profile during the fermantation process of grape leaves brine. Master's thesis. Yildiz Technical University, İstanbul, Türkiye, 107 p.
  • Zengin Yılmaz, M. (2022). Determination of heavy metal content, some physicochemical and microbiological characteristics of Tokat narince brine vine leaves. Master's thesis. Tokat Gaziosmanpaşa University, Tokat, Türkiye, 56 p.
  • Zhu, L., Wang, Z., Gao, L., Chen, X. (2024). Unraveling the Potential of γ-Aminobutyric Acid: Insights into Its Biosynthesis and Biotechnological Applications. Nutrients 16(16): 2760, doi: 10.3390/nu16162760.
  • Zorlu Ünlü, T. (2021). Determination of physicochemical characteristics and pesticide residue quantities of brine vine leaves of Narince. Master's thesis. Tokat Gaziosmanpaşa University, Tokat, Türkiye, 69 p.
  • Zorlu Ünlü, T., Topuz, S., Bayram, M., Balkan, T., Kaya, C. (2023). Determination of pesticide residues in pickled vine (Vitis vinifera L.) leaves by a validated LC-MS/MS method. The Journal of Food 48(6): 1335-1350, doi: 10.15237/gida.GD23096.
There are 53 citations in total.

Details

Primary Language English
Subjects Food Engineering, Food Microbiology
Journal Section Articles
Authors

Haktan Aktaş 0000-0002-1067-061X

Publication Date October 31, 2025
Submission Date June 10, 2025
Acceptance Date October 5, 2025
Published in Issue Year 2025 Volume: 50 Issue: 6

Cite

APA Aktaş, H. (n.d.). UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES. Gıda, 50(6), 961-978. https://doi.org/10.15237/gida.GD25073
AMA Aktaş H. UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES. The Journal of Food. 50(6):961-978. doi:10.15237/gida.GD25073
Chicago Aktaş, Haktan. “UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES”. Gıda 50, no. 6 n.d.: 961-78. https://doi.org/10.15237/gida.GD25073.
EndNote Aktaş H UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES. Gıda 50 6 961–978.
IEEE H. Aktaş, “UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES”, The Journal of Food, vol. 50, no. 6, pp. 961–978, doi: 10.15237/gida.GD25073.
ISNAD Aktaş, Haktan. “UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES”. Gıda 50/6 (n.d.), 961-978. https://doi.org/10.15237/gida.GD25073.
JAMA Aktaş H. UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES. The Journal of Food.;50:961–978.
MLA Aktaş, Haktan. “UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES”. Gıda, vol. 50, no. 6, pp. 961-78, doi:10.15237/gida.GD25073.
Vancouver Aktaş H. UNVEILING THE QUALITY AND HEALTH POTENTIAL OF BRINED GRAPE LEAVES (VITIS VINIFERA L.): MICROBIOLOGICAL, PHYSICOCHEMICAL AND BIOFUNCTIONAL PROPERTIES. The Journal of Food. 50(6):961-78.