Research Article
BibTex RIS Cite

Hydrolysis of pistachio shell into xylose using microwave-CO2 assisted extraction system

Year 2023, , 38 - 45, 23.01.2023
https://doi.org/10.56833/bursagida.1232447

Abstract

Aim: The aim of this study is to hydrolyze the pistachio shell generated during the processing of pistachio into pistachio kernel to xylose using a green approach.



Material and method: Microwave-CO₂ assisted hydrolysis method was used to hydrolyze pistachio shell into xylose. In this respect, the effect of hydrolysis parameters, temperature (175-220°C), time (15-45 min) and pistachio shell:water ratio (1:5-1:30) were evaluated.



Results and discussion: The highest xylose yield was obtained at 56.52% while by-products (furfural, hydroxymethylfurfural (HMF) and formic acid) were 15.67% under the same conditions. The by-products were observed in a significant rise when increasing the temperature over 200°C. Considering the results, microwave-CO₂ assisted hydrolysis can be affiliable as a promising innovative method for hydrolysis of lignocellulosic biomass.

References

  • Alsaadi, M., Erkliğ, A. and Albu-khaleefah, K. (2018). Effect of pistachio shell particle content on the mechanical properties of polymer composite. Arabian Journal for Science and Engineering, 43(9), 4689-4696. https://doi.org/10.1007/s13369-018-3073-x
  • Altun, M., Celebi, M., ve Ovali, S. (2021). Preparation of the pistachio shell reinforced PLA biocomposites: Effect of filler treatment and PLA maleation. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057211010880
  • Anwar, Z., Gulfraz, M., ve Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences. 7(2), 163-173. https://doi.org/10.1016/j.jrras.2014.02.003
  • AOAC-Official Methods of Analysis. (2006) AOAC 984.13: Total Nitrogen By Kjeldahl
  • Arumugam, A., Malolan, V. V. and Ponnusami, V. (2021). Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste and Biomass Valorization, 12(2), 577-612
  • Azizah, N. (2019). Biotransformation of xylitol production from xylose of lignocellulose biomass using xylose reductase enzyme. Journal of Food and Life Sciences, 3(2), 103-112. https://doi.org/10.21776/ub.jfls.2019.003.02.06
  • Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B. and Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research. https://doi.org/10.4061/2011/787532
  • Browning, B. L. (1967). Chemistry of wood. Methods in wood chemistry. Editörler: Sarkanen, K. V., Ludwig, C.H. New York: John, Wiley & Sons.
  • Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H. and Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196-206. https://doi.org/10.1016/j.fuproc.2016.12.007
  • Delfín-Ruíz, M. E., Calderón-Santoyo, M., Ragazzo-Sánchez, J. A., Gómez-Rodríguez, J., López-Zamora, L. and Aguilar-Uscanga, M. G. (2019). Acid pretreatment optimization for xylose production from Agave tequilana Weber var. azul, Agave americana var. oaxacensis, Agave karwinskii, and Agave potatorum bagasses using a Box-Behnken design. Biomass Conversion and Biorefinery. 1-10. https://doi.org/10.1007/s13399-019-00497-z
  • Domínguez, J. M., Salgado, J. M., Rodríguez, N. and Cortés, S. (2012). Biotechnological production of xylitol from agro-industrial wastes. Food Additive, 139-156
  • Felipe Hernández-Pérez, A., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A. and de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943. https://doi.org/10.1080/07388551.2019.1640658
  • Germec, M., Demirel, F., Tas, N., Ozcan, A., Yilmazer, C., Onuk, Z. and Turhan, I. (2017). Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose, 24(10), 4337-4353. https://doi.org/10.1007/s10570-017-1408-5
  • FAOSTAT. (2018). FAOSTAT statistical database._https://www.fao.org/faostat/en/#data/QCL. (24.05.2022)
  • Grace, M. H., Esposito, D., Timmers, M. A., Xiong, J., Yousef, G., Komarnytsky, S. and Lila, M. A. (2016). Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chemistry, 210, 85-95. https://doi.org/10.1016/j.foodchem.2016.04.088
  • Hassan, S. S., Williams, G. A. and Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310-318. https://doi.org/10.1016/j.biortech.2018.04.099
  • Hesam, F., Tarzi, B. G., Honarvar, M. and Jahadi, M. (2021). Pistachio (Pistacia vera) shell as a new candidate for enzymatic production of xylooligosaccharides. Journal of Food Measurement and Characterization, 15(1), 33-45. https://doi.org/10.1007/s11694-020-00594-y
  • Hilpmann, G., Becher, N., Pahner, F. A., Kusema, B., Mäki-Arvela, P., Lange, R., ... and Salmi, T. (2016). Acid hydrolysis of xylan. Catalysis Today, 259, 376-380. https://doi.org/10.1016/j.cattod.2015.04.044
  • Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S. and Scarlata, C. (2008). Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy. National Renewable Energy Laboratory, Golden, Colorado, Tech. Rep. NREL/TP-510-42617
