Research Article
BibTex RIS Cite

Determination of antifungal activities of Spirulina platensis extracts

Year 2022, Issue: 28, 65 - 73, 29.07.2022

Abstract

Objective: Algae and algal biotechnology have attracted increasing attention in industry and scientific research. Intracellular and extracellular metabolites of macroalgae and microalgae, proteins, carbohydrates, fatty acids, vitamins, minerals, pigments, etc., are used for many purposes as food supplements, food additives, and pharmaceuticals. It has been reported that especially fatty acids, pigments, and phenolic compounds have antimicrobial, antioxidant, antifungal, and antiviral properties and can be used to reduce and prevent foodborne diseases. In this study, the antifungal effect of the extracts of Spirulina platensis microalgae, which grown under suitable culture conditions, with different solvents (water, methanol, hexane) against Aspergillus flavus and Penicillium verrucosum molds, which cause food spoilage and economic losses, was investigated using disc diffusion method.

Materials and methods: Solvent:biomass ratios and extract concentrations with solvent-type were used as variable factors to determine antimicrobial activity. The process variables (3 factors with 4 levels) were applied within the response surface methodology (RSM) with central composite design (CCD). Experiments were carried out due to the determined variable parameters as 4-16 (-α, +α) for solvent:biomass ratio and 6-54 mg/mL (-α, +α) for extract concentration.

Discussion and conclusion: According to the results obtained, the extracts obtained with water did not show any activity, while the methanol extracts showed the highest antifungal activity. In methanol extracts, where the solvent/biomass ratio, which was determined as the most effective parameter for both mold species, was “4”, the inhibition zone was determined as “9 mm” for both Aspergillus flavus and Penicillium verrucosum.

