Review
BibTex RIS Cite

Performance assessment of photovoltaic and photovoltaic/thermal systems under the impact of shadowing

Year 2024, Volume: 10 Issue: 2, 206 - 224, 31.08.2024

Abstract

The rapid depletion of energy resources makes it necessary to turn to renewable energy sources. At this point, it is one of the most popular energy sources, especially with its solar potential. Photovoltaic thermal (PV/T) systems, which allow benefiting from thermal energy as well as modules that can produce electricity with direct photovoltaic (PV) systems, have made rapid progress in recent years. In this study, basic dynamics are tried to be determined by highlighting the basic parameters that affect the performance of PV and PV/T systems. In addition, the shading effect, which is quite common in applications, is discussed. Then, the studies, which increase the performance of the systems, are included together and the opportunity to compare the studies is presented. With innovative approaches, it is seen that good results can be obtained even at smaller scales with different applications of PV systems. With combined systems, the applicability in buildings is analysed by providing both electricity generation and thermal benefits in small-area applications.

References

  • [1] P. M. Cuce, H. Sen, and E. Cuce, “Impact of tower diameter on power output in solar chimney power plants,” Gazi Mühendislik Bilimleri Dergisi, vol. 7, no. 3, pp. 253-263, 2021. doi:10.30855/gmbd.2021.03.08
  • [2] S. Bilgen, K. Kaygusuz, and A. Sari, “Renewable energy for a clean and sustainable future,” Energy sources, vol. 26, no. 12, pp. 1119-1129, 2004. doi:10.1080/00908310490441421
  • [3] T. Kober, H. W. Schiffer, M. Densing, and E. Panos, “Global energy perspectives to 2060–WEC's World Energy Scenarios 2019,” Energy Strategy Reviews, vol. 31, p. 100523, 2020. doi:10.1016/j.esr.2020.100523
  • [4] C. Smith, “Revisiting solar power's past,” Technology Review, vol. 98, no. 5, pp. 38-47, 1995.
  • [5] E. Cuce, P. M. Cuce, I. H. Karakas, and T. Bali, “An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters,” Energy Conversion and Management, vol. 146, pp. 205-216, 2017. doi:10.1016/j.enconman.2017.05.022
  • [6] P. G. Charalambous, G. G. Maidment, S. A. Kalogirou, and K. Yiakoumetti, “Photovoltaic thermal (PV/T) collectors: A review,” Applied thermal engineering, vol. 27, no. 2-3, pp. 275-286, 2007. doi:10.1016/j.applthermaleng.2006.06.007
  • [7] K. Moradi, M. A. Ebadian, and C. X. Lin, “A review of PV/T technologies: Effects of control parameters,” International journal of heat and mass transfer, vol. 64, pp. 483-500, 2013. doi:10.1016/j.ijheatmasstransfer.2013.04.044
  • [8] E. Karatepe, M. Boztepe, and M. Colak, “Neural network based solar cell model,” Energy conversion and management, vol. 47, no. 9-10, pp. 1159-1178, 2006. doi:10.1016/j.enconman.2005.07.007
  • [9] E. Cuce, P. M. Cuce, S. Carlucci, H. Sen, K. Sudhakar, M. Hasanuzzaman, and R. Daneshazarian, “Solar chimney power plants: a review of the concepts, designs and performances,” Sustainability, vol. 14, no. 3, p. 1450, 2022. doi:10.3390/su14031450
  • [10] E. Cuce, T. Bali, and S. A. Sekucoglu, “Effects of passive cooling on performance of silicon photovoltaic cells,” International Journal of Low-Carbon Technologies, vol. 6, no. 4, pp. 299-308, 2011. doi:10.1093/ijlct/ctr018
  • [11] E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renewable energy, vol. 28, no. 1, pp. 1-12, 2003. doi:10.1016/S0960-1481(02)00015-0
  • [12] E. Cuce and P. M. Cuce, “Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling,” International Journal of Ambient Energy, vol. 35, no. 4, pp. 193-199, 2014. doi:10.1080/01430750.2013.793481
  • [13] Y. Mahmoud, W. Xiao, and H. H. Zeineldin, “A simple approach to modeling and simulation of photovoltaic modules,” IEEE transactions on Sustainable Energy, vol. 3, no. 1, pp. 185-186, 2011. doi:10.1109/TSTE.2011.2170776
  • [14] G. N. Tiwari, R. K. Mishra, and S. C. Solanki, “Photovoltaic modules and their applications: a review on thermal modelling,” Applied energy, vol. 88, no. 7, pp. 2287-2304, 2011. doi:10.1016/j.apenergy.2011.01.005
  • [15] H. Najafi and K. A. Woodbury, “Optimization of a cooling system based on Peltier effect for photovoltaic cells,” Solar Energy, vol. 91, pp. 152-160, 2013. doi:10.1016/j.solener.2013.01.026
  • [16] A. A. Salim, F. S. Huraib, and N. N. Eugenio, “PV power-study of system options and optimization,” In EC photovoltaic solar conference, vol. 8, pp. 688-692, 1988.
  • [17] B. Hammad, M. Al–Abed, A. Al–Ghandoor, A. Al–Sardeah, and A. Al–Bashir, “Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2218-2234, 2018. doi:10.1016/j.rser.2017.08.070
  • [18] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renewable and sustainable energy reviews, vol. 14, no. 9, pp. 3124-3131, 2010. doi:10.1016/j.rser.2010.07.065
  • [19] A. A. Katkar, N. N. Shinde, and P. S. Patil, “Performance & evaluation of industrial solar cell wrt temperature and humidity,” International Journal of Research in mechanical engineering and Technology, vol. 1, no. 1, pp. 69-73, 2011.
  • [20] H. A. Kazem and M. T. Chaichan, “Effect of humidity on photovoltaic performance based on experimental study,” International Journal of Applied Engineering Research (IJAER), vol. 10, no. 23, pp. 43572-43577, 2015.
  • [21] K. K. Ilse, B. W. Figgis, V. Naumann, C. Hagendorf, and J. Bagdahn, “Fundamentals of soiling processes on photovoltaic modules,” Renewable and Sustainable Energy Reviews, vol. 98, pp. 239-254, 2018. doi:10.1016/j.rser.2018.09.015
  • [22] E. L. Meyer and E. E. Van Dyk, “Development of energy model based on total daily irradiation and maximum ambient temperature,” Renewable Energy, vol. 21, no. 1, pp. 37-47, 2000. doi:10.1016/S0960-1481(99)00124-X
  • [23] R. Khenfer, S. Benahdouga, M. Meddad, M. Mostefai, A. Eddiai, and K. Benkhouja, “Effect of temperature on the PV cells and improving their performance by the use of thermo generators,” Molecular Crystals and Liquid Crystals, vol. 627, no. 1, pp. 23-28, 2016. doi:10.1080/15421406.2015.1137141
  • [24] K. Agroui, “Indoor and outdoor characterizations of photovoltaic module based on mulicrystalline solar cells,” Energy Procedia, vol. 18, pp. 857-866, 2012. doi:10.1016/j.egypro.2012.05.100
  • [25] F. Wakim, “Introduction of PV power generation to Kuwait,” Kuwait Institute for Scientific Researchers, Kuwait City, vol. 204, 1981.
  • [26] R. Mayfield, “The highs and lows of photovoltaic system calculations,” Renewable Energy Consultants Electrical Construction and Maintenance, 2012.
  • [27] M. Hajji, S. E. Naimi, B. Hajji, A. El Mehdi, and M. L. El Hafyani, “Performance analysis of hybrid photovoltaic/thermal (PV/T) collector,” in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-6, 2015.
  • [28] A. H. H. Ali, S. ElDin, and S. M. Abdel-Gaie, “Effect of dust and ambient temperature on PV panels performance in Egypt,” Jordan Journal of Physics, vol. 8, no. 2, pp. 113-124, 2015.
  • [29] F. Sarhaddi, S. Farahat, H. Ajam, A. M. I. N. Behzadmehr, and M. M. Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Applied energy, vol. 87, no.7, pp. 2328-2339, 2010. doi:10.1016/j.apenergy.2010.01.001
  • [30] E. Simsek, M. J. Williams, and L. Pilon, “Effect of dew and rain on photovoltaic solar cell performances,” Solar Energy Materials and Solar Cells, vol. 222, p. 110908, 2021. doi:10.1016/j.solmat.2020.110908
  • [31] E. Cuce, P. M. Cuce, and T. Bali, “Impact of humidity on current parameters of solar cells,” Journal of Energy Systems, vol. 2, no. 3, pp. 84-96, 2018. doi:10.30521/jes.441643
  • [32] L. Gao, R. A. Dougal, L. S, and A. P. Iotova, “Parallel-Connected Solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1548–1556, May 2009. doi:10.1109/tie.2008.2011296.
  • [33] T. Hong, M. Lee, C. Koo, J. Kim, and K. Jeong, “Estimation of the available rooftop area for installing the rooftop solar photovoltaic (PV) system by analyzing the building shadow using Hillshade analysis,” Energy Procedia, vol. 88, pp. 408–413, Jun. 2016. doi:10.1016/j.egypro.2016.06.013 [34] N. Mishra, A. S. Yadav, R. K. Pachauri, Y. K. Chauhan, and V. K. Yadav, “Performance enhancement of PV system using proposed array topologies under various shadow patterns,” Solar Energy, vol. 157, pp. 641–656, Nov. 2017. doi:10.1016/j.solener.2017.08.021
  • [35] J. S. Ko and D. Chung, “Control of a novel PV tracking system considering the shadow influence,” Journal of Electrical Engineering & Technology, vol. 7, no. 4, pp. 524–529, Jul. 2012. doi:10.5370/jeet.2012.7.4.524
  • [36] M.-K. Jang, J.-S. Choi, J.-S. Ko, J.-H. Mun, and D. Chung, “Control of a novel PV tracking system considering the shadow influence,” ICCAS 2010, Oct. 2010. doi:10.1109/iccas.2010.5669730
  • [37] E. Lodhi, R. N. Shafqat, K. K. D. E, and Z. Lodhi, “Application of Particle Swarm Optimization for Extracting Global Maximum Power Point in PV System under Partial Shadow Conditions,” International Journal of Electronics and Electrical Engineering, vol. 5, no. 3, pp. 223–229, Jan. 2017. doi:10.18178/ijeee.5.3.223-229
  • [38] J. Ahmed and Z. Salam, “A critical evaluation on maximum power point tracking methods for partial shading in PV systems,” Renewable & Sustainable Energy Reviews, vol. 47, pp. 933–953, Jul. 2015. doi:10.1016/j.rser.2015.03.080
  • [39] M. Karakose and M. Baygin, “Image processing based analysis of moving shadow effects for reconfiguration in PV arrays,” in 2014 IEEE International Energy Conference (ENERGYCON), pp. 683-687, May 2014, IEEE. doi:10.1109/energycon.2014.6850500
  • [40] H. Taheri, Z. Salam, and K. Ishaque, “A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution,” in 2010 IEEE symposium on industrial electronics and applications (ISIEA), pp. 82-87, October 2010, IEEE.
  • [41] K. Ishaque and Z. Salam, “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition,” Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, 2013. doi:10.1016/j.rser.2012.11.032
  • [42] Y. Wang, G. Pei, and L. Zhang, “Effects of frame shadow on the PV character of a photovoltaic/thermal system,” Applied energy, vol. 130, pp. 326-332, 2014. doi:10.1016/j.apenergy.2014.05.054
  • [43] E. Karatepe, T. Hiyama, M. Boztepe, and M. Çolak, “Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions,” Energy Conversion and Management, vol. 49, no. 8, pp. 2307-2316, 2008. doi:10.1016/j.enconman.2008.01.012
  • [44] G. D. Pimentel Da Silva and D. A. C. Branco, “Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts,” Impact Assessment and Project Appraisal, vol. 36, no. 5, pp. 390-400, 2018. doi:10.1080/14615517.2018.1477498
  • [45] P. M. Cuce, A. Saxena, E. Cuce, and S. Riffat, “Applications of solar PV tree systems with different design aspects and performance assessment,” International Journal of Low-Carbon Technologies, vol. 17, pp. 266-278, 2022. doi:10.1093/ijlct/ctac004
  • [46] D. Nguyen and B. Lehman, “A reconfigurable solar photovoltaic array under shadow conditions,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 980-986, 2008.
  • [47] R. G. Vieira, F. M. de Araújo, M. Dhimish, and M. I. Guerra, “A comprehensive review on bypass diode application on photovoltaic modules,” Energies, vol. 13, no. 10, p. 2472, 2020. doi:10.3390/en13102472
  • [48] S. Saha, S. Akter, K. K. Mahto, P. Das, A. K. Chakraborty, and G. K. Awasthi, “Improvement in power efficiency of photovoltaic array under shading condition using bypass diode,” International Journal of Renewable Energy Research (IJRER), vol. 6, no. 2, pp. 628-636, 2016.
  • [49] E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe and D. Goitia, "Intelligent PV Module for Grid-Connected PV Systems," in IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, June 2006. doi:10.1109/TIE.2006.878327
  • [50] M. Kasper, D. Bortis and J. W. Kolar, "Classification and Comparative Evaluation of PV Panel-Integrated DC–DC Converter Concepts," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2511-2526, May 2014. doi:10.1109/TPEL.2013.2273399
  • [51] C. Deline, “Partially shaded operation of multi-string photovoltaic systems,” in 2010 35th IEEE Photovoltaic Specialists Conference, pp. 000394-000399, 2010.
  • [52] B. Dhanalakshmi and N. Rajasekar, “A novel competence square based PV array reconfiguration technique for solar PV maximum power extraction,” Energy conversion and management, vol. 174, pp. 897-912, 2018. doi:10.1016/j.enconman.2018.08.077
  • [53] M. S. S. Nihanth, J. P. Ram, D. S. Pillai, A. M. Ghias, A. Garg and N. Rajasekar, “Enhanced power production in PV arrays using a new skyscraper puzzle based one-time reconfiguration procedure under partial shade conditions (PSCs),” Solar Energy, vol. 194, pp. 209-224, 2019. doi:10.1016/j.solener.2019.10.020 [54] A. S. Yadav, R. K. Pachauri, Y. K. Chauhan, S. Choudhury, and R. Singh, “Performance enhancement of partially shaded PV array using novel shade dispersion effect on magic-square puzzle configuration,” Solar Energy, vol. 144, pp. 780-797, 2017. doi:10.1016/j.solener.2017.01.011
  • [55] B. Dhanalakshmi and N. Rajasekar, “Dominance square based array reconfiguration scheme for power loss reduction in solar PhotoVoltaic (PV) systems,” Energy conversion and management, vol. 156, pp. 84-102, 2018. doi:10.1016/j.enconman.2017.10.080
  • [56] N. Lior, “Energy resources and use: The present situation and possible paths to the future,” Energy, vol. 33, no. 6, pp. 842-857, 2008. doi:10.1016/j.energy.2007.09.009
  • [57] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature photonics, vol. 8, no. 7, pp. 506-514, 2014. doi:10.1038/nphoton.2014.134
  • [58] M. C. Browne, B. Norton, and S. J. McCormack, “Heat retention of a photovoltaic/thermal collector with PCM,” Solar Energy, vol. 133, pp. 533-548, 2016. doi:10.1016/j.solener.2016.04.024
  • [59] J. Siecker, K. Kusakana, and E. B. Numbi, “A review of solar photovoltaic systems cooling technologies,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 192-203, 2017. doi:10.1016/j.rser.2017.05.053
  • [60] A. G. Lupu, V. M. Homutescu, D. T. Balanescu, and E. A. Popescu, “A review of solar photovoltaic systems cooling technologies. In IOP Conference Series: Materials Science and Engineering, vol. 444, no. 8, p. 082016, 2018.
  • [61] T. Bergene and O. M. Løvvik, “Model calculations on a flat-plate solar heat collector with integrated solar cells,” Solar energy, vol. 55, no. 6, pp. 453-462, 1995. doi:10.1016/0038-092X(95)00072-Y
  • [62] H. A. Zondag, D. W. De Vries, W. G. J. Van Helden, R. J. C. Van Zolingen, and A. A. Van Steenhoven, “The yield of different combined PV-thermal collector designs,” Solar energy, vol. 74, no. 3, pp. 253-269, 2003. doi:10.1016/S0038-092X(03)00121-X
  • [63] S. A. Kalogirou and Y. Tripanagnostopoulos, “Hybrid PV/T solar systems for domestic hot water and electricity production,” Energy conversion and management, vol. 47, no. 18-19, pp. 3368-3382, 2006. doi:10.1016/j.enconman.2006.01.012
  • [64] S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy conversion and management, vol. 108, pp. 287-296, 2016. doi:10.1016/j.enconman.2015.10.079 [65] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Engineering Journal, vol. 4, no. 4, pp. 869-877, 2013. doi:10.1016/j.asej.2013.03.005
  • [66] S. M. Salih, O. I. Abd, and K. W. Abid, “Performance enhancement of PV array based on water spraying technique,” Int. J. Sustain. Green Energy, vol. 4, no. 16, pp. 8-13, 2015. doi:10.11648/j.ijrse.s.2015040301.12
  • [67] Y. Tripanagnostopoulos, “Aspects and improvements of hybrid photovoltaic/thermal solar energy systems,” Solar energy, vol. 81, no. 9, pp. 1117-1131, 2007. doi:10.1016/j.solener.2007.04.002
  • [68] A. Kroiß, A. Präbst, S. Hamberger, M. Spinnler, Y. Tripanagnostopoulos, and T. Sattelmayer, “Development of a seawater-proof hybrid photovoltaic/thermal (PV/T) solar collector,” Energy Procedia, vol. 52, pp. 93-103, 2014. doi:10.1016/j.egypro.2014.07.058
  • [69] Y. Tripanagnostopoulos, T.H. Nousia, M. Souliotis, and P. Yianoulis, “Hybrid photovoltaic/thermal solar systems,” Solar energy, vol. 72, no. 3, pp. 217-234, 2002. doi:10.1016/S0038-092X(01)00096-2
  • [70] A. M. Alshibil, I. Farkas, and P. Víg, “Experimental performance comparison of a novel design of bi-fluid photovoltaic-thermal module using Louver fins,” Energy Reports, vol. 9, pp. 4518-4531, 2023. doi:10.1016/j.egyr.2023.03.110
  • [71] D. Bahrehmand, M. Ameri, and M. J. R. E. Gholampour, “Energy and exergy analysis of different solar air collector systems with forced convection,” Renewable Energy, vol. 83, pp. 1119-1130, 2015. doi:10.1016/j.renene.2015.03.009
  • [72] H. Saygin, R. Nowzari, N. Mirzaei, and L. B. Y. Aldabbagh, “Performance evaluation of a modified PV/T solar collector: A case study in design and analysis of experiment,” Solar Energy, vol. 141, pp. 210-221, 2017. doi:10.1016/j.solener.2016.11.048
  • [73] Y. Tripanagnostopoulos, P. Yianoulis, and D. Patrikios, “Hybrid PV-TC solar systems,” Renewable energy, vol. 8, no. 1-4, pp. 505-508, 1996. doi:10.1016/0960-1481(96)88908-7
  • [74] H. A. Zondag, D. D. de Vries, W. G. J. Van Helden, R. C. van Zolingen, and A. A. Van Steenhoven, “The thermal and electrical yield of a PV-thermal collector,” Solar energy, vol. 72, no. 2, pp. 113-128, 2002. doi:10.1016/S0038-092X(01)00094-9
  • [75] J. Ji, J. P. Lu, T. T. Chow, W. He, and G. Pei, “A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation,” Applied Energy, vol. 84, no. 2, pp. 222-237, 2007. doi:10.1016/j.apenergy.2006.04.009
  • [76] S. Dubey and G. N. Tiwari, “Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater,” Solar energy, vol. 82, no. 7, pp. 602-612, 2008. doi:10.1016/j.solener.2008.02.005
  • [77] T. T. Chow, G. Pei, K. F. Fong, Z. Lin, A. L. S. Chan, and J. Ji, “Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover,” Applied Energy, vol. 86, no. 3, pp. 310-316, 2009. doi:10.1016/j.apenergy.2008.04.016
  • [78] R. Hosseini, N. Hosseini, and H. Khorasanizadeh, “An experimental study of combining a photovoltaic system with a heating system,” in World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden, no. 057, pp. 2993-3000, 2011.
  • [79] R. K. Mishra and G. N. Tiwari, “Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode,” Solar energy, vol. 90, pp. 58-67, 2013. doi:10.1016/j.solener.2012.12.022
  • [80] G. Evola and L. Marletta, “Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector,” Solar Energy, vol. 107, pp. 12-25, 2014. doi:10.1016/j.solener.2014.05.041
  • [81] N. Aste, F. Leonforte, and C. Del Pero, “Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector,” Solar Energy, vol. 112, pp. 85-99, 2015. doi:10.1016/j.solener.2014.11.025
  • [82] O. R. Alomar and O. M. Ali, “Energy and exergy analysis of hybrid photovoltaic thermal solar system under climatic condition of North Iraq,” Case Studies in Thermal Engineering, vol. 28, p. 101429, 2021. doi:10.1016/j.csite.2021.101429
  • [83] H. P. Garg and R. S. Adhikari, “Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs,” International journal of energy research, vol. 23, no. 15, pp. 1295-1304, 1999. doi:10.1002/(SICI)1099-114X(199912)23:15%3C1295::AID-ER553%3E3.0.CO;2-T
  • [84] A. S. Joshi, A. Tiwari, G. N. Tiwari, I. Dincer, and B. V. Reddy, “Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system,” International Journal of Thermal Sciences, vol. 48, no. 1, pp. 154-164, 2009. doi:10.1016/j.ijthermalsci.2008.05.001
  • [85] C. S. Rajoria, S. Agrawal, and G. N. Tiwari, “Overall thermal energy and exergy analysis of hybrid photovoltaic thermal array,” Solar Energy, vol. 86, no. 5, pp. 1531-1538, 2012. doi:10.1016/j.solener.2012.02.014
  • [86] L. Rekha, C. V. Vazhappilly, and C. R. Melvinraj, “Numerical simulation for solar hybrid photovoltaic thermal air collector,” Procedia Technology, vol. 24, pp. 513-522, 2016. doi:10.1016/j.protcy.2016.05.088
  • [87] R. Mazón-Hernández, J. R. García-Cascales, F. Vera-García, A. S. Káiser, and B. Zamora, “Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream,” International Journal of Photoenergy, vol. 2013, 2013. doi:10.1155/2013/830968
  • [88] J. Prakash, “Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water,” Energy Conversion and Management, vol. 35, no. 11, pp. 967-972, 1994. doi:10.1016/0196-8904(94)90027-2
  • [89] A. Tiwari and M. S. Sodha, “Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study,” Renewable energy, vol. 31, no. 15, pp. 2460-2474, 2006. doi:10.1016/j.renene.2005.12.002
  • [90] E. Cuce, A. Saxena, P. M. Cuce, H. Sen, H. Eroglu, S. P. Selvanathan, K. Sudhakar, and M. Hasanuzzaman, “Performance assessment of solar chimney power plants with natural thermal energy storage materials on ground: CFD analysis with experimental validation,” International Journal of Low-Carbon Technologies, vol. 17, pp. 752-759, 2022. doi:10.1093/ijlct/ctac001
  • [91] W. K. Hussam, H. J. Salem, A. M. Redha, A. M. Khlefat, and F. Al Khatib, “Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait,” Energy Conversion and Management: X, vol. 15, p. 100249, 2022. doi:10.1016/j.ecmx.2022.100249
  • [92] S. Haghighat, A. Kasaeian, F. Pourfayaz, and B. M. Shahdost, “Fluid dynamics analysis for different photovoltaic panel locations in solar chimney,” Energy conversion and management, vol. 191, pp. 71-79, 2019. doi:10.1016/j.enconman.2019.03.053
  • [93] S. Jamali, M. Yari, and S. M. S. Mahmoudi, “Enhanced power generation through cooling a semi-transparent PV power plant with a solar chimney,” Energy Conversion and Management, vol. 175, pp. 227-235, 2018. doi:10.1016/j.enconman.2018.09.004
  • [94] G. G. Mohamed, S. Ookawara, N. Sameh, and H. Hassan, “Performance assessment of photovoltaic/thermal (PVT) hybrid adsorption-vapor compression refrigeration system,” Journal of Energy Systems, vol. 6, no. 2, pp. 209-220, 2022. doi:10.30521/jes.1002871
  • [95] C. Cao, H. Li, G. Feng, R. Zhang, and K. Huang, “Research on PV/T–air source heat pump integrated heating system in severe cold region,” Procedia Engineering, vol. 146, pp. 410-414, 2016. doi:10.1016/j.proeng.2016.06.422
  • [96] V. C. Sontake and V. R. Kalamkar, “Solar photovoltaic water pumping system-A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1038-1067, 2016. doi:10.1016/j.rser.2016.01.021
  • [97] H. Chen, L. Zhang, P. Jie, Y. Xiong, P. Xu, and H. Zhai, “Performance study of heat-pipe solar photovoltaic/thermal heat pump system,” Applied energy, vol. 190, pp. 960-980, 2017. doi:10.1016/j.apenergy.2016.12.145
  • [98] E. Cuce, “Development of innovative window and fabric technologies for low-carbon buildings,”. Ph.D. Thesis, The University of Nottingham, 2014.
  • [99] E. Cuce and T. Bali, “Variation of cell parameters of a p-Si PV cell with different solar irradiances and cell temperatures in humid climates,” Fourth International Exergy, Energy and Environment Symposium, 19-23 April 2009, Sharjah, United Arab Emirates.
  • [100] E. Cuce, “Thermodynamic analysis of the effectiveness of different types of PV modules for wet conditions,” M.Sc. Thesis, Karadeniz Technical University, 2009.

Gölgeleme etkisi altında fotovoltaik ve fotovoltaik/termal sistemlerin performans değerlendirmesi

Year 2024, Volume: 10 Issue: 2, 206 - 224, 31.08.2024

Abstract

Enerji kaynaklarının hızla tükenmesi yenilenebilir enerji kaynaklarına yönelmeyi zorunlu kılmaktadır. Bu noktada özellikle güneş enerjisi, potansiyeliyle en popüler enerji kaynaklarının başında gelmektedir. Doğrudan fotovoltaik (PV) sistemlerle elektrik üretebilen modüllerin yanı sıra termal enerjiden yararlanmaya olanak sağlayan fotovoltaik termal (PV/T) sistemler de son yıllarda hızlı bir ilerleme kaydetmiştir. Bu çalışmada PV ve PV/T sistemlerin performansını etkileyen temel parametreler öne çıkarılarak temel dinamikler belirlenmeye çalışılmaktadır. Ayrıca uygulamalarda oldukça yaygın olan gölgeleme etkisi de ele alınmaktadır. Daha sonra sistemlerin performansını arttıran çalışmalara bir arada yer verilerek çalışmaların karşılaştırılmasına fırsat sunulmaktadır. Yenilikçi yaklaşımlarla PV sistemlerin farklı uygulamalarıyla daha küçük ölçeklerde bile iyi sonuçlar alınabileceği görülmektedir. Kombine sistemler ile küçük alan uygulamalarında hem elektrik üretimi hem de ısıl fayda sağlanarak binalarda uygulanabilirliği analiz edilmektedir.

References

  • [1] P. M. Cuce, H. Sen, and E. Cuce, “Impact of tower diameter on power output in solar chimney power plants,” Gazi Mühendislik Bilimleri Dergisi, vol. 7, no. 3, pp. 253-263, 2021. doi:10.30855/gmbd.2021.03.08
  • [2] S. Bilgen, K. Kaygusuz, and A. Sari, “Renewable energy for a clean and sustainable future,” Energy sources, vol. 26, no. 12, pp. 1119-1129, 2004. doi:10.1080/00908310490441421
  • [3] T. Kober, H. W. Schiffer, M. Densing, and E. Panos, “Global energy perspectives to 2060–WEC's World Energy Scenarios 2019,” Energy Strategy Reviews, vol. 31, p. 100523, 2020. doi:10.1016/j.esr.2020.100523
  • [4] C. Smith, “Revisiting solar power's past,” Technology Review, vol. 98, no. 5, pp. 38-47, 1995.
  • [5] E. Cuce, P. M. Cuce, I. H. Karakas, and T. Bali, “An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters,” Energy Conversion and Management, vol. 146, pp. 205-216, 2017. doi:10.1016/j.enconman.2017.05.022
  • [6] P. G. Charalambous, G. G. Maidment, S. A. Kalogirou, and K. Yiakoumetti, “Photovoltaic thermal (PV/T) collectors: A review,” Applied thermal engineering, vol. 27, no. 2-3, pp. 275-286, 2007. doi:10.1016/j.applthermaleng.2006.06.007
  • [7] K. Moradi, M. A. Ebadian, and C. X. Lin, “A review of PV/T technologies: Effects of control parameters,” International journal of heat and mass transfer, vol. 64, pp. 483-500, 2013. doi:10.1016/j.ijheatmasstransfer.2013.04.044
  • [8] E. Karatepe, M. Boztepe, and M. Colak, “Neural network based solar cell model,” Energy conversion and management, vol. 47, no. 9-10, pp. 1159-1178, 2006. doi:10.1016/j.enconman.2005.07.007
  • [9] E. Cuce, P. M. Cuce, S. Carlucci, H. Sen, K. Sudhakar, M. Hasanuzzaman, and R. Daneshazarian, “Solar chimney power plants: a review of the concepts, designs and performances,” Sustainability, vol. 14, no. 3, p. 1450, 2022. doi:10.3390/su14031450
  • [10] E. Cuce, T. Bali, and S. A. Sekucoglu, “Effects of passive cooling on performance of silicon photovoltaic cells,” International Journal of Low-Carbon Technologies, vol. 6, no. 4, pp. 299-308, 2011. doi:10.1093/ijlct/ctr018
  • [11] E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renewable energy, vol. 28, no. 1, pp. 1-12, 2003. doi:10.1016/S0960-1481(02)00015-0
  • [12] E. Cuce and P. M. Cuce, “Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling,” International Journal of Ambient Energy, vol. 35, no. 4, pp. 193-199, 2014. doi:10.1080/01430750.2013.793481
  • [13] Y. Mahmoud, W. Xiao, and H. H. Zeineldin, “A simple approach to modeling and simulation of photovoltaic modules,” IEEE transactions on Sustainable Energy, vol. 3, no. 1, pp. 185-186, 2011. doi:10.1109/TSTE.2011.2170776
  • [14] G. N. Tiwari, R. K. Mishra, and S. C. Solanki, “Photovoltaic modules and their applications: a review on thermal modelling,” Applied energy, vol. 88, no. 7, pp. 2287-2304, 2011. doi:10.1016/j.apenergy.2011.01.005
  • [15] H. Najafi and K. A. Woodbury, “Optimization of a cooling system based on Peltier effect for photovoltaic cells,” Solar Energy, vol. 91, pp. 152-160, 2013. doi:10.1016/j.solener.2013.01.026
  • [16] A. A. Salim, F. S. Huraib, and N. N. Eugenio, “PV power-study of system options and optimization,” In EC photovoltaic solar conference, vol. 8, pp. 688-692, 1988.
  • [17] B. Hammad, M. Al–Abed, A. Al–Ghandoor, A. Al–Sardeah, and A. Al–Bashir, “Modeling and analysis of dust and temperature effects on photovoltaic systems’ performance and optimal cleaning frequency: Jordan case study,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2218-2234, 2018. doi:10.1016/j.rser.2017.08.070
  • [18] M. Mani and R. Pillai, “Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations,” Renewable and sustainable energy reviews, vol. 14, no. 9, pp. 3124-3131, 2010. doi:10.1016/j.rser.2010.07.065
  • [19] A. A. Katkar, N. N. Shinde, and P. S. Patil, “Performance & evaluation of industrial solar cell wrt temperature and humidity,” International Journal of Research in mechanical engineering and Technology, vol. 1, no. 1, pp. 69-73, 2011.
  • [20] H. A. Kazem and M. T. Chaichan, “Effect of humidity on photovoltaic performance based on experimental study,” International Journal of Applied Engineering Research (IJAER), vol. 10, no. 23, pp. 43572-43577, 2015.
  • [21] K. K. Ilse, B. W. Figgis, V. Naumann, C. Hagendorf, and J. Bagdahn, “Fundamentals of soiling processes on photovoltaic modules,” Renewable and Sustainable Energy Reviews, vol. 98, pp. 239-254, 2018. doi:10.1016/j.rser.2018.09.015
  • [22] E. L. Meyer and E. E. Van Dyk, “Development of energy model based on total daily irradiation and maximum ambient temperature,” Renewable Energy, vol. 21, no. 1, pp. 37-47, 2000. doi:10.1016/S0960-1481(99)00124-X
  • [23] R. Khenfer, S. Benahdouga, M. Meddad, M. Mostefai, A. Eddiai, and K. Benkhouja, “Effect of temperature on the PV cells and improving their performance by the use of thermo generators,” Molecular Crystals and Liquid Crystals, vol. 627, no. 1, pp. 23-28, 2016. doi:10.1080/15421406.2015.1137141
  • [24] K. Agroui, “Indoor and outdoor characterizations of photovoltaic module based on mulicrystalline solar cells,” Energy Procedia, vol. 18, pp. 857-866, 2012. doi:10.1016/j.egypro.2012.05.100
  • [25] F. Wakim, “Introduction of PV power generation to Kuwait,” Kuwait Institute for Scientific Researchers, Kuwait City, vol. 204, 1981.
  • [26] R. Mayfield, “The highs and lows of photovoltaic system calculations,” Renewable Energy Consultants Electrical Construction and Maintenance, 2012.
  • [27] M. Hajji, S. E. Naimi, B. Hajji, A. El Mehdi, and M. L. El Hafyani, “Performance analysis of hybrid photovoltaic/thermal (PV/T) collector,” in 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-6, 2015.
  • [28] A. H. H. Ali, S. ElDin, and S. M. Abdel-Gaie, “Effect of dust and ambient temperature on PV panels performance in Egypt,” Jordan Journal of Physics, vol. 8, no. 2, pp. 113-124, 2015.
  • [29] F. Sarhaddi, S. Farahat, H. Ajam, A. M. I. N. Behzadmehr, and M. M. Adeli, “An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector,” Applied energy, vol. 87, no.7, pp. 2328-2339, 2010. doi:10.1016/j.apenergy.2010.01.001
  • [30] E. Simsek, M. J. Williams, and L. Pilon, “Effect of dew and rain on photovoltaic solar cell performances,” Solar Energy Materials and Solar Cells, vol. 222, p. 110908, 2021. doi:10.1016/j.solmat.2020.110908
  • [31] E. Cuce, P. M. Cuce, and T. Bali, “Impact of humidity on current parameters of solar cells,” Journal of Energy Systems, vol. 2, no. 3, pp. 84-96, 2018. doi:10.30521/jes.441643
  • [32] L. Gao, R. A. Dougal, L. S, and A. P. Iotova, “Parallel-Connected Solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1548–1556, May 2009. doi:10.1109/tie.2008.2011296.
  • [33] T. Hong, M. Lee, C. Koo, J. Kim, and K. Jeong, “Estimation of the available rooftop area for installing the rooftop solar photovoltaic (PV) system by analyzing the building shadow using Hillshade analysis,” Energy Procedia, vol. 88, pp. 408–413, Jun. 2016. doi:10.1016/j.egypro.2016.06.013 [34] N. Mishra, A. S. Yadav, R. K. Pachauri, Y. K. Chauhan, and V. K. Yadav, “Performance enhancement of PV system using proposed array topologies under various shadow patterns,” Solar Energy, vol. 157, pp. 641–656, Nov. 2017. doi:10.1016/j.solener.2017.08.021
  • [35] J. S. Ko and D. Chung, “Control of a novel PV tracking system considering the shadow influence,” Journal of Electrical Engineering & Technology, vol. 7, no. 4, pp. 524–529, Jul. 2012. doi:10.5370/jeet.2012.7.4.524
  • [36] M.-K. Jang, J.-S. Choi, J.-S. Ko, J.-H. Mun, and D. Chung, “Control of a novel PV tracking system considering the shadow influence,” ICCAS 2010, Oct. 2010. doi:10.1109/iccas.2010.5669730
  • [37] E. Lodhi, R. N. Shafqat, K. K. D. E, and Z. Lodhi, “Application of Particle Swarm Optimization for Extracting Global Maximum Power Point in PV System under Partial Shadow Conditions,” International Journal of Electronics and Electrical Engineering, vol. 5, no. 3, pp. 223–229, Jan. 2017. doi:10.18178/ijeee.5.3.223-229
  • [38] J. Ahmed and Z. Salam, “A critical evaluation on maximum power point tracking methods for partial shading in PV systems,” Renewable & Sustainable Energy Reviews, vol. 47, pp. 933–953, Jul. 2015. doi:10.1016/j.rser.2015.03.080
  • [39] M. Karakose and M. Baygin, “Image processing based analysis of moving shadow effects for reconfiguration in PV arrays,” in 2014 IEEE International Energy Conference (ENERGYCON), pp. 683-687, May 2014, IEEE. doi:10.1109/energycon.2014.6850500
  • [40] H. Taheri, Z. Salam, and K. Ishaque, “A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution,” in 2010 IEEE symposium on industrial electronics and applications (ISIEA), pp. 82-87, October 2010, IEEE.
  • [41] K. Ishaque and Z. Salam, “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition,” Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, 2013. doi:10.1016/j.rser.2012.11.032
  • [42] Y. Wang, G. Pei, and L. Zhang, “Effects of frame shadow on the PV character of a photovoltaic/thermal system,” Applied energy, vol. 130, pp. 326-332, 2014. doi:10.1016/j.apenergy.2014.05.054
  • [43] E. Karatepe, T. Hiyama, M. Boztepe, and M. Çolak, “Voltage based power compensation system for photovoltaic generation system under partially shaded insolation conditions,” Energy Conversion and Management, vol. 49, no. 8, pp. 2307-2316, 2008. doi:10.1016/j.enconman.2008.01.012
  • [44] G. D. Pimentel Da Silva and D. A. C. Branco, “Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts,” Impact Assessment and Project Appraisal, vol. 36, no. 5, pp. 390-400, 2018. doi:10.1080/14615517.2018.1477498
  • [45] P. M. Cuce, A. Saxena, E. Cuce, and S. Riffat, “Applications of solar PV tree systems with different design aspects and performance assessment,” International Journal of Low-Carbon Technologies, vol. 17, pp. 266-278, 2022. doi:10.1093/ijlct/ctac004
  • [46] D. Nguyen and B. Lehman, “A reconfigurable solar photovoltaic array under shadow conditions,” in 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 980-986, 2008.
  • [47] R. G. Vieira, F. M. de Araújo, M. Dhimish, and M. I. Guerra, “A comprehensive review on bypass diode application on photovoltaic modules,” Energies, vol. 13, no. 10, p. 2472, 2020. doi:10.3390/en13102472
  • [48] S. Saha, S. Akter, K. K. Mahto, P. Das, A. K. Chakraborty, and G. K. Awasthi, “Improvement in power efficiency of photovoltaic array under shading condition using bypass diode,” International Journal of Renewable Energy Research (IJRER), vol. 6, no. 2, pp. 628-636, 2016.
  • [49] E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe and D. Goitia, "Intelligent PV Module for Grid-Connected PV Systems," in IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, June 2006. doi:10.1109/TIE.2006.878327
  • [50] M. Kasper, D. Bortis and J. W. Kolar, "Classification and Comparative Evaluation of PV Panel-Integrated DC–DC Converter Concepts," in IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2511-2526, May 2014. doi:10.1109/TPEL.2013.2273399
  • [51] C. Deline, “Partially shaded operation of multi-string photovoltaic systems,” in 2010 35th IEEE Photovoltaic Specialists Conference, pp. 000394-000399, 2010.
  • [52] B. Dhanalakshmi and N. Rajasekar, “A novel competence square based PV array reconfiguration technique for solar PV maximum power extraction,” Energy conversion and management, vol. 174, pp. 897-912, 2018. doi:10.1016/j.enconman.2018.08.077
  • [53] M. S. S. Nihanth, J. P. Ram, D. S. Pillai, A. M. Ghias, A. Garg and N. Rajasekar, “Enhanced power production in PV arrays using a new skyscraper puzzle based one-time reconfiguration procedure under partial shade conditions (PSCs),” Solar Energy, vol. 194, pp. 209-224, 2019. doi:10.1016/j.solener.2019.10.020 [54] A. S. Yadav, R. K. Pachauri, Y. K. Chauhan, S. Choudhury, and R. Singh, “Performance enhancement of partially shaded PV array using novel shade dispersion effect on magic-square puzzle configuration,” Solar Energy, vol. 144, pp. 780-797, 2017. doi:10.1016/j.solener.2017.01.011
  • [55] B. Dhanalakshmi and N. Rajasekar, “Dominance square based array reconfiguration scheme for power loss reduction in solar PhotoVoltaic (PV) systems,” Energy conversion and management, vol. 156, pp. 84-102, 2018. doi:10.1016/j.enconman.2017.10.080
  • [56] N. Lior, “Energy resources and use: The present situation and possible paths to the future,” Energy, vol. 33, no. 6, pp. 842-857, 2008. doi:10.1016/j.energy.2007.09.009
  • [57] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nature photonics, vol. 8, no. 7, pp. 506-514, 2014. doi:10.1038/nphoton.2014.134
  • [58] M. C. Browne, B. Norton, and S. J. McCormack, “Heat retention of a photovoltaic/thermal collector with PCM,” Solar Energy, vol. 133, pp. 533-548, 2016. doi:10.1016/j.solener.2016.04.024
  • [59] J. Siecker, K. Kusakana, and E. B. Numbi, “A review of solar photovoltaic systems cooling technologies,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 192-203, 2017. doi:10.1016/j.rser.2017.05.053
  • [60] A. G. Lupu, V. M. Homutescu, D. T. Balanescu, and E. A. Popescu, “A review of solar photovoltaic systems cooling technologies. In IOP Conference Series: Materials Science and Engineering, vol. 444, no. 8, p. 082016, 2018.
  • [61] T. Bergene and O. M. Løvvik, “Model calculations on a flat-plate solar heat collector with integrated solar cells,” Solar energy, vol. 55, no. 6, pp. 453-462, 1995. doi:10.1016/0038-092X(95)00072-Y
  • [62] H. A. Zondag, D. W. De Vries, W. G. J. Van Helden, R. J. C. Van Zolingen, and A. A. Van Steenhoven, “The yield of different combined PV-thermal collector designs,” Solar energy, vol. 74, no. 3, pp. 253-269, 2003. doi:10.1016/S0038-092X(03)00121-X
  • [63] S. A. Kalogirou and Y. Tripanagnostopoulos, “Hybrid PV/T solar systems for domestic hot water and electricity production,” Energy conversion and management, vol. 47, no. 18-19, pp. 3368-3382, 2006. doi:10.1016/j.enconman.2006.01.012
  • [64] S. Nižetić, D. Čoko, A. Yadav, and F. Grubišić-Čabo, “Water spray cooling technique applied on a photovoltaic panel: The performance response,” Energy conversion and management, vol. 108, pp. 287-296, 2016. doi:10.1016/j.enconman.2015.10.079 [65] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Engineering Journal, vol. 4, no. 4, pp. 869-877, 2013. doi:10.1016/j.asej.2013.03.005
  • [66] S. M. Salih, O. I. Abd, and K. W. Abid, “Performance enhancement of PV array based on water spraying technique,” Int. J. Sustain. Green Energy, vol. 4, no. 16, pp. 8-13, 2015. doi:10.11648/j.ijrse.s.2015040301.12
  • [67] Y. Tripanagnostopoulos, “Aspects and improvements of hybrid photovoltaic/thermal solar energy systems,” Solar energy, vol. 81, no. 9, pp. 1117-1131, 2007. doi:10.1016/j.solener.2007.04.002
  • [68] A. Kroiß, A. Präbst, S. Hamberger, M. Spinnler, Y. Tripanagnostopoulos, and T. Sattelmayer, “Development of a seawater-proof hybrid photovoltaic/thermal (PV/T) solar collector,” Energy Procedia, vol. 52, pp. 93-103, 2014. doi:10.1016/j.egypro.2014.07.058
  • [69] Y. Tripanagnostopoulos, T.H. Nousia, M. Souliotis, and P. Yianoulis, “Hybrid photovoltaic/thermal solar systems,” Solar energy, vol. 72, no. 3, pp. 217-234, 2002. doi:10.1016/S0038-092X(01)00096-2
  • [70] A. M. Alshibil, I. Farkas, and P. Víg, “Experimental performance comparison of a novel design of bi-fluid photovoltaic-thermal module using Louver fins,” Energy Reports, vol. 9, pp. 4518-4531, 2023. doi:10.1016/j.egyr.2023.03.110
  • [71] D. Bahrehmand, M. Ameri, and M. J. R. E. Gholampour, “Energy and exergy analysis of different solar air collector systems with forced convection,” Renewable Energy, vol. 83, pp. 1119-1130, 2015. doi:10.1016/j.renene.2015.03.009
  • [72] H. Saygin, R. Nowzari, N. Mirzaei, and L. B. Y. Aldabbagh, “Performance evaluation of a modified PV/T solar collector: A case study in design and analysis of experiment,” Solar Energy, vol. 141, pp. 210-221, 2017. doi:10.1016/j.solener.2016.11.048
  • [73] Y. Tripanagnostopoulos, P. Yianoulis, and D. Patrikios, “Hybrid PV-TC solar systems,” Renewable energy, vol. 8, no. 1-4, pp. 505-508, 1996. doi:10.1016/0960-1481(96)88908-7
  • [74] H. A. Zondag, D. D. de Vries, W. G. J. Van Helden, R. C. van Zolingen, and A. A. Van Steenhoven, “The thermal and electrical yield of a PV-thermal collector,” Solar energy, vol. 72, no. 2, pp. 113-128, 2002. doi:10.1016/S0038-092X(01)00094-9
  • [75] J. Ji, J. P. Lu, T. T. Chow, W. He, and G. Pei, “A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation,” Applied Energy, vol. 84, no. 2, pp. 222-237, 2007. doi:10.1016/j.apenergy.2006.04.009
  • [76] S. Dubey and G. N. Tiwari, “Thermal modeling of a combined system of photovoltaic thermal (PV/T) solar water heater,” Solar energy, vol. 82, no. 7, pp. 602-612, 2008. doi:10.1016/j.solener.2008.02.005
  • [77] T. T. Chow, G. Pei, K. F. Fong, Z. Lin, A. L. S. Chan, and J. Ji, “Energy and exergy analysis of photovoltaic–thermal collector with and without glass cover,” Applied Energy, vol. 86, no. 3, pp. 310-316, 2009. doi:10.1016/j.apenergy.2008.04.016
  • [78] R. Hosseini, N. Hosseini, and H. Khorasanizadeh, “An experimental study of combining a photovoltaic system with a heating system,” in World Renewable Energy Congress-Sweden; 8-13 May; 2011; Linköping; Sweden, no. 057, pp. 2993-3000, 2011.
  • [79] R. K. Mishra and G. N. Tiwari, “Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode,” Solar energy, vol. 90, pp. 58-67, 2013. doi:10.1016/j.solener.2012.12.022
  • [80] G. Evola and L. Marletta, “Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector,” Solar Energy, vol. 107, pp. 12-25, 2014. doi:10.1016/j.solener.2014.05.041
  • [81] N. Aste, F. Leonforte, and C. Del Pero, “Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector,” Solar Energy, vol. 112, pp. 85-99, 2015. doi:10.1016/j.solener.2014.11.025
  • [82] O. R. Alomar and O. M. Ali, “Energy and exergy analysis of hybrid photovoltaic thermal solar system under climatic condition of North Iraq,” Case Studies in Thermal Engineering, vol. 28, p. 101429, 2021. doi:10.1016/j.csite.2021.101429
  • [83] H. P. Garg and R. S. Adhikari, “Performance analysis of a hybrid photovoltaic/thermal (PV/T) collector with integrated CPC troughs,” International journal of energy research, vol. 23, no. 15, pp. 1295-1304, 1999. doi:10.1002/(SICI)1099-114X(199912)23:15%3C1295::AID-ER553%3E3.0.CO;2-T
  • [84] A. S. Joshi, A. Tiwari, G. N. Tiwari, I. Dincer, and B. V. Reddy, “Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system,” International Journal of Thermal Sciences, vol. 48, no. 1, pp. 154-164, 2009. doi:10.1016/j.ijthermalsci.2008.05.001
  • [85] C. S. Rajoria, S. Agrawal, and G. N. Tiwari, “Overall thermal energy and exergy analysis of hybrid photovoltaic thermal array,” Solar Energy, vol. 86, no. 5, pp. 1531-1538, 2012. doi:10.1016/j.solener.2012.02.014
  • [86] L. Rekha, C. V. Vazhappilly, and C. R. Melvinraj, “Numerical simulation for solar hybrid photovoltaic thermal air collector,” Procedia Technology, vol. 24, pp. 513-522, 2016. doi:10.1016/j.protcy.2016.05.088
  • [87] R. Mazón-Hernández, J. R. García-Cascales, F. Vera-García, A. S. Káiser, and B. Zamora, “Improving the electrical parameters of a photovoltaic panel by means of an induced or forced air stream,” International Journal of Photoenergy, vol. 2013, 2013. doi:10.1155/2013/830968
  • [88] J. Prakash, “Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water,” Energy Conversion and Management, vol. 35, no. 11, pp. 967-972, 1994. doi:10.1016/0196-8904(94)90027-2
  • [89] A. Tiwari and M. S. Sodha, “Performance evaluation of hybrid PV/thermal water/air heating system: a parametric study,” Renewable energy, vol. 31, no. 15, pp. 2460-2474, 2006. doi:10.1016/j.renene.2005.12.002
  • [90] E. Cuce, A. Saxena, P. M. Cuce, H. Sen, H. Eroglu, S. P. Selvanathan, K. Sudhakar, and M. Hasanuzzaman, “Performance assessment of solar chimney power plants with natural thermal energy storage materials on ground: CFD analysis with experimental validation,” International Journal of Low-Carbon Technologies, vol. 17, pp. 752-759, 2022. doi:10.1093/ijlct/ctac001
  • [91] W. K. Hussam, H. J. Salem, A. M. Redha, A. M. Khlefat, and F. Al Khatib, “Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait,” Energy Conversion and Management: X, vol. 15, p. 100249, 2022. doi:10.1016/j.ecmx.2022.100249
  • [92] S. Haghighat, A. Kasaeian, F. Pourfayaz, and B. M. Shahdost, “Fluid dynamics analysis for different photovoltaic panel locations in solar chimney,” Energy conversion and management, vol. 191, pp. 71-79, 2019. doi:10.1016/j.enconman.2019.03.053
  • [93] S. Jamali, M. Yari, and S. M. S. Mahmoudi, “Enhanced power generation through cooling a semi-transparent PV power plant with a solar chimney,” Energy Conversion and Management, vol. 175, pp. 227-235, 2018. doi:10.1016/j.enconman.2018.09.004
  • [94] G. G. Mohamed, S. Ookawara, N. Sameh, and H. Hassan, “Performance assessment of photovoltaic/thermal (PVT) hybrid adsorption-vapor compression refrigeration system,” Journal of Energy Systems, vol. 6, no. 2, pp. 209-220, 2022. doi:10.30521/jes.1002871
  • [95] C. Cao, H. Li, G. Feng, R. Zhang, and K. Huang, “Research on PV/T–air source heat pump integrated heating system in severe cold region,” Procedia Engineering, vol. 146, pp. 410-414, 2016. doi:10.1016/j.proeng.2016.06.422
  • [96] V. C. Sontake and V. R. Kalamkar, “Solar photovoltaic water pumping system-A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1038-1067, 2016. doi:10.1016/j.rser.2016.01.021
  • [97] H. Chen, L. Zhang, P. Jie, Y. Xiong, P. Xu, and H. Zhai, “Performance study of heat-pipe solar photovoltaic/thermal heat pump system,” Applied energy, vol. 190, pp. 960-980, 2017. doi:10.1016/j.apenergy.2016.12.145
  • [98] E. Cuce, “Development of innovative window and fabric technologies for low-carbon buildings,”. Ph.D. Thesis, The University of Nottingham, 2014.
  • [99] E. Cuce and T. Bali, “Variation of cell parameters of a p-Si PV cell with different solar irradiances and cell temperatures in humid climates,” Fourth International Exergy, Energy and Environment Symposium, 19-23 April 2009, Sharjah, United Arab Emirates.
  • [100] E. Cuce, “Thermodynamic analysis of the effectiveness of different types of PV modules for wet conditions,” M.Sc. Thesis, Karadeniz Technical University, 2009.
There are 97 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Review
Authors

Ayşe Pınar Mert Cüce 0000-0002-6522-7092

Erdem Cüce 0000-0003-0150-4705

Early Pub Date April 25, 2024
Publication Date August 31, 2024
Submission Date December 3, 2023
Acceptance Date March 25, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE A. P. Mert Cüce and E. Cüce, “Performance assessment of photovoltaic and photovoltaic/thermal systems under the impact of shadowing”, GJES, vol. 10, no. 2, pp. 206–224, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg