Araştırma Makalesi
BibTex RIS Kaynak Göster

Modifiye polikaprolakton polimerinin gıda ambalajlama uygulamalarında kullanımı: bir derleme

Yıl 2024, Sayı: 32, 13 - 26, 22.07.2024
https://doi.org/10.56833/gidaveyem.1485689

Öz

Amaç: Dünyada plastik üretimi sürekli olarak artmakta ve plastikler uzun yıllar boyunca doğada bozunmaya uğramaktadır. Bu durum insanların ve canlıların karşılaşacağı büyük bir çevre felaketine dönüşmektedir. Bunun yanında fonksiyonel özellikleriyle hem gıdalara güvenli bir şekilde uygulanabilen hem de gıdaların raf ömrünü uzatabilen ambalaj filmlerine ihtiyaç duyulmaktadır. Polikaprolakton (PCL) sentetik süreçlerle üretilen ve son yıllarda gıda ambalajı çalışmalarında sıklıkla araştırılan biyobozunur yapıdaki bir polimerdir. Esnekliği, biyouyumluluğu ve termoplastik oluşu nedeniyle PCL ve kopolimerlerinin ambalaj filmi uygulamalarında kullanımı yaygınlaşmaktadır. Mekanik ve termal dayanımının düşük olması gibi dezavantajları dolgu maddeleri ekleme, diğer polimerlerle karıştırma veya çok katmanlı kullanımları ile giderilebilmektedir. Bu çalışmada, çeşitli yöntemlerle modifiye edilmiş PCL polimerinin gıda ambalajı olarak kullanımı ile ilgili son yıllarda yapılan çalışmaların derlenmesi amaçlanmıştır.

Sonuç: Literatürde PCL’nin farklı yöntemlerle kompozit haline getirilmesi ile ilgili pek çok ilgi çekici çalışma yapılmaktadır. Mekanik ve gaz bariyer özelliklerini geliştirmek için nanokiller; antimikrobiyal özellik kazandırması için nanometaller ve bitkisel materyaller; oksijen süpürücüler, fotosentezleyici maddeler, antimikrobiyal peptitler gibi yenilikçi katkılar PCL’nin modifikasyonunda kullanılmaktadır. Bu derleme çalışmasında, yapılan modifikasyonların PCL polimerine rijitlik ve gaz bariyer özellikleri açısından katkı sağladığı ve polimere antimikrobiyal ve antioksidan karakter kattığı ortaya konulmuştur.

Kaynakça

  • Alonso-González, M., Corral-González, A., Felix, M., Romero, A., and Martin-Alfonso, J. E. (2020). Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging. International Journal of Biological Macromolecules, 162, 913–921. https://doi.org/10.1016/j.ijbiomac.2020.06.217
  • Amini, E., Valls, C., and Roncero, M. B. (2023). Promising nanocomposites for food packaging based on cellulose – PCL films reinforced by using ZnO nanoparticles in an ionic liquid. Industrial Crops and Products, 193(December 2022), 116246. https://doi.org/10.1016/j.indcrop.2023.116246
  • Amorim, L. F. A., Fangueiro, R., and Gouveia, I. C. (2022). Novel functional material incorporating flexirubin-type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. Journal of Applied Polymer Science, 139(48), 1– 13. https://doi.org/10.1002/app.53208
  • Bartnikowski, M., Dargaville, T. R., Ivanovski, S., and Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
  • Bastarrachea, L., Dhawan, S., and Sablani, S. S. (2011). Engineering Properties of Polymeric- Based Antimicrobial Films for Food Packaging. Food Engineering Reviews, 3(2), 79–93. https://doi.org/10.1007/s12393-011-9034-8
  • Beltrán, A., Valente, A. J. M., Jiménez, A., and Garrigós, M. C. (2014). Characterization of poly(ε- caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. Journal of Agricultural and Food Chemistry, 62(10), 2244– 2252. https://doi.org/10.1021/jf405111a
  • Benhacine, F., Ouargli, A., and Hadj-Hamou, A. S. (2019). Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/Ag-Kaolinite Nanocomposites with Controlled Release Properties. Polymer-Plastics Technology and Materials, 58(3), 328–340. https://doi.org/10.1080/03602559.2018.1471714
  • Bujok, S., Peter, J., Halecký, M., Ecorchard, P., Machálková, A., Santos Medeiros, G., Hodan, J., Pavlova, E., and Beneš, H. (2021). Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polymer Degradation and Stability, 190. https://doi.org/10.1016/j.polymdegradstab.2021.1 09625
  • Cai, Y., Guan, J., Wang, W., Wang, L., Su, J., and Fang, L. (2021). pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. Journal of Food Science, 86(8), 3550–3562. https://doi.org/10.1111/1750-3841.15839
  • Cai, Z., Shen, C., Deng, Z., Wu, D., and Chen, K. (2022). Solution blow spinning of multilayer polycaprolactone/curcumin-loaded gelatin/polycaprolactone nanofilm for slow release and bacterial inhibition. Food Hydrocolloids for Health, 2(December 2021). https://doi.org/10.1016/j.fhfh.2022.100062
  • Cao, Y., Shen, C., Yang, Z., Cai, Z., Deng, Z., and Wu, D. (2022). Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid. Food Quality and Safety, 6(February), 1–10. https://doi.org/10.1093/fqsafe/fyac014
  • Carothers, W. H., G. Dorough, G. L. and Natta, F. V. (1932). Studies of polymerization and ring formation. X. The reversible polymerization of six- membered cyclic esters. Journal of the American Chemical Society, 54(5), 761–772.
  • Cesur, S. (2018). The Effects of Additives on the Biodegradation of Polycaprolactone Composites. Journal of Polymers and the Environment, 26(4), 1425–1444. https://doi.org/10.1007/s10924-017- 1029-y
  • Cesur, S., Köroğlu, C., and Yalçın, H. T. (2018). Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. Journal of Vinyl and Additive Technology, 24(4), 376–387. https://doi.org/10.1002/vnl.21607
  • Chavalitpanya, K., and Phattanarudee, S. (2013). Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia, 34, 542–548. https://doi.org/10.1016/j.egypro.2013.06.783
  • Choi, I., Yoo, D. S., Chang, Y., Kim, S. Y., and Han, J. (2021). Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chemistry, 346(December 2020), 128883. https://doi.org/10.1016/j.foodchem.2020.128883
  • Correa, J. P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., and Massani, M. B. (2017). Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life, 11, 31–39. https://doi.org/10.1016/j.fpsl.2016.11.004
  • El-Naggar, M. E., Hasanin, M., and Hashem, A. H. (2022). Eco-Friendly Synthesis of Superhydrophobic Antimicrobial Film Based on Cellulose Acetate/Polycaprolactone Loaded with the Green Biosynthesized Copper Nanoparticles for Food Packaging Application. Journal of Polymers and the Environment, 30(5), 1820–1832. https://doi.org/10.1007/s10924-021-02318-9
  • Figueroa-Lopez, K. J., Castro-Mayorga, J. L., Andrade-Mahecha, M. M., Cabedo, L., and Lagaron, J. M. (2018). Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications. Nanomaterials, 8(4). https://doi.org/10.3390/nano8040199
  • Furquim, F. C., Santos, E. N., Mercante, L. A., Amaral, M. M., Pavinatto, A., and Rodrigues, B. V. M. (2020). Green and low-cost electrospun membranes from polycaprolactone/graphene oxide for Bisphenol A sensing. Materials Letters, 274, 128014. https://doi.org/10.1016/j.matlet.2020.128014
  • Gomes, A. C. D., Silva, K. F., Freitas, A. J., Miranda, K. W. E., Santos, T. A., Borges, S. V., Dias, M. V., and Thomazi, A. C. (2021). Effect of Surfactant on the Formation of Chitosan/ε- Polycaprolactone Blend Films for Food Packaging Applications. ResearchSquare. https://doi.org/10.21203/rs.3.rs-804708
  • Gorrasi, G., Bugatti, V., Viscusi, G., and Vittoria, V. (2021). Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process. Colloid and Polymer Science, 299(3), 429–437. https://doi.org/10.1007/s00396-020-04699-0
  • Guarás, M. P., Alvarez, V. A., and Ludueña, L. N. (2015). Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. Journal of Polymer Research, 22(9), 1–12. https://doi.org/10.1007/s10965-015-0817-0
  • Guarino, V., Gentile, G., Sorrentino, L., and Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology. https://doi.org/10.1002/0471440264.pst658
  • Guclu, N., Duzyer Gebizli, S., and Orhan, M. (2023). Development of polycaprolactone-based electrospun pH-sensitive sensors as instant colorimetric indicators for food packaging. Coloration Technology, November 2022, 1–17. https://doi.org/10.1111/cote.12701
  • Guo, W., Tao, J., Yang, C., Song, C., Geng, W., Li, Q., Wang, Y., Kong, M., and Wang, S. (2012). Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE, 7(5), 1–6. https://doi.org/10.1371/journal.pone.0038341
  • Harsojuwono, B. A., Arnata, I. W., Hartiati, A., Setiyo, Y., Hatiningsih, S., and Suriati, L. (2022). The Improvement of the Modified Starch-Glucomannan—Polyvinyl Alcohol Biothermoplastic Composite Characteristics With Polycaprolactone and Anhydride Maleic Acid. Frontiers in Sustainable Food Systems, 6(March), 1–13. https://doi.org/10.3389/fsufs.2022.844485
  • Holešová, S., Čech Barabaszová, K., Hundáková, M., Ščuková, M., Hrabovská, K., Joszko, K., Antonowicz, M., and Gzik-Zroska, B. (2021). Development of novel thin polycaprolactone (PCL)/clay nanocomposite films with antimicrobial activity promoted by the study of mechanical, thermal, and surface properties. Polymers, 13(18). https://doi.org/10.3390/polym13183193
  • İlaslan, K., Tornuk, F., and Durak, M. Z. (2022). Development of polycaprolactone biodegradable films reinforced with silver-doped organoclay and effect on the microbiological quality of ground beef meat. Journal of Food Processing and Preservation, 46(10), 1–14. https://doi.org/10.1111/jfpp.16862
  • Ilyas, R. A., Zuhri, M. Y. M., Norrrahim, M. N. F., Misenan, M. S. M., Jenol, M. A., Samsudin, S. A., Nurazzi, N. M., Asyraf, M. R. M., Supian, A. B. M., Bangar, S. P., Nadlene, R., Sharma, S., and Omran, A. A. B. (2022). Natural Fiber-Reinforced Polycaprolactone Biocomposites Applications. https://doi.org/10.3390/polym14010182 Green and Hybrid for Various Polymers, 14(1), Advanced 1–28.