References

  • Abdel-Moneim, A.-M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., and Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209. https://doi.org/10.1016/j.sjbs. 2021.09.046
  • Abedin, R. M., and Taha, H. M. (2008). Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3(1), 22-31.
  • Ak, B., Avsaroglu, E., Isik, O., Özyurt, G., Kafkas, E., and Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int. J. Eng. Res. Appl, 6(9).
  • Al-Ghanayem, A. (2017). Antimicrobial activity of Spirulina platensis extracts against certain pathogenic bacteria and fungi. Advances in Bioresearch, 8, 96-101. https://doi.org/10.15515/ abr.0976-4585.8.6.96101
  • Almeida, L. M. R., da Silva Cruz, L. F., Machado, B. A. S., Nunes, I. L., Costa, J. A. V., de Souza Ferreira, E., Lemos, P. V. F., Druzian, J. I., and de Souza, C. O. (2021). Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research, 58, 102387.
  • Azma, M., Mohamed, M. S., Mohamad, R., Rahim, R. A., and Ariff, A. B. (2011). Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, 53(2), 187-195.
  • El-Sheekh, M. M., El-Shafay, S. M., and El-Ballat, E. M. (2015). Production and characterization of antifungal active substance from some marine and freshwater algae. Int. J. Enviro. Sci. Engine, 6, 85-92.
  • Elshouny, W. A. E.-F., El-Sheekh, M. M., Sabae, S. Z., Khalil, M. A., and Badr, H. M. (2021). Antimicrobial Activity of Spirulina platensis Against Aquatic Bacterial Isolates. Journal of Microbiology, Biotechnology and Food Sciences, 2021(vol. 10), 1203-1208.
  • Farasat, M., Khavari-Nejad, R.-A., Nabavi, S. M. B., and Namjooyan, F. (2013). Antioxidant properties of some filamentous green algae (Chaetomorpha Genus). Brazilian Archives of Biology and Technology, 56, 921-927. doi.org/10.1590/S1516-89132013000600005
  • Gheda, S. F., and Ismail, G. A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020190934
  • Gümüş, B., and Ünlüsayın, M. (2016). Determination of antimicrobial activity of two macro algae extracts. Ege Journal of Fisheries and Aquatic Sciences, 33(4), 389-395. https://doi.org/10.12714/egejfas.2016.33.4.13
  • Hoseini, S. M., Khosravi-Darani, K., and Mozafari, M. R. (2013). Nutritional and medical applications of Spirulina microalgae. Mini reviews in medicinal chemistry, 13(8), 1231-1237.
  • Kaushik, P., and Chauhan, A. (2008). In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian Journal of Microbiology, 48(3), 348-352. https://doi.org/ 10.1007/s12088-008-0043-0
  • Keddar, M. N., Ballesteros-Gómez, A., Amiali, M., Siles, J. A., Zerrouki, D., Martín, M. A., and Rubio, S. (2020). Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents. Separation and Purification Technology, 251, 117327. https://doi.org/10.1016/j.seppur.2020.117327
  • Kumar, V., Bhatnagar, A. K., and Srivastava, J. N. (2011). Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research, 5(32), 7043-7048.
  • Luz, C., Saladino, F., Luciano, F. B., Mañes, J., and Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology, 81, 128-135. https://doi.org/ 10.1016/j.lwt.2017.03.053
  • Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., and Bernini, V. (2020). Edible seaweeds and Spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods, 9(10), 1442.
  • Mohy El-Din, S. M., and Mohyeldin, M. M. (2018). Component Analysis and Antifungal Activity of the Compounds Extracted from Four Brown Seaweeds with Different Solvents at Different Seasons. Journal of Ocean University of China, 17(5), 1178-1188. https://doi.org/10.1007/ s11802-018-3538-2
  • Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., José Núñez, M., and Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  • Musbah, H. A., Abouelkhair, W. S., Yousef, S. A. E., Moustafa, E. E., and Hasan, A. M. H. (2019). Screening of Antifungal Activities of Five Algal Crude Extracts. Journal of Scientific Research in Science, 36(1), 318-338. https://doi.org/10.21608/ jsrs.2019.57633
  • Pagnussatt, F. A., Kupski, L., Darley, F. T., Filoda, P. F., Ponte, É. M. D., Garda-Buffon, J., and Badiale-Furlong, E. (2013). Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp. Food Science and Technology, 33, 75-80.
  • Pawlowska, A. M., Zannini, E., Coffey, A., and Arendt, E. K. (2012). Chapter 5 - “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Içinde J. Henry (Ed.), Advances in Food and Nutrition Research (C. 66, ss. 217-238). Academic Press. https://doi.org/10.1016/B978-0-12-394597-6.00005-7
  • Ponnanikajamideen, M., Malini, M., Chelladurai, M., and Shanmugam, R. (2014). Bioactivity and Phytochemical Constituents of Marine Brown Seaweed (Padina tetrastromatıca) extract from Various Organic Solvents. International Journal of Pharmacy & Therapeutics, 5, 108-112.
  • Radhika, D., Veerabahu, C., and Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian journal of pharmaceutical and clinical research, 5(4), 89-90.
  • Sahin, O. I., and Ozturk, B. (2021). Microalgal biomass-a bio-based additive: Evaluation of green smoothies during storage. International Food Research Journal, 28(2), 309-316.
  • Sarkar, S., Manna, M. S., Bhowmick, T. K., and Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72. https://doi.org/10.1016/j.procbio.2020.05.025
  • Souza, M. M. de, Prietto, L., Ribeiro, A. C., Souza, T. D. de, and Badiale-Furlong, E. (2011). Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciência e Agrotecnologia, 35, 1050-1058. https://doi.org/10.1590/S1413-70542011000600003
  • Tantawy, S. T. (2011). Biological potential of cyanobacterial metabolites against some soil pathogenic fungi. Journal of food, agriculture & environment, 9(1), 663-666.
  • Usharani, G., Srinivasan, G., Sivasakthi, S., and Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9(5), 292-298.
  • Yilmaz, A. (2019). Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda, 17(2), 217-225. https://doi.org/10.24323/ akademik-gida.613575

Spirulina platensis ekstraktlarının antifungal aktivitelerinin incelenmesi

Year 2022, Issue: 28, 65 - 73, 29.07.2022

Abstract

Amaç: Algler ve algal biyoteknoloji her geçen gün endüstrinin ve bilimsel araştırmaların daha fazla dikkatini çekmektedir. Makro ve mikroalglerin, protein, karbonhidrat, yağ asitleri, vitamin, mineral, pigmentler gibi hücre içi ve dışı metabolitleri; besin desteği, gıda katkı maddesi ve farmasötik olarak pek çok amaçla kullanılmaktadırlar. Özellikle yağ asitleri, pigmentler ve fenolik bileşiklerinin antibakteriyel, antioksidan, antifungal ve antiviral özelliklere sahip olduğu ve gıda kaynaklı hastalıkların azaltılması ve önlenmesinde kullanılabileceği bildirilmektedir. Gerçekleştirilen bu çalışmada, uygun kültür koşullarında üretilen Spirulina platensis mikroalginin, farklı solventler (su, metanol, hekzan) ile elde edilen ekstraktlarının gıdalarda bozulma ve ekonomik kayıplara sebep olan Aspergillus flavus ve Penicillium verrucosum küflerine karşı antifungal etkisi disk difüzyon yöntemi kullanılarak incelenmiştir.

