Research Article
BibTex RIS Cite

Biomimetic Underground Digging Robot Design

Year 2024, Volume: 10 Issue: 2, 391 - 404, 31.08.2024

Abstract

The field of robotics has long been inspired by notable adaptations and functionalities found in nature, leading to the development of biomimetic designs that mimic the abilities of living organisms. The design of underground excavation robots and various applications has been approached with a biomimetic perspective, offering numerous alternatives for innovation and new product development. These robots draw inspiration from a wide range of animals, including mammals, insects, and crustaceans, to develop effective excavation techniques and adaptability to complex underground environments. In this study, solutions for excavation tasks are presented, drawing inspiration from the armadillo. The robot mimics the unique anatomical structure of the armadillo and its digging function to perform effective and efficient excavation. The armadillo's ability to move rapidly and effectively underground serves as a primary inspiration for the robot's design. This study provides a detailed look into the design principles and methodologies used in the development of biomimetic underground excavation robots, demonstrating their potential utility in underground exploration, mining, and various other subterranean activities.

References

  • [1] J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, et al. ‘‘A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems,’’ Reports on Progress in Physics, vol.79, 2016. doi:10.1088/0034-4885/79/11/110001
  • [2] Vincent, F. V. Julian "Biomimetics: its practice and theory," Journal of the Royal Society Interface, vol.3, no.9, pp. 471-482, April 2006. doi:10.1098/rsif.2006.0127
  • [3] E. A. Favret and N. O. Fuentes, Functional Properties of Biological Surfaces, Argentina December 2009. doi:10.1142/7109
  • [4] Y. F. Lin, A. Chappuis, S. Rice, and E. R. Dumont, ‘‘The Effects Of Soil Compactness On The Burrowing Performance Of Sympatric Eastern And Hairy Tailed Moles,’’ Journal of Zoology, 1-10. 2016. doi:10.1111/jzo.12418
  • [5] M. Hildebrand, D. Bramble, K. Liem and D. Wake (Ed.), Functional Vertebrate Morphology, Chapter 6. Digging of Quadrupeds. Cambridge, MA and London, England: Harvard University Press, 1985, pp. 89-109. doi:10.4159/harvard.9780674184404.c6
  • [6] S. Ganguly, ‘‘Pangolin- Zoological Characteristics and Its Uniqueness In Mammalian Group,’’ Journal of Entomology and Zoology Studies, vol.1, no.1, pp.1-2, 2013.
  • [7] C. Xangxu, X. Ning, W. Yuming, R. Luquan, X. Xiaobo, C. Bingcong and L. Angi, ‘‘Constitution Of Pangolin Scales And Mechanism Of Reducing Adhesion Of Soil to Their Cuticle,’’ Transactions of the Chinese Society of Agricultural Engineering, vol. 6, no.3, pp.15-22, 1990.
  • [8] B. Wang, W. Yang, V. R. Sherman and M. A. Meyers, ‘‘Pangolin Armor: Overlapping, Structure and Mechanical Properties of The Keratinous Scales,’’ Acta Biomaterialia, vol.41, pp.60-74. 2016. doi:10.1016/j.actbio.2016.05.028
  • [9] W. F. Taber, ‘‘Contribution of the life history and ecology of the nine-banded armadillo,’’ Journal of Mammalogy, vol.26, no.3, pp.211-226, 1945.