  • Kasiri, N. and Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules. 106, 1023-1031. https://doi.org/10.1016/j.ijbiomac.2017.08.112
  • Kuittinen, S., Rodriguez, Y. P., Yang, M., Keinänen, M., Pastinen, O., Siika-Aho, M., Turunen, O. and Pappinen, A. (2016). Effect of microwave-assisted pretreatment conditions on hemicellulose conversion and enzymatic hydrolysis of Norway spruce. BioEnergy Research, 9(1), 344-354. https://doi.org/10.1007/s12155-015-9696-9
  • Luterbacher, J. S., Tester, J. W. and Walker, L. P. (2010). High‐solids biphasic CO2–H2O pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering. 107(3), 451-460. https://doi.org/10.1002/bit.22823
  • Misra, S., Raghuwanshi, S. and Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate polymers, 92(2), 1596-1601
  • Mohamad, N. L., Mustapa Kamal, S. M. and Mokhtar, M. N. (2015). Xylitol biological production: a review of recent studies. Food reviews international. 31(1), 74-89. https://doi.org/10.1080/87559129.2014.961077
  • Morais, A. R., da Costa Lopes, A. M. and Bogel-Łukasik, R. (2015). Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chemical Reviews. 115(1), 3-27. https://doi.org/10.1021/cr500330z
  • Nuchdang, S., Thongtus, V., Khemkhao, M., Kirdponpattara, S., Moore, E. J., Setiabudi, H. D. B. and Phalakornkule, C. (2021). Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conversion and Biorefinery, 11(6), 2471-2483
  • Özbek, H. N., Yanık, D. K., Fadıloğlu, S. and Göğüş, F. (2020). Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renewable Energy. 157, 637-646. https://doi.org/10.1016/j.renene.2020.05.085
  • Padilla-Rascón, C., Romero-García, J. M., Ruiz, E., Romero, I. and Castro, E. (2021). Microwave-assisted production of furfural from the hemicellulosic fraction of olive stones. Process Safety and Environmental Protection. 152, 630-640. https://doi.org/10.1016/j.psep.2021.06.035
  • Raj, K. and Krishnan, C. (2020). Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renewable Energy, 153, 392-403. https://doi.org/10.1016/j.renene.2020.02.042
  • Salan, T. ve Almab, M. H. (2014). Antep fıstığı atık kabuklarının enerji, kimyasal madde ve biyomalzeme üretiminde değerlendirilmesinde kullanılabilecek termokimyasal yöntemlere genel bir bakış. Yeşil Altın Antepfıstığı Zirvesi, Yeşil Altın Antepfıstığı Çalıştayı, Gaziantep, Turkey
  • Sapcı, B., Akpinar, O., Bolukbasi, U. and Yilmaz, L. (2016). Evaluation of cotton stalk hydrolysate for xylitol production. Preparative Biochemistry and Biotechnology, 46(5), 474-482
  • Sharma, H. K., Xu, C. and Qin, W. (2019). Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste and Biomass Valorization, 10(2), 235-251. https://doi.org/10.1007/s12649-017-0059-y
  • Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Wolfe, J. (2008a). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, pp. 1e6. NREL Technical Report No. NREL/TP-510-42621. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008b). Determination of ash in biomass, Laboratory Analytical Procedure: Technical Report. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008c). Determination of extractives in biomass. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008d). Determination of sugars, byproducts, and degradation products in liquid fraction process samples-Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory - NREL, Colorado, USA
  • Song, Y., Lee, Y. G., Cho, E. J. and Bae, H. J. (2020). Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel, 278, 118247
  • Subhedar, P. B., Ray, P. and Gogate, P. R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics sonochemistry. 40, 140-150. https://doi.org/10.1016/j.ultsonch.2017.01.030
  • Tian, S. Q., Zhao, R. Y. and Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews. 91, 483-489. https://doi.org/10.1016/j.rser.2018.03.113
  • Vallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E. and Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161-169. https://doi.org/10.1016/j.indcrop.2016.07.007
  • Yemiş, O. and Mazza, G. (2019). Catalytic performances of various solid catalysts and metal halides for microwave-assisted hydrothermal conversion of xylose, xylan, and straw to furfural. Waste and Biomass Valorization, 10(5), 1343-1353. https://doi.org/10.1007/s12649-017-0144-2
  • Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R. and Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech, 21(2), 341-347. https://doi.org/10.1007/s12355-018-0650-y
  • Zhu, Z., Liu, Y., Yang, X., McQueen-Mason, S. J., Gomez, L. D. and Macquarrie, D. J. (2021). Comparative evaluation of microwave-assisted acid, alkaline, and inorganic salt pretreatments of sugarcane bagasse for sugar recovery. Biomass Conversion and Biorefinery, 11(6), 2681-2693

Fıstık sert kabuğunun mikrodalga-CO₂ destekli hidroliz sistemi ile ksiloza hidrolizi

Year 2023, , 38 - 45, 23.01.2023
https://doi.org/10.56833/bursagida.1232447

Abstract

Amaç: Bu çalışmanın amacı, fıstık işleme sırasında açığa çıkan fıstık sert kabuğunu yeşil bir yaklaşım ile ksiloza hidroliz etmektir.



Materyal ve yöntem: Fıstık sert kabuğunu ksiloza hidrolize etmek için mikrodalga-karbondioksit (CO2) destekli hidroliz yöntemi kullanılmıştır. Bu kapsamda, hidroliz parametrelerinin etkisi sıcaklık (175-220°C), işlem süresi (15-45 dk.) ve su:fıstık kabuğu oranı (5:1-30:1) aralıklarında incelenmiştir.



Tartışma ve sonuç: En yüksek ksiloz veriminin elde edildiği parametreler sıcaklık, reaksiyon süresi ve su:fıstık kabuğu oranı için sırasıyla 200°C, 20 dk. ve 20 mL/g olarak belirlenmiştir. Çalışılan aralıklarda gerçekleştirilen hidroliz denemelerinde en yüksek ksiloz verimi %56,52, bu noktadaki yan ürünler miktarı (furfural, hidroksimetilfurfural (HMF) ve formik asit) ise %15,67 olarak bulunmuştur. Sıcaklığın 200°C’nin üstüne çıktığı durumlarda yan ürünlerde ciddi bir artış gözlenmiştir. Çalışmanın sonuçları göz önünde bulundurulduğunda lignoselülozik biyokütlenin hidrolizinde mikrodalga-CO2 destekli hidroliz umut vaat eden yenilikçi bir metot olarak değerlendirilebilir.

References

  • Alsaadi, M., Erkliğ, A. and Albu-khaleefah, K. (2018). Effect of pistachio shell particle content on the mechanical properties of polymer composite. Arabian Journal for Science and Engineering, 43(9), 4689-4696. https://doi.org/10.1007/s13369-018-3073-x
  • Altun, M., Celebi, M., ve Ovali, S. (2021). Preparation of the pistachio shell reinforced PLA biocomposites: Effect of filler treatment and PLA maleation. Journal of Thermoplastic Composite Materials. https://doi.org/10.1177/08927057211010880
  • Anwar, Z., Gulfraz, M., ve Irshad, M. (2014). Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. Journal of Radiation Research and Applied Sciences. 7(2), 163-173. https://doi.org/10.1016/j.jrras.2014.02.003
  • AOAC-Official Methods of Analysis. (2006) AOAC 984.13: Total Nitrogen By Kjeldahl
  • Arumugam, A., Malolan, V. V. and Ponnusami, V. (2021). Contemporary pretreatment strategies for bioethanol production from corncobs: a comprehensive review. Waste and Biomass Valorization, 12(2), 577-612
  • Azizah, N. (2019). Biotransformation of xylitol production from xylose of lignocellulose biomass using xylose reductase enzyme. Journal of Food and Life Sciences, 3(2), 103-112. https://doi.org/10.21776/ub.jfls.2019.003.02.06
  • Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B. and Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research. https://doi.org/10.4061/2011/787532
  • Browning, B. L. (1967). Chemistry of wood. Methods in wood chemistry. Editörler: Sarkanen, K. V., Ludwig, C.H. New York: John, Wiley & Sons.
  • Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H. and Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196-206. https://doi.org/10.1016/j.fuproc.2016.12.007
  • Delfín-Ruíz, M. E., Calderón-Santoyo, M., Ragazzo-Sánchez, J. A., Gómez-Rodríguez, J., López-Zamora, L. and Aguilar-Uscanga, M. G. (2019). Acid pretreatment optimization for xylose production from Agave tequilana Weber var. azul, Agave americana var. oaxacensis, Agave karwinskii, and Agave potatorum bagasses using a Box-Behnken design. Biomass Conversion and Biorefinery. 1-10. https://doi.org/10.1007/s13399-019-00497-z
  • Domínguez, J. M., Salgado, J. M., Rodríguez, N. and Cortés, S. (2012). Biotechnological production of xylitol from agro-industrial wastes. Food Additive, 139-156
  • Felipe Hernández-Pérez, A., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A. and de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943. https://doi.org/10.1080/07388551.2019.1640658
  • Germec, M., Demirel, F., Tas, N., Ozcan, A., Yilmazer, C., Onuk, Z. and Turhan, I. (2017). Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose, 24(10), 4337-4353. https://doi.org/10.1007/s10570-017-1408-5
  • FAOSTAT. (2018). FAOSTAT statistical database._https://www.fao.org/faostat/en/#data/QCL. (24.05.2022)
  • Grace, M. H., Esposito, D., Timmers, M. A., Xiong, J., Yousef, G., Komarnytsky, S. and Lila, M. A. (2016). Chemical composition, antioxidant and anti-inflammatory properties of pistachio hull extracts. Food Chemistry, 210, 85-95. https://doi.org/10.1016/j.foodchem.2016.04.088
  • Hassan, S. S., Williams, G. A. and Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310-318. https://doi.org/10.1016/j.biortech.2018.04.099
  • Hesam, F., Tarzi, B. G., Honarvar, M. and Jahadi, M. (2021). Pistachio (Pistacia vera) shell as a new candidate for enzymatic production of xylooligosaccharides. Journal of Food Measurement and Characterization, 15(1), 33-45. https://doi.org/10.1007/s11694-020-00594-y
  • Hilpmann, G., Becher, N., Pahner, F. A., Kusema, B., Mäki-Arvela, P., Lange, R., ... and Salmi, T. (2016). Acid hydrolysis of xylan. Catalysis Today, 259, 376-380. https://doi.org/10.1016/j.cattod.2015.04.044
  • Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S. and Scarlata, C. (2008). Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy. National Renewable Energy Laboratory, Golden, Colorado, Tech. Rep. NREL/TP-510-42617
  • Kasiri, N. and Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules. 106, 1023-1031. https://doi.org/10.1016/j.ijbiomac.2017.08.112
  • Kuittinen, S., Rodriguez, Y. P., Yang, M., Keinänen, M., Pastinen, O., Siika-Aho, M., Turunen, O. and Pappinen, A. (2016). Effect of microwave-assisted pretreatment conditions on hemicellulose conversion and enzymatic hydrolysis of Norway spruce. BioEnergy Research, 9(1), 344-354. https://doi.org/10.1007/s12155-015-9696-9
  • Luterbacher, J. S., Tester, J. W. and Walker, L. P. (2010). High‐solids biphasic CO2–H2O pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering. 107(3), 451-460. https://doi.org/10.1002/bit.22823
  • Misra, S., Raghuwanshi, S. and Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate polymers, 92(2), 1596-1601
  • Mohamad, N. L., Mustapa Kamal, S. M. and Mokhtar, M. N. (2015). Xylitol biological production: a review of recent studies. Food reviews international. 31(1), 74-89. https://doi.org/10.1080/87559129.2014.961077
  • Morais, A. R., da Costa Lopes, A. M. and Bogel-Łukasik, R. (2015). Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chemical Reviews. 115(1), 3-27. https://doi.org/10.1021/cr500330z
  • Nuchdang, S., Thongtus, V., Khemkhao, M., Kirdponpattara, S., Moore, E. J., Setiabudi, H. D. B. and Phalakornkule, C. (2021). Enhanced production of reducing sugars from paragrass using microwave-assisted alkaline pretreatment. Biomass Conversion and Biorefinery, 11(6), 2471-2483
  • Özbek, H. N., Yanık, D. K., Fadıloğlu, S. and Göğüş, F. (2020). Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renewable Energy. 157, 637-646. https://doi.org/10.1016/j.renene.2020.05.085
  • Padilla-Rascón, C., Romero-García, J. M., Ruiz, E., Romero, I. and Castro, E. (2021). Microwave-assisted production of furfural from the hemicellulosic fraction of olive stones. Process Safety and Environmental Protection. 152, 630-640. https://doi.org/10.1016/j.psep.2021.06.035
  • Raj, K. and Krishnan, C. (2020). Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renewable Energy, 153, 392-403. https://doi.org/10.1016/j.renene.2020.02.042
  • Salan, T. ve Almab, M. H. (2014). Antep fıstığı atık kabuklarının enerji, kimyasal madde ve biyomalzeme üretiminde değerlendirilmesinde kullanılabilecek termokimyasal yöntemlere genel bir bakış. Yeşil Altın Antepfıstığı Zirvesi, Yeşil Altın Antepfıstığı Çalıştayı, Gaziantep, Turkey
  • Sapcı, B., Akpinar, O., Bolukbasi, U. and Yilmaz, L. (2016). Evaluation of cotton stalk hydrolysate for xylitol production. Preparative Biochemistry and Biotechnology, 46(5), 474-482
  • Sharma, H. K., Xu, C. and Qin, W. (2019). Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste and Biomass Valorization, 10(2), 235-251. https://doi.org/10.1007/s12649-017-0059-y
  • Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Wolfe, J. (2008a). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, pp. 1e6. NREL Technical Report No. NREL/TP-510-42621. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008b). Determination of ash in biomass, Laboratory Analytical Procedure: Technical Report. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008c). Determination of extractives in biomass. National Renewable Energy Laboratory, Golden, Colorado, USA
  • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008d). Determination of sugars, byproducts, and degradation products in liquid fraction process samples-Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory - NREL, Colorado, USA
  • Song, Y., Lee, Y. G., Cho, E. J. and Bae, H. J. (2020). Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxicde-acetic acid pretreatment. Fuel, 278, 118247
  • Subhedar, P. B., Ray, P. and Gogate, P. R. (2018). Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation. Ultrasonics sonochemistry. 40, 140-150. https://doi.org/10.1016/j.ultsonch.2017.01.030
  • Tian, S. Q., Zhao, R. Y. and Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews. 91, 483-489. https://doi.org/10.1016/j.rser.2018.03.113
  • Vallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E. and Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161-169. https://doi.org/10.1016/j.indcrop.2016.07.007
  • Yemiş, O. and Mazza, G. (2019). Catalytic performances of various solid catalysts and metal halides for microwave-assisted hydrothermal conversion of xylose, xylan, and straw to furfural. Waste and Biomass Valorization, 10(5), 1343-1353. https://doi.org/10.1007/s12649-017-0144-2
  • Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R. and Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech, 21(2), 341-347. https://doi.org/10.1007/s12355-018-0650-y
  • Zhu, Z., Liu, Y., Yang, X., McQueen-Mason, S. J., Gomez, L. D. and Macquarrie, D. J. (2021). Comparative evaluation of microwave-assisted acid, alkaline, and inorganic salt pretreatments of sugarcane bagasse for sugar recovery. Biomass Conversion and Biorefinery, 11(6), 2681-2693
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Original Articles
Authors

Filiz Hazal This is me 0000-0003-4923-0774

Hatice Neval Özbek This is me 0000-0001-6543-4086

Fahrettin Göğüş This is me 0000-0002-8610-5297

Derya Koçak Yanık This is me 0000-0003-3866-899X

Publication Date January 23, 2023
Published in Issue Year 2023

Cite

APA Hazal, F., Özbek, H. N., Göğüş, F., Koçak Yanık, D. (2023). Fıstık sert kabuğunun mikrodalga-CO₂ destekli hidroliz sistemi ile ksiloza hidrolizi. Gıda Ve Yem Bilimi Teknolojisi Dergisi(29), 38-45. https://doi.org/10.56833/bursagida.1232447

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0