Materyal ve yöntem: Ekstraktların eldesinde kullanılacak solvent:biyokütle oranları ile solvent türü ve antifungal aktiviteyi tespit için kullanılacak ekstrakt konsantrasyonları etkili değişken faktörler olarak belirlenmiştir. Proses değişkenlerinin etkisini optimize etmek için yüzey yanıt metoduna (YYY) (Responce Surface Methodology, RSM) bağlı merkezi tümleşik tasarım (Central Composite Design, CCD) kullanılmıştır. Buna göre elde edilen değişken parametreleri solvent:biyokütle için 4-16 (-α, +α) ve ekstrakt konsantrasyonu için 6-54 mg/mL (-α, +α) olarak tespit edilmiş ve denemeler gerçekleştirilmiştir.

Bulgular ve sonuç: Yapılan denemelerde, su ile elde edilen ekstraktlar herhangi bir aktivite gösteremezken, metanol ekstraktları en yüksek antifungal aktiviteyi göstermiştir. Her iki küf türü için de en etkili parametre olarak belirlenen solvent:biyokütle oranının “4” olduğu metanol ekstraktlarında, inhibisyon zonu her iki küf türü için de “9 mm” olarak tespit edilmiştir.

References

  • Abdel-Moneim, A.-M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., and Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209. https://doi.org/10.1016/j.sjbs. 2021.09.046
  • Abedin, R. M., and Taha, H. M. (2008). Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3(1), 22-31.
  • Ak, B., Avsaroglu, E., Isik, O., Özyurt, G., Kafkas, E., and Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. Int. J. Eng. Res. Appl, 6(9).
  • Al-Ghanayem, A. (2017). Antimicrobial activity of Spirulina platensis extracts against certain pathogenic bacteria and fungi. Advances in Bioresearch, 8, 96-101. https://doi.org/10.15515/ abr.0976-4585.8.6.96101
  • Almeida, L. M. R., da Silva Cruz, L. F., Machado, B. A. S., Nunes, I. L., Costa, J. A. V., de Souza Ferreira, E., Lemos, P. V. F., Druzian, J. I., and de Souza, C. O. (2021). Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research, 58, 102387.
  • Azma, M., Mohamed, M. S., Mohamad, R., Rahim, R. A., and Ariff, A. B. (2011). Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, 53(2), 187-195.
  • El-Sheekh, M. M., El-Shafay, S. M., and El-Ballat, E. M. (2015). Production and characterization of antifungal active substance from some marine and freshwater algae. Int. J. Enviro. Sci. Engine, 6, 85-92.
  • Elshouny, W. A. E.-F., El-Sheekh, M. M., Sabae, S. Z., Khalil, M. A., and Badr, H. M. (2021). Antimicrobial Activity of Spirulina platensis Against Aquatic Bacterial Isolates. Journal of Microbiology, Biotechnology and Food Sciences, 2021(vol. 10), 1203-1208.
  • Farasat, M., Khavari-Nejad, R.-A., Nabavi, S. M. B., and Namjooyan, F. (2013). Antioxidant properties of some filamentous green algae (Chaetomorpha Genus). Brazilian Archives of Biology and Technology, 56, 921-927. doi.org/10.1590/S1516-89132013000600005
  • Gheda, S. F., and Ismail, G. A. (2020). Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020190934
  • Gümüş, B., and Ünlüsayın, M. (2016). Determination of antimicrobial activity of two macro algae extracts. Ege Journal of Fisheries and Aquatic Sciences, 33(4), 389-395. https://doi.org/10.12714/egejfas.2016.33.4.13
  • Hoseini, S. M., Khosravi-Darani, K., and Mozafari, M. R. (2013). Nutritional and medical applications of Spirulina microalgae. Mini reviews in medicinal chemistry, 13(8), 1231-1237.
  • Kaushik, P., and Chauhan, A. (2008). In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian Journal of Microbiology, 48(3), 348-352. https://doi.org/ 10.1007/s12088-008-0043-0
  • Keddar, M. N., Ballesteros-Gómez, A., Amiali, M., Siles, J. A., Zerrouki, D., Martín, M. A., and Rubio, S. (2020). Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents. Separation and Purification Technology, 251, 117327. https://doi.org/10.1016/j.seppur.2020.117327
  • Kumar, V., Bhatnagar, A. K., and Srivastava, J. N. (2011). Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research, 5(32), 7043-7048.