  • [10] C. Medina, J. H. Camacho-Tamayo, and C. A. Cortés, ‘‘Soil penetration resistance analysis by multivariate and geostatistical methods’,’ Engenharia Agrícola, vol.32, no.1, pp.91–101, 2012. doi:10.1590/S0100-69162012000100010
  • [11] E. R. Trueman, ‘‘The Mechanism of Burrowing of the Mole Crab, Emerita,’’ Journal of Experimental Biology, vol.53, no.3, pp. 701–710, December 1970. doi:10.1242/jeb.53.3.701
  • [12] P. Vartholomeos et al., "Modeling, Gait Sequence Design, and Control Architecture of BADGER Underground Robot," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1160-1167, April 2021. doi:10.1109/LRA.2021.3056068
  • [13] T. Nakatake, M. Konno, A. Mizushina, Y. Yamada, T. Nakamura and T. Kubota, "Soil circulating system for a lunar subsurface explorer robot using a peristaltic crawling mechanism," 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 2016, pp. 407-412. doi:10.1109/AIM.2016.7576801
  • [14] J. Lee, C. Tirtawardhana, H. W. Jang, J.-W. Hong and H. Myung, "Concept Design of a Novel Bio-Inspired Drilling System for Shallow Drilling," 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 1276-1280, 2019. doi:10.23919/ICCAS47443.2019.8971518
  • [15] L. K. Treers, B. McInroe, R. J. Full and H. S. Stuart, ‘‘Mole crab-inspired vertical self-burrowing,’’ Front. Robot. AI. Sec. Bio-Inspired Robotics, vol.9, October 2022. doi:10.3389/frobt.2022.999392
  • [16] F. V. Vincent Julian, A. Bogatyreva Olga, R. Bogatyrev Nikolaj, Bowyer Adrian and Pahl Anja-Karina, ‘‘Biomimetics: its practice and theory,’’ J. R. Soc. Interface, vol.3 pp.471–482. doi:10.1098/rsif.2006.0127
  • [17] H. Doruk, “Tasarımda Doğanın Bilgisinden Yararlanmak: Biyomimikri”, markut.net, Ekim 2020. [Online]. Avaliable: https://markut.net/sayi-2/biyomimikri-nedir-tasarimda-dogadan-yararlanmak/ [Erişim: 19 Ekim 2023]
  • [18] H. Yıldız, ‘‘Endüstri Ürünleri Tasarımı Kapsamında Biyomimetik Tasarımın Yeri ve Metodolojisi,’’ Yüksek lisans tezi, Endüstri Ürünleri Tasarımı Programı, İTÜ, İstanbul, Türkiye, Ocak 2012.
  • [19] M. Helms, S. S. Vattam, and Ak. K. Goel, ‘‘Biologically inspired design: process and products,’’ Design Studies, vol.30 no.5, pp. 606–622, September 2009. doi:10.1016/j.destud.2009.04.003
  • [20] “Biomimicry toolbox”. [Online]. Avaliable: https://toolbox.biomimicry.org/ [Erişim 25 Eylül 2023]
  • [21] F. E. Sotiropoulos, ‘‘Methods for Control in Robotic Excavation,’’ Doctoral thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, May 2021.
  • [22] Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino and Todd A. Ehlers, ‘‘Reviews and syntheses: Composition and characteristics of burrowing animals along a climate and ecological gradient, Chile,’’ Biogeosciences, vol.18, 2021. doi:10.5194/bg-18-5573-2021
  • [23] S. F. Vizcaíno and N. Milne, ‘‘Armadillos: Xenarthrans showing an alternative pattern of locomotion,’’ Armadillos: The World’s Most Specialized Land Mammals, pp.71-88, 2002.
  • [24] G. P. Clerici, P. S. Rosa, F. R. Costa, ‘‘Descrıptıon of dıggıng behavıor ın armadıllos dasypus novemcinctus (xenarthra: dasypodıdae),’’ Mastozoología Neotropical, vol.25, no.2, pp.283-291, 2018. doi:10.31687/saremMN.18.25.2.0.04