  • Jeong, S., Lee, H. G., Cho, C. H., and Yoo, S. R. (2020). Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packaging and Shelf Life, 25(April), 100512. https://doi.org/10.1016/j.fpsl.2020.100512
  • Khalid, S., Yu, L., Feng, M., Meng, L., Bai, Y., Ali, A., Liu, H., and Chen, L. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life, 18(March), 71–79. https://doi.org/10.1016/j.fpsl.2018.08.008
  • Khatiwala, V. K., Shekhar, N., Aggarwal, S., and Mandal, U. K. (2008). Biodegradation of Poly(ε- caprolactone) (PCL) Film by Alcaligenes faecalis. Journal of Polymers and the Environment, 16(1), 61–67. https://doi.org/10.1007/s10924-008-0104-9
  • Khodanazary, A. (2019). Quality characteristics of refrigerated mackerel Scomberomorus commerson using gelatin-polycaprolactone composite film incorporated with lysozyme and pomegranate peel extract. International Journal of Food Properties, 22(1), 2056–2070. https://doi.org/10.1080/10942912.2019.1702997
  • Kılınç, M., Tomar, O., and Çağlar, A. (2017). Biodegradable Food Packaging Materials. Afyon Kocatepe University Journal of Sciences and Engineering, 17(3), 988–996. https://doi.org/10.5578/fmbd.66307
  • Labet, M., and Thielemans, W. (2009). Synthesis of polycaprolactone: A review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/b820162p
  • Lee, J.-E., and Kim, K. M. (2010). Characteristics of soy protein isolate-montmorillonite composite films. Journal of Applied Polymer Science, 118(4), 2257–2263. https://doi.org/https://doi.org/10.1002/app.31316
  • Li, T., Zhang, X., Mei, J., Cui, F., Wang, D., and Li, J. (2022). Preparation of Linanool/Polycaprolactone Coaxial Electrospinning Film and Application in Preserving Salmon Slices. Frontiers in Microbiology, 13(April). https://doi.org/10.3389/fmicb.2022.860123
  • Mahieu, A., Terrie, C., and Leblanc, N. (2017). Research Article. Role of ascorbic acid and iron in mechanical and oxygen absorption properties of starch and polycaprolactone multilayer film. Packaging Research, 2(1), 1–11. https://doi.org/10.1515/pacres-2017-0001
  • Mahieu, A., Terrié, C., and Youssef, B. (2015). Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen- scavenging properties: Influence of water content. Industrial Crops and Products, 72, 192–199. https://doi.org/10.1016/j.indcrop.2014.11.037
  • Makino, Y., and Hirata, T. (1997). Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biology and Technology, 10(3), 247–254. https://doi.org/10.1016/S0925-5214(96)01402-0
  • Malik, N. (2022). Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Materials Technology, 37(5), 345– 354. https://doi.org/10.1080/10667857.2020.1842150
  • Maroju, P. A., Tata, P., Balapure, A., Ray Dutta, J., and Ganesan, R. (2021). Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme and Microbial Technology, 150(July), 1–7. https://doi.org/10.1016/j.enzmictec.2021.109888
  • Mathiazhagan, S., Periasamy, V., and Vadivel, A. (2021). Ecofriendly antimicrobial Acalypha indica leaf extract immobilized polycaprolactone nanofibrous mat for food package applications. Journal of Food Processing and Preservation, 45(4), 1–12. https://doi.org/10.1111/jfpp.15302
  • Mohamed, R. M., and Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249– 255. https://doi.org/10.4028/www.scientific.net/amr.11 34.249
  • Mugwagwa, L. R., and Chimphango, A. F. A. (2020). Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packaging and Shelf Life, 24(August 2019), 100481. https://doi.org/10.1016/j.fpsl.2020.100481
  • Muñoz-Bonilla, A., Cerrada, M. L., Fernández- García, M., Kubacka, A., Ferrer, M., and Fernández-García, M. (2013). Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. International Journal of Molecular Sciences, 14(5), 9249–9266. https://doi.org/10.3390/ijms14059249
  • Lim, B. K. H., and Thian, E. S. (2022). Effects of molecular weight of chitosan in a blend with polycaprolactone and grapefruit seed extract for active packaging and biodegradation. Food Packaging and Shelf Life, 34(March), 100931. https://doi.org/10.1016/j.fpsl.2022.100931
  • Lin, W., Ni, Y., and Pang, J. (2020). Size effect- inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. International Journal of Biological Macromolecules, 149, 853–860. https://doi.org/10.1016/j.ijbiomac.2020.01.242
  • Lins, L. C., Bugatti, V., Livi, S., and Gorrasi, G. (2018). Ionic liquid as surfactant agent of hydrotalcite: Influence on the final properties of polycaprolactone matrix. Polymers, 10(1). https://doi.org/10.3390/polym10010044
  • Ludueña, L. N., Kenny, J. M., Vázquez, A., and Alvarez, V. A. (2011). Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Materials Science and Engineering A, 529(1), 215–223. https://doi.org/10.1016/j.msea.2011.09.020
  • Fernández-García, M. (2013). Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. International Journal of Molecular Sciences, 14(5), 9249–9266. https://doi.org/10.3390/ijms14059249
  • Nabati, S., Aminzare, M., Roohinejad, S., Hassanzad Azar, H., Mohseni, M., Greiner, R., and Tahergorabi, R. (2023). Electrospun polycaprolactone nanofiber containing Ganoderma lucidum extract to improve chemical and microbial stability of rainbow trout fillets during storage at 4°C. Food Control, 150(November 2022), 109777. https://doi.org/10.1016/j.foodcont.2023.109777
  • Núñez-Gastélum, J. A., Rodríguez-Núñez, J. R., de la Rosa, L. A., Díaz-Sánchez, A. G., Alvarez- Parrilla, E., Martínez-Martínez, A., and Villa- Lerma, G. (2019). Screening of The Physical and Structural Properties of Chitosan-Polycaprolactone Films Added with Moringa Oleifera Leaf Extract. Revista Mexicana de Ingeniería Química, 18(1), 99–105. https://doi.org/10.24275/uam/izt/dcbi/revmexingq uim/2019v18n1/Nunez
  • Ortega-Toro, R., Morey, I., Talens, P., and Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290. https://doi.org/10.1016/j.carbpol.2015.03.080
  • Ortega-Toro, R., Muñoz, A., Talens, P., and Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 56, 9–19. https://doi.org/10.1016/j.foodhyd.2015.11.029
  • Paula, M., Diego, I., Dionisio, R., Vinhas, G., and Alves, S. (2019). Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polimeros, 29(1), 1–7. https://doi.org/10.1590/0104-1428.04018
  • Pineros-Guerrero, N. Marsiglia-Fuentes, R., and Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana de Ingeniera Quimica, 20(3). https://doi.org/10.24275/rmiq/Alim2416
  • Piri, H., Moradi, S., and Amiri, R. (2021). The fabrication of a novel film based on polycaprolactone incorporated with chitosan and rutin: potential as an antibacterial carrier for rainbow trout packaging. Food Science and Biotechnology, 30(5), 683–690. https://doi.org/10.1007/s10068-021-00898-9
  • Reis, R. S., Souza, D. de H. S., Marques, M. de F. V., da Luz, F. S., and Monteiro, S. N. (2021). Novel bionanocomposite of polycaprolactone reinforced with steam-exploded microfibrillated cellulose modified with ZnO. Journal of Materials Research and Technology, 13, 1324–1335. https://doi.org/10.1016/j.jmrt.2021.05.043
  • Rešček, A., Ščetar, M., Hrnjak-Murgić, Z., Dimitrov, N., and Galić, K. (2016). Polyethylene/Polycaprolactone Nanocomposite Films for Food Packaging Modified with Magnetite and Casein: Oxygen Barrier, Mechanical, and Thermal Properties. Polymer - Plastics Technology and Engineering, 55(14), 1450–1459. https://doi.org/10.1080/03602559.2016.1163606
  • Reshmi, C. R., Sundaran, S. P., Juraij, A., and Athiyanathil, S. (2017). Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation. RSC Advances, 7(4), 2092– 2102. https://doi.org/10.1039/c6ra26123j
  • Reul, L. T. A., Pereira, C. A. B., Sousa, F. M., Santos, R. M., Carvalho, L. H., and Canedo, E. L. (2019). Polycaprolactone/babassu compounds: Rheological, thermal, and morphological characteristics. Polymer Composites, 40, E540– E549. https://doi.org/10.1002/pc.24861
  • Rhim, J. W., Park, H. M., and Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10– 11), 1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
  • Rodríguez-Sánchez, I. J., Rivera-Monroy, Z. J., García-Castañeda, J. E., Clavijo-Grimaldo, D., Fuenmayor, C. A., and Zuluaga-Domínguez, C. M. (2023). Multilayer polycaprolactone - pullulan nanofiber mats incorporated with the antimicrobial palindromic peptide LfcinB (21-25)Pal as a potential application in active packaging. Food Packaging and Shelf Life, 38(February). https://doi.org/10.1016/j.fpsl.2023.101110
  • Rodríguez-Sánchez, I. J., Vergara-Villa, N. F., Clavijo-Grimaldo, D., Fuenmayor, C. A., and Zuluaga-Domínguez, C. M. (2020). Ultrathin single and multiple layer electrospun fibrous membranes of polycaprolactone and polysaccharides. Journal of Bioactive and Compatible Polymers, 35(4–5), 351–362. https://doi.org/10.1177/0883911520944422
  • Rojas, A., Velásquez, E., Piña, C., Galotto, M. J., and López de Dicastillo, C. (2021). Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydrate Polymers, 261(February), 1–10. https://doi.org/10.1016/j.carbpol.2021.117849
  • Sachan, R., Warkar, S. G., and Purwar, R. (2023). An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. Polymer-Plastics Technology and Materials, 62(3), 327–358. https://doi.org/10.1080/25740881.2022.2113890
  • Sadeghi, A., Razavi, S. M. A., and Shaharampour, D. (2022). Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. International Journal of Biological Macromolecules, 205(October 2021), 341–356. https://doi.org/10.1016/j.ijbiomac.2022.02.070
  • Salmieri, S., and Lacroix, M. (2006). Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. Journal of Agricultural and Food Chemistry, 54(26), 10205–10214. https://doi.org/10.1021/jf062127z
  • Sanchez-Garcia, M. D., and Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188–199. https://doi.org/https://doi.org/10.1002/app.31986
  • Sanchez-Garcia, M. D., Ocio, M. J., Gimenez, E., and Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. Journal of Plastic Film and Sheeting, 24(3–4), 239–251. https://doi.org/10.1177/8756087908101539
  • Sarasam, A. R., Krishnaswamy, R. K., and Madihally, S. V. (2006). Blending chitosan with polycaprolactone: Effects on physicochemical and antibacterial properties. Biomacromolecules, 7(4), 1131–1138. https://doi.org/10.1021/bm050935d
  • Seyrek, M. E., Okur, M., and Saraçoğlu, N. (2021). Improvement of mechanical, thermal and antimicrobial properties of organically modified montmorillonite loaded polycaprolactone for food packaging. Journal of Vinyl and Additive Technology, 27(4), 894–908. https://doi.org/10.1002/vnl.21860
  • Shahrampour, D., Razavi, S. M. A., and Sadeghi, A. (2023). Evaluation of green tea extract incorporated antimicrobial/antioxidant/biodegradable films based on polycaprolactone/polylactic acid and its application in cocktail sausage preservation. Journal of Food Measurement and Characterization, 17(1), 1058–1067. https://doi.org/10.1007/s11694-022-01670-1
  • Shanbehzadeh, F., Saei-Dehkordi, S. S., and Semnani, D. (2022). Fabrication and characterization of electrospun nanofibrous mats of polycaprolactone/gelatin containing ZnO nanoparticles and cumin essential oil and their anti- staphylococcal potency in white cheese. Food Bioscience, 49(April), 101904. https://doi.org/10.1016/j.fbio.2022.101904
  • Shi, C., Zhou, A., Fang, D., Lu, T., Wang, J., Song, Y., Lyu, L., Wu, W., Huang, C., and Li, W. (2022). Oregano essential oil/β-cyclodextrin inclusion compound polylactic acid/polycaprolactone electrospun nanofibers for active food packaging. Chemical Engineering Journal, 445(November 2021), 136746. https://doi.org/10.1016/j.cej.2022.136746
  • Siracusa, V., Rocculi, P., Romani, S., and Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634–643. https://doi.org/10.1016/j.tifs.2008.07.003
  • Sogut, E., and Seydim, A. C. (2018). Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohydrate Polymers, 195(April), 180–188. https://doi.org/10.1016/j.carbpol.2018.04.071
  • Sogut, E., and Seydim, A. C. (2019). The effects of chitosan- and polycaprolactone-based bilayer films incorporated with grape seed extract and nanocellulose on the quality of chicken breast fillets. Lwt, 101(November 2018), 799–805. https://doi.org/10.1016/j.lwt.2018.11.097
  • Sogut, E., Seydim, A. C., and Chiralt, A. (2021). Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol. Journal of Polymer Research, 28(8). https://doi.org/10.1007/s10965-021-02685-w
  • Takala, P. N., Salmieri, S., Boumail, A., Khan, R. A., Vu, K. D., Chauve, G., Bouchard, J., and Lacroix, M. (2013). Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli. Journal of Food Engineering, 116(3), 648–655. https://doi.org/10.1016/j.jfoodeng.2013.01.005
  • Ullah, A., Sun, L., Wang, F. fei, Nawaz, H., Yamashita, K., Cai, Y., Anwar, F., Khan, M. Q., Mayakrishnan, G., and Kim, I. S. (2023). Eco- friendly bioactive β-caryophyllene/halloysite nanotubes loaded nanofibrous sheets for active food packaging. Food Packaging and Shelf Life, 35(September 2022), 101028. https://doi.org/10.1016/j.fpsl.2023.101028
  • Uzunlu, S., and Niranjan, K. (2017). Laboratory antimicrobial activity of cinnamaldehyde and pomegranate-based polycaprolactone films. Journal of Applied Polymer Science, 134(39), 1–9. https://doi.org/10.1002/app.45347
  • Wang, K., Lim, P. N., Tong, S. Y., and Thian, E. S. (2019). Development of grapefruit seed extract- loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 22(September), 100396. https://doi.org/10.1016/j.fpsl.2019.100396
  • Wu, C. S., and Liao, H. T. (2012). Polycaprolactone-based green renewable ecocomposites made from rice straw fiber: Characterization and assessment of mechanical and thermal properties. Industrial and Engineering Chemistry Research, 51(8), 3329–3337. https://doi.org/10.1021/ie202002p
  • Wu, Q., Ma, N., Liu, T., and Koranteng, E. (2019). Properties of Compatible Soy Protein Isolate/Polycaprolactone Composite with Special Interface Structure. Polymer Composites, 40, E383–E391. https://doi.org/10.1002/pc.24694
  • Yang, T., Zhan, L., and Huang, C. Z. (2020). Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. TrAC - Trends in Analytical Chemistry, 124. https://doi.org/10.1016/j.trac.2020.115813
  • Yang, Z., Peng, H., Wang, W., and Liu, T. (2010). Crystallization behavior of poly(ε- caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app
  • Yavari Maroufi, L., PourvatanDoust, S., Naeijian, F., and Ghorbani, M. (2022). Fabrication of Electrospun Polycaprolactone/Casein Nanofibers Containing Green Tea Essential Oils: Applicable for Active Food Packaging. Food and Bioprocess Technology, 15(11), 2601–2615. https://doi.org/10.1007/s11947-022-02905-1
  • Zhang, S., Campagne, C., and Salaün, F. (2019). Influence of solvent selection in the electrospraying process of polycaprolactone. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030402
  • Zhao, X., Shi, T. J., Liu, Y. Y., and Chen, L. J. (2022). Porphyrinic Metal-Organic Framework- Loaded Polycaprolactone Composite Films with a High Photodynamic Antibacterial Activity for the Preservation of Fresh-Cut Apples. ACS Applied Polymer Materials. https://doi.org/10.1021/acsapm.2c01667
  • Zou, Y., Sun, Y., Shi, W., Wan, B., and Zhang, H. (2023). Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chemistry, 399(August 2022), 133962. https://doi.org/10.1016/j.foodchem.2022.133962

Use of modified polycaprolactone polymer in food packaging applications: a review

Yıl 2024, Sayı: 32, 13 - 26, 22.07.2024
https://doi.org/10.56833/gidaveyem.1485689

Öz

Objective: Plastic production in the world is constantly increasing and plastics have been degraded in nature for many years. This situation turns into a major environmental disaster that people and living organisms will encounter. In addition, packaging films that can be applied to foods safely and extend the shelf life of foods with their functional properties are needed. Polycaprolactone (PCL) is a biodegradable polymer produced by synthetic processes and has been frequently investigated in food packaging studies in recent years. Due to its flexibility, biocompatibility and thermoplasticity, the use of PCL and its copolymers in packaging film applications is becoming widespread. Disadvantages such as low mechanical and thermal resistance can be eliminated by adding fillers, mixing with other polymers or using multi-layers. This study aims to compile recent studies on the use of PCL polymer modified by various methods as food packaging.
Conclusion: In the literature, there are many interesting studies on the making composite of PCL with different methods. Nanoclays to improve mechanical and gas barrier properties; nanometals and plant materials to impart antimicrobial properties; innovative additives such as oxygen scavengers, photosynthesizing agents, antimicrobial peptides are used in the modification of PCL. In this review, it was revealed that the modifications contribute to PCL polymer in terms of stiffness and gas barrier properties and add antimicrobial and antioxidant character to the polymer.

Kaynakça

  • Alonso-González, M., Corral-González, A., Felix, M., Romero, A., and Martin-Alfonso, J. E. (2020). Developing active poly(vinyl alcohol)-based membranes with encapsulated antimicrobial enzymes via electrospinning for food packaging. International Journal of Biological Macromolecules, 162, 913–921. https://doi.org/10.1016/j.ijbiomac.2020.06.217
  • Amini, E., Valls, C., and Roncero, M. B. (2023). Promising nanocomposites for food packaging based on cellulose – PCL films reinforced by using ZnO nanoparticles in an ionic liquid. Industrial Crops and Products, 193(December 2022), 116246. https://doi.org/10.1016/j.indcrop.2023.116246
  • Amorim, L. F. A., Fangueiro, R., and Gouveia, I. C. (2022). Novel functional material incorporating flexirubin-type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. Journal of Applied Polymer Science, 139(48), 1– 13. https://doi.org/10.1002/app.53208
  • Bartnikowski, M., Dargaville, T. R., Ivanovski, S., and Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1–20. https://doi.org/10.1016/j.progpolymsci.2019.05.004
  • Bastarrachea, L., Dhawan, S., and Sablani, S. S. (2011). Engineering Properties of Polymeric- Based Antimicrobial Films for Food Packaging. Food Engineering Reviews, 3(2), 79–93. https://doi.org/10.1007/s12393-011-9034-8
  • Beltrán, A., Valente, A. J. M., Jiménez, A., and Garrigós, M. C. (2014). Characterization of poly(ε- caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. Journal of Agricultural and Food Chemistry, 62(10), 2244– 2252. https://doi.org/10.1021/jf405111a
  • Benhacine, F., Ouargli, A., and Hadj-Hamou, A. S. (2019). Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/Ag-Kaolinite Nanocomposites with Controlled Release Properties. Polymer-Plastics Technology and Materials, 58(3), 328–340. https://doi.org/10.1080/03602559.2018.1471714
  • Bujok, S., Peter, J., Halecký, M., Ecorchard, P., Machálková, A., Santos Medeiros, G., Hodan, J., Pavlova, E., and Beneš, H. (2021). Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polymer Degradation and Stability, 190. https://doi.org/10.1016/j.polymdegradstab.2021.1 09625
  • Cai, Y., Guan, J., Wang, W., Wang, L., Su, J., and Fang, L. (2021). pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. Journal of Food Science, 86(8), 3550–3562. https://doi.org/10.1111/1750-3841.15839
  • Cai, Z., Shen, C., Deng, Z., Wu, D., and Chen, K. (2022). Solution blow spinning of multilayer polycaprolactone/curcumin-loaded gelatin/polycaprolactone nanofilm for slow release and bacterial inhibition. Food Hydrocolloids for Health, 2(December 2021). https://doi.org/10.1016/j.fhfh.2022.100062
  • Cao, Y., Shen, C., Yang, Z., Cai, Z., Deng, Z., and Wu, D. (2022). Polycaprolactone/polyvinyl pyrrolidone nanofibers developed by solution blow spinning for encapsulation of chlorogenic acid. Food Quality and Safety, 6(February), 1–10. https://doi.org/10.1093/fqsafe/fyac014
  • Carothers, W. H., G. Dorough, G. L. and Natta, F. V. (1932). Studies of polymerization and ring formation. X. The reversible polymerization of six- membered cyclic esters. Journal of the American Chemical Society, 54(5), 761–772.
  • Cesur, S. (2018). The Effects of Additives on the Biodegradation of Polycaprolactone Composites. Journal of Polymers and the Environment, 26(4), 1425–1444. https://doi.org/10.1007/s10924-017- 1029-y
  • Cesur, S., Köroğlu, C., and Yalçın, H. T. (2018). Antimicrobial and biodegradable food packaging applications of polycaprolactone/organo nanoclay/chitosan polymeric composite films. Journal of Vinyl and Additive Technology, 24(4), 376–387. https://doi.org/10.1002/vnl.21607
  • Chavalitpanya, K., and Phattanarudee, S. (2013). Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia, 34, 542–548. https://doi.org/10.1016/j.egypro.2013.06.783
  • Choi, I., Yoo, D. S., Chang, Y., Kim, S. Y., and Han, J. (2021). Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chemistry, 346(December 2020), 128883. https://doi.org/10.1016/j.foodchem.2020.128883
  • Correa, J. P., Molina, V., Sanchez, M., Kainz, C., Eisenberg, P., and Massani, M. B. (2017). Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging and Shelf Life, 11, 31–39. https://doi.org/10.1016/j.fpsl.2016.11.004
  • El-Naggar, M. E., Hasanin, M., and Hashem, A. H. (2022). Eco-Friendly Synthesis of Superhydrophobic Antimicrobial Film Based on Cellulose Acetate/Polycaprolactone Loaded with the Green Biosynthesized Copper Nanoparticles for Food Packaging Application. Journal of Polymers and the Environment, 30(5), 1820–1832. https://doi.org/10.1007/s10924-021-02318-9
  • Figueroa-Lopez, K. J., Castro-Mayorga, J. L., Andrade-Mahecha, M. M., Cabedo, L., and Lagaron, J. M. (2018). Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications. Nanomaterials, 8(4). https://doi.org/10.3390/nano8040199
  • Furquim, F. C., Santos, E. N., Mercante, L. A., Amaral, M. M., Pavinatto, A., and Rodrigues, B. V. M. (2020). Green and low-cost electrospun membranes from polycaprolactone/graphene oxide for Bisphenol A sensing. Materials Letters, 274, 128014. https://doi.org/10.1016/j.matlet.2020.128014
  • Gomes, A. C. D., Silva, K. F., Freitas, A. J., Miranda, K. W. E., Santos, T. A., Borges, S. V., Dias, M. V., and Thomazi, A. C. (2021). Effect of Surfactant on the Formation of Chitosan/ε- Polycaprolactone Blend Films for Food Packaging Applications. ResearchSquare. https://doi.org/10.21203/rs.3.rs-804708
  • Gorrasi, G., Bugatti, V., Viscusi, G., and Vittoria, V. (2021). Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process. Colloid and Polymer Science, 299(3), 429–437. https://doi.org/10.1007/s00396-020-04699-0
  • Guarás, M. P., Alvarez, V. A., and Ludueña, L. N. (2015). Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. Journal of Polymer Research, 22(9), 1–12. https://doi.org/10.1007/s10965-015-0817-0
  • Guarino, V., Gentile, G., Sorrentino, L., and Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology. https://doi.org/10.1002/0471440264.pst658
  • Guclu, N., Duzyer Gebizli, S., and Orhan, M. (2023). Development of polycaprolactone-based electrospun pH-sensitive sensors as instant colorimetric indicators for food packaging. Coloration Technology, November 2022, 1–17. https://doi.org/10.1111/cote.12701
  • Guo, W., Tao, J., Yang, C., Song, C., Geng, W., Li, Q., Wang, Y., Kong, M., and Wang, S. (2012). Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE, 7(5), 1–6. https://doi.org/10.1371/journal.pone.0038341
  • Harsojuwono, B. A., Arnata, I. W., Hartiati, A., Setiyo, Y., Hatiningsih, S., and Suriati, L. (2022). The Improvement of the Modified Starch-Glucomannan—Polyvinyl Alcohol Biothermoplastic Composite Characteristics With Polycaprolactone and Anhydride Maleic Acid. Frontiers in Sustainable Food Systems, 6(March), 1–13. https://doi.org/10.3389/fsufs.2022.844485
  • Holešová, S., Čech Barabaszová, K., Hundáková, M., Ščuková, M., Hrabovská, K., Joszko, K., Antonowicz, M., and Gzik-Zroska, B. (2021). Development of novel thin polycaprolactone (PCL)/clay nanocomposite films with antimicrobial activity promoted by the study of mechanical, thermal, and surface properties. Polymers, 13(18). https://doi.org/10.3390/polym13183193
  • İlaslan, K., Tornuk, F., and Durak, M. Z. (2022). Development of polycaprolactone biodegradable films reinforced with silver-doped organoclay and effect on the microbiological quality of ground beef meat. Journal of Food Processing and Preservation, 46(10), 1–14. https://doi.org/10.1111/jfpp.16862
  • Ilyas, R. A., Zuhri, M. Y. M., Norrrahim, M. N. F., Misenan, M. S. M., Jenol, M. A., Samsudin, S. A., Nurazzi, N. M., Asyraf, M. R. M., Supian, A. B. M., Bangar, S. P., Nadlene, R., Sharma, S., and Omran, A. A. B. (2022). Natural Fiber-Reinforced Polycaprolactone Biocomposites Applications. https://doi.org/10.3390/polym14010182 Green and Hybrid for Various Polymers, 14(1), Advanced 1–28.
  • Jeong, S., Lee, H. G., Cho, C. H., and Yoo, S. R. (2020). Characterization of multi-functional, biodegradable sodium metabisulfite-incorporated films based on polycarprolactone for active food packaging applications. Food Packaging and Shelf Life, 25(April), 100512. https://doi.org/10.1016/j.fpsl.2020.100512
  • Khalid, S., Yu, L., Feng, M., Meng, L., Bai, Y., Ali, A., Liu, H., and Chen, L. (2018). Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life, 18(March), 71–79. https://doi.org/10.1016/j.fpsl.2018.08.008
  • Khatiwala, V. K., Shekhar, N., Aggarwal, S., and Mandal, U. K. (2008). Biodegradation of Poly(ε- caprolactone) (PCL) Film by Alcaligenes faecalis. Journal of Polymers and the Environment, 16(1), 61–67. https://doi.org/10.1007/s10924-008-0104-9
  • Khodanazary, A. (2019). Quality characteristics of refrigerated mackerel Scomberomorus commerson using gelatin-polycaprolactone composite film incorporated with lysozyme and pomegranate peel extract. International Journal of Food Properties, 22(1), 2056–2070. https://doi.org/10.1080/10942912.2019.1702997
  • Kılınç, M., Tomar, O., and Çağlar, A. (2017). Biodegradable Food Packaging Materials. Afyon Kocatepe University Journal of Sciences and Engineering, 17(3), 988–996. https://doi.org/10.5578/fmbd.66307
  • Labet, M., and Thielemans, W. (2009). Synthesis of polycaprolactone: A review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/b820162p
  • Lee, J.-E., and Kim, K. M. (2010). Characteristics of soy protein isolate-montmorillonite composite films. Journal of Applied Polymer Science, 118(4), 2257–2263. https://doi.org/https://doi.org/10.1002/app.31316
  • Li, T., Zhang, X., Mei, J., Cui, F., Wang, D., and Li, J. (2022). Preparation of Linanool/Polycaprolactone Coaxial Electrospinning Film and Application in Preserving Salmon Slices. Frontiers in Microbiology, 13(April). https://doi.org/10.3389/fmicb.2022.860123
  • Mahieu, A., Terrie, C., and Leblanc, N. (2017). Research Article. Role of ascorbic acid and iron in mechanical and oxygen absorption properties of starch and polycaprolactone multilayer film. Packaging Research, 2(1), 1–11. https://doi.org/10.1515/pacres-2017-0001
  • Mahieu, A., Terrié, C., and Youssef, B. (2015). Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen- scavenging properties: Influence of water content. Industrial Crops and Products, 72, 192–199. https://doi.org/10.1016/j.indcrop.2014.11.037
  • Makino, Y., and Hirata, T. (1997). Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biology and Technology, 10(3), 247–254. https://doi.org/10.1016/S0925-5214(96)01402-0
  • Malik, N. (2022). Thermally exfoliated graphene oxide reinforced polycaprolactone-based bactericidal nanocomposites for food packaging applications. Materials Technology, 37(5), 345– 354. https://doi.org/10.1080/10667857.2020.1842150
  • Maroju, P. A., Tata, P., Balapure, A., Ray Dutta, J., and Ganesan, R. (2021). Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme and Microbial Technology, 150(July), 1–7. https://doi.org/10.1016/j.enzmictec.2021.109888
  • Mathiazhagan, S., Periasamy, V., and Vadivel, A. (2021). Ecofriendly antimicrobial Acalypha indica leaf extract immobilized polycaprolactone nanofibrous mat for food package applications. Journal of Food Processing and Preservation, 45(4), 1–12. https://doi.org/10.1111/jfpp.15302
  • Mohamed, R. M., and Yusoh, K. (2015). A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 1134, 249– 255. https://doi.org/10.4028/www.scientific.net/amr.11 34.249
  • Mugwagwa, L. R., and Chimphango, A. F. A. (2020). Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packaging and Shelf Life, 24(August 2019), 100481. https://doi.org/10.1016/j.fpsl.2020.100481
  • Muñoz-Bonilla, A., Cerrada, M. L., Fernández- García, M., Kubacka, A., Ferrer, M., and Fernández-García, M. (2013). Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. International Journal of Molecular Sciences, 14(5), 9249–9266. https://doi.org/10.3390/ijms14059249
  • Lim, B. K. H., and Thian, E. S. (2022). Effects of molecular weight of chitosan in a blend with polycaprolactone and grapefruit seed extract for active packaging and biodegradation. Food Packaging and Shelf Life, 34(March), 100931. https://doi.org/10.1016/j.fpsl.2022.100931
  • Lin, W., Ni, Y., and Pang, J. (2020). Size effect- inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. International Journal of Biological Macromolecules, 149, 853–860. https://doi.org/10.1016/j.ijbiomac.2020.01.242
  • Lins, L. C., Bugatti, V., Livi, S., and Gorrasi, G. (2018). Ionic liquid as surfactant agent of hydrotalcite: Influence on the final properties of polycaprolactone matrix. Polymers, 10(1). https://doi.org/10.3390/polym10010044
  • Ludueña, L. N., Kenny, J. M., Vázquez, A., and Alvarez, V. A. (2011). Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Materials Science and Engineering A, 529(1), 215–223. https://doi.org/10.1016/j.msea.2011.09.020
  • Fernández-García, M. (2013). Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. International Journal of Molecular Sciences, 14(5), 9249–9266. https://doi.org/10.3390/ijms14059249
  • Nabati, S., Aminzare, M., Roohinejad, S., Hassanzad Azar, H., Mohseni, M., Greiner, R., and Tahergorabi, R. (2023). Electrospun polycaprolactone nanofiber containing Ganoderma lucidum extract to improve chemical and microbial stability of rainbow trout fillets during storage at 4°C. Food Control, 150(November 2022), 109777. https://doi.org/10.1016/j.foodcont.2023.109777
  • Núñez-Gastélum, J. A., Rodríguez-Núñez, J. R., de la Rosa, L. A., Díaz-Sánchez, A. G., Alvarez- Parrilla, E., Martínez-Martínez, A., and Villa- Lerma, G. (2019). Screening of The Physical and Structural Properties of Chitosan-Polycaprolactone Films Added with Moringa Oleifera Leaf Extract. Revista Mexicana de Ingeniería Química, 18(1), 99–105. https://doi.org/10.24275/uam/izt/dcbi/revmexingq uim/2019v18n1/Nunez
  • Ortega-Toro, R., Morey, I., Talens, P., and Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290. https://doi.org/10.1016/j.carbpol.2015.03.080
  • Ortega-Toro, R., Muñoz, A., Talens, P., and Chiralt, A. (2016). Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocolloids, 56, 9–19. https://doi.org/10.1016/j.foodhyd.2015.11.029
  • Paula, M., Diego, I., Dionisio, R., Vinhas, G., and Alves, S. (2019). Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polimeros, 29(1), 1–7. https://doi.org/10.1590/0104-1428.04018
  • Pineros-Guerrero, N. Marsiglia-Fuentes, R., and Ortega-Toro, R. (2021). Improvement of the physicochemical properties of composite materials based on cassava starch and polycaprolactone reinforced with sodium montmorillonite. Revista Mexicana de Ingeniera Quimica, 20(3). https://doi.org/10.24275/rmiq/Alim2416
  • Piri, H., Moradi, S., and Amiri, R. (2021). The fabrication of a novel film based on polycaprolactone incorporated with chitosan and rutin: potential as an antibacterial carrier for rainbow trout packaging. Food Science and Biotechnology, 30(5), 683–690. https://doi.org/10.1007/s10068-021-00898-9
  • Reis, R. S., Souza, D. de H. S., Marques, M. de F. V., da Luz, F. S., and Monteiro, S. N. (2021). Novel bionanocomposite of polycaprolactone reinforced with steam-exploded microfibrillated cellulose modified with ZnO. Journal of Materials Research and Technology, 13, 1324–1335. https://doi.org/10.1016/j.jmrt.2021.05.043
  • Rešček, A., Ščetar, M., Hrnjak-Murgić, Z., Dimitrov, N., and Galić, K. (2016). Polyethylene/Polycaprolactone Nanocomposite Films for Food Packaging Modified with Magnetite and Casein: Oxygen Barrier, Mechanical, and Thermal Properties. Polymer - Plastics Technology and Engineering, 55(14), 1450–1459. https://doi.org/10.1080/03602559.2016.1163606
  • Reshmi, C. R., Sundaran, S. P., Juraij, A., and Athiyanathil, S. (2017). Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation. RSC Advances, 7(4), 2092– 2102. https://doi.org/10.1039/c6ra26123j
  • Reul, L. T. A., Pereira, C. A. B., Sousa, F. M., Santos, R. M., Carvalho, L. H., and Canedo, E. L. (2019). Polycaprolactone/babassu compounds: Rheological, thermal, and morphological characteristics. Polymer Composites, 40, E540– E549. https://doi.org/10.1002/pc.24861
  • Rhim, J. W., Park, H. M., and Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10– 11), 1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008
  • Rodríguez-Sánchez, I. J., Rivera-Monroy, Z. J., García-Castañeda, J. E., Clavijo-Grimaldo, D., Fuenmayor, C. A., and Zuluaga-Domínguez, C. M. (2023). Multilayer polycaprolactone - pullulan nanofiber mats incorporated with the antimicrobial palindromic peptide LfcinB (21-25)Pal as a potential application in active packaging. Food Packaging and Shelf Life, 38(February). https://doi.org/10.1016/j.fpsl.2023.101110
  • Rodríguez-Sánchez, I. J., Vergara-Villa, N. F., Clavijo-Grimaldo, D., Fuenmayor, C. A., and Zuluaga-Domínguez, C. M. (2020). Ultrathin single and multiple layer electrospun fibrous membranes of polycaprolactone and polysaccharides. Journal of Bioactive and Compatible Polymers, 35(4–5), 351–362. https://doi.org/10.1177/0883911520944422
  • Rojas, A., Velásquez, E., Piña, C., Galotto, M. J., and López de Dicastillo, C. (2021). Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydrate Polymers, 261(February), 1–10. https://doi.org/10.1016/j.carbpol.2021.117849
  • Sachan, R., Warkar, S. G., and Purwar, R. (2023). An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. Polymer-Plastics Technology and Materials, 62(3), 327–358. https://doi.org/10.1080/25740881.2022.2113890
  • Sadeghi, A., Razavi, S. M. A., and Shaharampour, D. (2022). Fabrication and characterization of biodegradable active films with modified morphology based on polycaprolactone-polylactic acid-green tea extract. International Journal of Biological Macromolecules, 205(October 2021), 341–356. https://doi.org/10.1016/j.ijbiomac.2022.02.070
  • Salmieri, S., and Lacroix, M. (2006). Physicochemical properties of alginate/polycaprolactone-based films containing essential oils. Journal of Agricultural and Food Chemistry, 54(26), 10205–10214. https://doi.org/10.1021/jf062127z
  • Sanchez-Garcia, M. D., and Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188–199. https://doi.org/https://doi.org/10.1002/app.31986
  • Sanchez-Garcia, M. D., Ocio, M. J., Gimenez, E., and Lagaron, J. M. (2008). Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. Journal of Plastic Film and Sheeting, 24(3–4), 239–251. https://doi.org/10.1177/8756087908101539
  • Sarasam, A. R., Krishnaswamy, R. K., and Madihally, S. V. (2006). Blending chitosan with polycaprolactone: Effects on physicochemical and antibacterial properties. Biomacromolecules, 7(4), 1131–1138. https://doi.org/10.1021/bm050935d
  • Seyrek, M. E., Okur, M., and Saraçoğlu, N. (2021). Improvement of mechanical, thermal and antimicrobial properties of organically modified montmorillonite loaded polycaprolactone for food packaging. Journal of Vinyl and Additive Technology, 27(4), 894–908. https://doi.org/10.1002/vnl.21860
  • Shahrampour, D., Razavi, S. M. A., and Sadeghi, A. (2023). Evaluation of green tea extract incorporated antimicrobial/antioxidant/biodegradable films based on polycaprolactone/polylactic acid and its application in cocktail sausage preservation. Journal of Food Measurement and Characterization, 17(1), 1058–1067. https://doi.org/10.1007/s11694-022-01670-1
  • Shanbehzadeh, F., Saei-Dehkordi, S. S., and Semnani, D. (2022). Fabrication and characterization of electrospun nanofibrous mats of polycaprolactone/gelatin containing ZnO nanoparticles and cumin essential oil and their anti- staphylococcal potency in white cheese. Food Bioscience, 49(April), 101904. https://doi.org/10.1016/j.fbio.2022.101904
  • Shi, C., Zhou, A., Fang, D., Lu, T., Wang, J., Song, Y., Lyu, L., Wu, W., Huang, C., and Li, W. (2022). Oregano essential oil/β-cyclodextrin inclusion compound polylactic acid/polycaprolactone electrospun nanofibers for active food packaging. Chemical Engineering Journal, 445(November 2021), 136746. https://doi.org/10.1016/j.cej.2022.136746
  • Siracusa, V., Rocculi, P., Romani, S., and Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science and Technology, 19(12), 634–643. https://doi.org/10.1016/j.tifs.2008.07.003
  • Sogut, E., and Seydim, A. C. (2018). Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohydrate Polymers, 195(April), 180–188. https://doi.org/10.1016/j.carbpol.2018.04.071
  • Sogut, E., and Seydim, A. C. (2019). The effects of chitosan- and polycaprolactone-based bilayer films incorporated with grape seed extract and nanocellulose on the quality of chicken breast fillets. Lwt, 101(November 2018), 799–805. https://doi.org/10.1016/j.lwt.2018.11.097
  • Sogut, E., Seydim, A. C., and Chiralt, A. (2021). Development of chitosan/cycloolefin copolymer and chitosan/polycaprolactone active bilayer films incorporated with grape seed extract and carvacrol. Journal of Polymer Research, 28(8). https://doi.org/10.1007/s10965-021-02685-w
  • Takala, P. N., Salmieri, S., Boumail, A., Khan, R. A., Vu, K. D., Chauve, G., Bouchard, J., and Lacroix, M. (2013). Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli. Journal of Food Engineering, 116(3), 648–655. https://doi.org/10.1016/j.jfoodeng.2013.01.005
  • Ullah, A., Sun, L., Wang, F. fei, Nawaz, H., Yamashita, K., Cai, Y., Anwar, F., Khan, M. Q., Mayakrishnan, G., and Kim, I. S. (2023). Eco- friendly bioactive β-caryophyllene/halloysite nanotubes loaded nanofibrous sheets for active food packaging. Food Packaging and Shelf Life, 35(September 2022), 101028. https://doi.org/10.1016/j.fpsl.2023.101028
  • Uzunlu, S., and Niranjan, K. (2017). Laboratory antimicrobial activity of cinnamaldehyde and pomegranate-based polycaprolactone films. Journal of Applied Polymer Science, 134(39), 1–9. https://doi.org/10.1002/app.45347
  • Wang, K., Lim, P. N., Tong, S. Y., and Thian, E. S. (2019). Development of grapefruit seed extract- loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 22(September), 100396. https://doi.org/10.1016/j.fpsl.2019.100396
  • Wu, C. S., and Liao, H. T. (2012). Polycaprolactone-based green renewable ecocomposites made from rice straw fiber: Characterization and assessment of mechanical and thermal properties. Industrial and Engineering Chemistry Research, 51(8), 3329–3337. https://doi.org/10.1021/ie202002p
  • Wu, Q., Ma, N., Liu, T., and Koranteng, E. (2019). Properties of Compatible Soy Protein Isolate/Polycaprolactone Composite with Special Interface Structure. Polymer Composites, 40, E383–E391. https://doi.org/10.1002/pc.24694
  • Yang, T., Zhan, L., and Huang, C. Z. (2020). Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. TrAC - Trends in Analytical Chemistry, 124. https://doi.org/10.1016/j.trac.2020.115813
  • Yang, Z., Peng, H., Wang, W., and Liu, T. (2010). Crystallization behavior of poly(ε- caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app
  • Yavari Maroufi, L., PourvatanDoust, S., Naeijian, F., and Ghorbani, M. (2022). Fabrication of Electrospun Polycaprolactone/Casein Nanofibers Containing Green Tea Essential Oils: Applicable for Active Food Packaging. Food and Bioprocess Technology, 15(11), 2601–2615. https://doi.org/10.1007/s11947-022-02905-1
  • Zhang, S., Campagne, C., and Salaün, F. (2019). Influence of solvent selection in the electrospraying process of polycaprolactone. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030402
  • Zhao, X., Shi, T. J., Liu, Y. Y., and Chen, L. J. (2022). Porphyrinic Metal-Organic Framework- Loaded Polycaprolactone Composite Films with a High Photodynamic Antibacterial Activity for the Preservation of Fresh-Cut Apples. ACS Applied Polymer Materials. https://doi.org/10.1021/acsapm.2c01667
  • Zou, Y., Sun, Y., Shi, W., Wan, B., and Zhang, H. (2023). Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chemistry, 399(August 2022), 133962. https://doi.org/10.1016/j.foodchem.2022.133962
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Kerem İlaslan 0000-0001-9789-6437

Yayımlanma Tarihi 22 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 32

Kaynak Göster

APA İlaslan, K. (2024). Use of modified polycaprolactone polymer in food packaging applications: a review. Gıda Ve Yem Bilimi Teknolojisi Dergisi(32), 13-26. https://doi.org/10.56833/gidaveyem.1485689

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0