  • Luz, C., Saladino, F., Luciano, F. B., Mañes, J., and Meca, G. (2017). In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT - Food Science and Technology, 81, 128-135. https://doi.org/ 10.1016/j.lwt.2017.03.053
  • Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., and Bernini, V. (2020). Edible seaweeds and Spirulina extracts for food application: In vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods, 9(10), 1442.
  • Mohy El-Din, S. M., and Mohyeldin, M. M. (2018). Component Analysis and Antifungal Activity of the Compounds Extracted from Four Brown Seaweeds with Different Solvents at Different Seasons. Journal of Ocean University of China, 17(5), 1178-1188. https://doi.org/10.1007/ s11802-018-3538-2
  • Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., José Núñez, M., and Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  • Musbah, H. A., Abouelkhair, W. S., Yousef, S. A. E., Moustafa, E. E., and Hasan, A. M. H. (2019). Screening of Antifungal Activities of Five Algal Crude Extracts. Journal of Scientific Research in Science, 36(1), 318-338. https://doi.org/10.21608/ jsrs.2019.57633
  • Pagnussatt, F. A., Kupski, L., Darley, F. T., Filoda, P. F., Ponte, É. M. D., Garda-Buffon, J., and Badiale-Furlong, E. (2013). Fusarium graminearum growth inhibition mechanism using phenolic compounds from Spirulina sp. Food Science and Technology, 33, 75-80.
  • Pawlowska, A. M., Zannini, E., Coffey, A., and Arendt, E. K. (2012). Chapter 5 - “Green Preservatives”: Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Içinde J. Henry (Ed.), Advances in Food and Nutrition Research (C. 66, ss. 217-238). Academic Press. https://doi.org/10.1016/B978-0-12-394597-6.00005-7
  • Ponnanikajamideen, M., Malini, M., Chelladurai, M., and Shanmugam, R. (2014). Bioactivity and Phytochemical Constituents of Marine Brown Seaweed (Padina tetrastromatıca) extract from Various Organic Solvents. International Journal of Pharmacy & Therapeutics, 5, 108-112.
  • Radhika, D., Veerabahu, C., and Priya, R. (2012). Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian journal of pharmaceutical and clinical research, 5(4), 89-90.
  • Sahin, O. I., and Ozturk, B. (2021). Microalgal biomass-a bio-based additive: Evaluation of green smoothies during storage. International Food Research Journal, 28(2), 309-316.
  • Sarkar, S., Manna, M. S., Bhowmick, T. K., and Gayen, K. (2020). Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochemistry, 96, 58-72. https://doi.org/10.1016/j.procbio.2020.05.025
  • Souza, M. M. de, Prietto, L., Ribeiro, A. C., Souza, T. D. de, and Badiale-Furlong, E. (2011). Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus. Ciência e Agrotecnologia, 35, 1050-1058. https://doi.org/10.1590/S1413-70542011000600003
  • Tantawy, S. T. (2011). Biological potential of cyanobacterial metabolites against some soil pathogenic fungi. Journal of food, agriculture & environment, 9(1), 663-666.
  • Usharani, G., Srinivasan, G., Sivasakthi, S., and Saranraj, P. (2015). Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Advances in Biological Research, 9(5), 292-298.
  • Yilmaz, A. (2019). Chlorella protothecoides Mikroalg Yağının Karakterizasyonu, Biyoaktif Özellikleri ve Antifungal Etkinliği. Akademik Gıda, 17(2), 217-225. https://doi.org/10.24323/ akademik-gida.613575
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Original Articles
Authors

Oya Irmak Şahin This is me 0000-0003-2225-7993

Begüm Kurbe This is me 0000-0003-4845-8064

Publication Date July 29, 2022
Published in Issue Year 2022 Issue: 28

Cite

APA Şahin, O. I., & Kurbe, B. (2022). Spirulina platensis ekstraktlarının antifungal aktivitelerinin incelenmesi. Gıda Ve Yem Bilimi Teknolojisi Dergisi(28), 65-73.

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0