Biyomimetik Tabanlı Toprak Altı Kazma Robot Tasarımı

Year 2024, Volume: 10 Issue: 2, 391 - 404, 31.08.2024

Abstract

Robotik alanı, uzun süredir doğanın dikkate değer adaptasyonlarından ve işlevselliklerinden ilham almış ve canlı organizmaların yeteneklerini taklit eden biyomimetik tasarımların geliştirilmesine yol açmıştır. Yeraltı kazı ve farklı uygulamaları için ihtiyaç duyulan bu robotların biyomimetik yaklaşım ile tasarlanması ve benzeri çalışmalar alternatif inovasyon ve yeni ürün geliştirmeye yönelik çalışmalarda birçok alternatifi kullanıma sunmuştur. Bu robotlar, etkili kazma tekniklerini ve karmaşık yer altı ortamlarına uyum sağlama yeteneklerini geliştirmek için memeliler, böcekler ve kabuklular da dahil olmak üzere yer altı ve yer üstü çok çeşitli hayvanlardan ilham alınmaktadır. Yapılan bu çalışmada armadillo canlısından ilham alarak kazma işlemleri için çözümler sunmaktadır. Robot, armadillonun benzersiz anatomik yapısı ve toprak altında kazıma işlevini taklit ederek etkili ve verimli bir kazma işlemini gerçekleştirmektedir. Armadillonun toprak altındaki hızlı ve etkili ilerleyebilme yeteneği, robotun tasarımında temel bir ilham kaynağıdır. Yapılan çalışmada biyomimetik yer altı kazma robotlarının geliştirilmesinde kullanılan tasarım ilkeleri ve metodolojilerine detaylı bir bakış sunarak, yer altı keşfi, madencilik ve bunların dışında birçok yeraltı çalışmalarında kullanılabilir oldukları ortaya konmuştur.

References

  • [1] J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. McInroe, N. Mazouchova, et al. ‘‘A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems,’’ Reports on Progress in Physics, vol.79, 2016. doi:10.1088/0034-4885/79/11/110001
  • [2] Vincent, F. V. Julian "Biomimetics: its practice and theory," Journal of the Royal Society Interface, vol.3, no.9, pp. 471-482, April 2006. doi:10.1098/rsif.2006.0127
  • [3] E. A. Favret and N. O. Fuentes, Functional Properties of Biological Surfaces, Argentina December 2009. doi:10.1142/7109
  • [4] Y. F. Lin, A. Chappuis, S. Rice, and E. R. Dumont, ‘‘The Effects Of Soil Compactness On The Burrowing Performance Of Sympatric Eastern And Hairy Tailed Moles,’’ Journal of Zoology, 1-10. 2016. doi:10.1111/jzo.12418
  • [5] M. Hildebrand, D. Bramble, K. Liem and D. Wake (Ed.), Functional Vertebrate Morphology, Chapter 6. Digging of Quadrupeds. Cambridge, MA and London, England: Harvard University Press, 1985, pp. 89-109. doi:10.4159/harvard.9780674184404.c6
  • [6] S. Ganguly, ‘‘Pangolin- Zoological Characteristics and Its Uniqueness In Mammalian Group,’’ Journal of Entomology and Zoology Studies, vol.1, no.1, pp.1-2, 2013.
  • [7] C. Xangxu, X. Ning, W. Yuming, R. Luquan, X. Xiaobo, C. Bingcong and L. Angi, ‘‘Constitution Of Pangolin Scales And Mechanism Of Reducing Adhesion Of Soil to Their Cuticle,’’ Transactions of the Chinese Society of Agricultural Engineering, vol. 6, no.3, pp.15-22, 1990.
  • [8] B. Wang, W. Yang, V. R. Sherman and M. A. Meyers, ‘‘Pangolin Armor: Overlapping, Structure and Mechanical Properties of The Keratinous Scales,’’ Acta Biomaterialia, vol.41, pp.60-74. 2016. doi:10.1016/j.actbio.2016.05.028
  • [9] W. F. Taber, ‘‘Contribution of the life history and ecology of the nine-banded armadillo,’’ Journal of Mammalogy, vol.26, no.3, pp.211-226, 1945.
  • [10] C. Medina, J. H. Camacho-Tamayo, and C. A. Cortés, ‘‘Soil penetration resistance analysis by multivariate and geostatistical methods’,’ Engenharia Agrícola, vol.32, no.1, pp.91–101, 2012. doi:10.1590/S0100-69162012000100010
  • [11] E. R. Trueman, ‘‘The Mechanism of Burrowing of the Mole Crab, Emerita,’’ Journal of Experimental Biology, vol.53, no.3, pp. 701–710, December 1970. doi:10.1242/jeb.53.3.701
  • [12] P. Vartholomeos et al., "Modeling, Gait Sequence Design, and Control Architecture of BADGER Underground Robot," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1160-1167, April 2021. doi:10.1109/LRA.2021.3056068
  • [13] T. Nakatake, M. Konno, A. Mizushina, Y. Yamada, T. Nakamura and T. Kubota, "Soil circulating system for a lunar subsurface explorer robot using a peristaltic crawling mechanism," 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 2016, pp. 407-412. doi:10.1109/AIM.2016.7576801
  • [14] J. Lee, C. Tirtawardhana, H. W. Jang, J.-W. Hong and H. Myung, "Concept Design of a Novel Bio-Inspired Drilling System for Shallow Drilling," 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 1276-1280, 2019. doi:10.23919/ICCAS47443.2019.8971518
  • [15] L. K. Treers, B. McInroe, R. J. Full and H. S. Stuart, ‘‘Mole crab-inspired vertical self-burrowing,’’ Front. Robot. AI. Sec. Bio-Inspired Robotics, vol.9, October 2022. doi:10.3389/frobt.2022.999392
  • [16] F. V. Vincent Julian, A. Bogatyreva Olga, R. Bogatyrev Nikolaj, Bowyer Adrian and Pahl Anja-Karina, ‘‘Biomimetics: its practice and theory,’’ J. R. Soc. Interface, vol.3 pp.471–482. doi:10.1098/rsif.2006.0127
  • [17] H. Doruk, “Tasarımda Doğanın Bilgisinden Yararlanmak: Biyomimikri”, markut.net, Ekim 2020. [Online]. Avaliable: https://markut.net/sayi-2/biyomimikri-nedir-tasarimda-dogadan-yararlanmak/ [Erişim: 19 Ekim 2023]
  • [18] H. Yıldız, ‘‘Endüstri Ürünleri Tasarımı Kapsamında Biyomimetik Tasarımın Yeri ve Metodolojisi,’’ Yüksek lisans tezi, Endüstri Ürünleri Tasarımı Programı, İTÜ, İstanbul, Türkiye, Ocak 2012.
  • [19] M. Helms, S. S. Vattam, and Ak. K. Goel, ‘‘Biologically inspired design: process and products,’’ Design Studies, vol.30 no.5, pp. 606–622, September 2009. doi:10.1016/j.destud.2009.04.003
  • [20] “Biomimicry toolbox”. [Online]. Avaliable: https://toolbox.biomimicry.org/ [Erişim 25 Eylül 2023]
  • [21] F. E. Sotiropoulos, ‘‘Methods for Control in Robotic Excavation,’’ Doctoral thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, May 2021.
  • [22] Kirstin Übernickel, Jaime Pizarro-Araya, Susila Bhagavathula, Leandro Paulino and Todd A. Ehlers, ‘‘Reviews and syntheses: Composition and characteristics of burrowing animals along a climate and ecological gradient, Chile,’’ Biogeosciences, vol.18, 2021. doi:10.5194/bg-18-5573-2021
  • [23] S. F. Vizcaíno and N. Milne, ‘‘Armadillos: Xenarthrans showing an alternative pattern of locomotion,’’ Armadillos: The World’s Most Specialized Land Mammals, pp.71-88, 2002.
  • [24] G. P. Clerici, P. S. Rosa, F. R. Costa, ‘‘Descrıptıon of dıggıng behavıor ın armadıllos dasypus novemcinctus (xenarthra: dasypodıdae),’’ Mastozoología Neotropical, vol.25, no.2, pp.283-291, 2018. doi:10.31687/saremMN.18.25.2.0.04
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Machine Design and Machine Equipment, Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Adnan Akkurt 0000-0002-0622-1352

Ceyda Doğu 0000-0001-5407-5209

Early Pub Date July 4, 2024
Publication Date August 31, 2024
Submission Date November 21, 2023
Acceptance Date June 28, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE A. Akkurt and C. Doğu, “Biyomimetik Tabanlı Toprak Altı Kazma Robot Tasarımı”, GJES, vol. 10, no. 2, pp. 391–404, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg