Research Article
BibTex RIS Cite

Investigation of the Properties of Foam Concrete Produced Using Liquid Latex

Year 2024, Volume: 10 Issue: 2, 281 - 292, 31.08.2024

Abstract

Foam concrete, a type of lightweight concrete, is highly preferred due to its lightness and ease of application. In addition, substitute materials are used in the foam concrete mixture in order to further improve the properties of foam concrete. In this study, the engineering properties of foam concrete produced using liquid latex were analyzed. For this purpose, liquid latex was added to the mixing water in this study. The amount of latex is fixed at 25% of the cement weight. Additionally, the amount of liquid latex added to the mixture was reduced to equal the amount of mixing water. According to the results, it was seen that liquid latex made positive contributions to the engineering properties of the produced foam concrete. It was observed that the water absorption value of latex-added samples decreased by 59% compared to the reference sample. In addition, the thermal conductivity coefficient of the samples with latex added was lower than the reference sample. In the microstructural analysis, it was seen that the pores were more homogeneous than the reference sample and no cracks occurred. Finally, the long chain bonds formed by liquid latex in concrete were first determined by SEM image analysis.

References

  • [1] M. Gökçe and B.Ş. Şeker, "Foam concrete," Journal of New Results in Science, vol. 9,no.1, pp. 9-18, May 2020.
  • [2] K. Ramamurthy, E.K. Nambiar and G.I.S. Ranjani, "A classification of studies on properties of foam concrete," Cement and Concrete Composites, vol. 31, no. 6, pp. 388-396, 2009. doi:10.1016/j.cemconcomp.2009.04.006
  • [3] Y.M. Amran, N. Farzadnia and A.A. Ali, "Properties and applications of foamed concrete; a review," Construction and Building Materials, vol. 101, pp. 990-1005, 2015. doi:10.1016/j.conbuildmat.2015.10.112
  • [4] Z. Pan, H. Li and W. Liu, "Preparation and characterization of super low density foamed concrete from Portland cement and admixtures," Construction and Building Materials, vol. 72, pp. 256-261, 2014. doi:10.1016/j.conbuildmat.2014.08.078
  • [5] E. Namsone, G. Šahmenko and A. Korjakins, "Durability properties of high performance foamed concrete," Procedia Engineering, vol.172 pp. 760-767, 2017. doi:10.1016/j.proeng.2017.02.120
  • [6] P. Li, H. Wu, Y. Liu, J. Yang, Z. Fang and B. Lin, "Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete," Construction and Building Materials, vol. 205, pp. 529-542, 2019. doi:10.1016/j.conbuildmat.2019.01.212
  • [7] Z.M. Yaseen, R.C. Deo, A. Hilal, A.M. Abd, L.C. Bueno, S. Salcedo-Sanz and M.L. Nehdi, "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model," Advances in Engineering Software, vol. 115, pp. 112-125, 2018. doi:10.1016/j.advengsoft.2017.09.004
  • [8] S.Y. Chung, C. Lehmann, M. Abd Elrahman and D. Stephan, "Microstructural characterization of foamed concrete with different densities using microscopic techniques," Cement Wapno Beton, vol. 23, no. 3 pp. 216-225, 2018.
  • [9] E.P. Kearsley and P.J. Wainwright, "The effect of porosity on the strength of foamed concrete," Cement and Concrete Research, vol. 32, no. 2, pp. 233-239, (2002). doi:10.1016/S0008-8846(01)00665-2
  • [10] D. Falliano, D. De Domenico, G. Ricciardi and E. Gugliandolo, "Key factors affecting the compressive strength of foamed concrete," In IOP Conference Series: Materials Science and Engineering, vol. 431, no. 6, pp. 1-8, 2018. doi:10.1088/1757-899X/431/6/062009
  • [11] E.P. Kearsley and P.J. Wainwright, "The effect of high fly ash content on the compressive strength of foamed concrete," Cement and Concrete Research, vol. 31, no. 1, pp. 105-112, 2001. doi:10.1016/S0008-8846(00)00430-0
  • [12] T. Li, F. Huang, J. Zhu, J. Tang and J. Liu, "Effect of foaming gas and cement type on the thermal conductivity of foamed concrete," Construction and Building Materials, vol. 231 2020. doi:10.1016/j.conbuildmat.2019.117197 [13] M.S. Goual, A. Bali and M. Queneudec, "Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modelling," Journal of Physics D: Applied Physics, vol. 32, no. 23, 1999. doi:10.1088/0022-3727/32/23/310
  • [14] N. Narayanan and K. Ramamurthy, "Structure and properties of aerated concrete: a review," Cement and Concrete Composites, vol. 22 no. 5, pp. 321-329, 2000. doi:10.1016/S0958-9465(00)00016-0
  • [15] A. Öchsner, G.E. Murch and M.J. de Lemos (Eds.). "Cellular and porous materials: thermal properties simulation and prediction," John Wiley & Sons; 2008.
  • [16] N.C. Balaji, M. Mani and B.V. Reddy, "Discerning heat transfer in building materials," Energy Procedia, vol. 54, pp. 654-668, 2014. doi:10.1016/j.egypro.2014.07.307
  • [17] F. Batool, M.M Rafi and V. Bindiganavile, "Microstructure and thermal conductivity of cement-based foam: A review," Journal of Building Engineering, vol. 20, pp. 696-704, 2018. doi:10.1016/j.jobe.2018.09.008
  • [18] S.Y. Chung, C. Lehmann, M. Abd Elrahman and D. Stephan, "Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches," Applied Sciences, vol. 7, no. 6, pp. 550, 2017. doi:10.3390/app7060550
  • [19] M. Gökçe, "Determining the physical properties of polymer in different admixtures used for self-compacting cement paste by ESEM," Micron, vol. 139, 2020. doi:10.1016/j.micron.2020.102953
  • [20] K. Wang, V.R. Schaefer, J.T. Kevern and M.T. Suleiman, "Development of mix proportion for functional and durable pervious concrete," in NRMCA concrete technology forum: focus on pervious concrete (pp. 1-12). Nashville; 2006.
  • [21] F. Giustozzi, "Polymer-modified pervious concrete for durable and sustainable transportation infrastructures," Construction and Building Materials, vol. 111, pp. 502-512, 2016. doi:10.1016/j.conbuildmat.2016.02.136
  • [22] J.P. Won, J.H. Kim, S.W. Lee and C.G. Park, "Durability of low-heat, ultra rapid-hardening, latex-modified polymer concrete" Progress in Rubber, Plastics and Recycling Technology, vol. 25, no. 2, pp. 91-102, 2009. doi:10.1177/147776060902500201
  • [23] Z. Bahranifard, F.F. Tabrizi and A.R. Vosoughi, "An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete," Construction and Building Materials, vol. 205, pp. 175-185, 2019. doi:10.1016/j.conbuildmat.2019.01.175
  • [24] V.N. Tarasenko, "Impact of foamed matrix components on foamed concrete properties" in IOP Conference Series Materials Science and Engineering, vol. 327, no. 3, 2018. doi:10.1088/1757-899X/327/3/032054
  • [25] TS EN 12390-3. Testing hardened concrete - Part 3: Compressive strength of test specimens. Turkish Standard, Ankara; 2019.
  • [26] ASTM C518-21’’Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM, 2021.
  • [27] TS EN 1097-6. Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Turkish Standard, Ankara; 2013.
  • [28] P. Azarsa and R. Gupta, "Specimen preparation for nano-scale investigation of cementitious repair material," Micron, vol. 107, pp. 43-54, 2018. doi:10.1016/j.micron.2018.01.007
  • [29] C 107/2-2005. Normativ privind calculul termotehnic al elementelor de construcţie ale clădirilor. Partea a 2-a: Normativ privind calculul coeficienţilor globali de izolare termică la clădirile cu altă destinaţie decât cea de locuire; 2005.
  • [30] O. Dénes, I. Florea and D.L. Manea, "Utilization of sheep wool as a building material," Procedia Manufacturing, vol. 32, pp. 236-241, 2019. doi:10.1016/j.promfg.2019.02.208

Sıvı Lateks Kullanılarak Üretilen Köpük Betonun Özelliklerinin Araştırılması

Year 2024, Volume: 10 Issue: 2, 281 - 292, 31.08.2024

Abstract

Hafif beton türü olan köpük beton, hafifliği ve uygulama kolaylığı nedeniyle oldukça fazla tercih edilmektedir. Ayrıca köpük betonun özelliklerinin daha da iyileştirilmesi amacıyla köpük beton karışımında ikame malzemeler kullanılmaktadır. Bu çalışmada sıvı lateks kullanılarak üretilen köpük betonun mühendislik özellikleri analiz edilmiştir. Bu amaçla bu çalışmada karışım suyuna sıvı lateks eklenmiştir. Lateks miktarı çimento ağırlığının %25'i olarak sabitlenmiştir. Ayrıca karışıma eklenen sıvı lateks miktarı, karışım suyu miktarından eşit olacak şekilde azaltılmıştır. Sonuçlara göre sıvı lateksin üretilen köpük betonun mühendislik özelliklerine olumlu katkılar sağladığı görülmüştür. Lateks katkılı numunelerin su emme değerinin referans numuneye göre %59 oranında azaldığı gözlemlenmiştir. Ayrıca lateks ilave edilen numunelerin ısıl iletkenlik katsayısı referans numuneye göre daha düşük çıkmıştır. Mikroyapısal analizde gözeneklerin referans numuneye göre daha homojen olduğu ve herhangi bir çatlak oluşmadığı görülmüştür. Son olarak sıvı lateksin betonda oluşturduğu uzun zincirli bağlar ilk olarak SEM görüntü analizi ile belirlenmiştir.

References

  • [1] M. Gökçe and B.Ş. Şeker, "Foam concrete," Journal of New Results in Science, vol. 9,no.1, pp. 9-18, May 2020.
  • [2] K. Ramamurthy, E.K. Nambiar and G.I.S. Ranjani, "A classification of studies on properties of foam concrete," Cement and Concrete Composites, vol. 31, no. 6, pp. 388-396, 2009. doi:10.1016/j.cemconcomp.2009.04.006
  • [3] Y.M. Amran, N. Farzadnia and A.A. Ali, "Properties and applications of foamed concrete; a review," Construction and Building Materials, vol. 101, pp. 990-1005, 2015. doi:10.1016/j.conbuildmat.2015.10.112
  • [4] Z. Pan, H. Li and W. Liu, "Preparation and characterization of super low density foamed concrete from Portland cement and admixtures," Construction and Building Materials, vol. 72, pp. 256-261, 2014. doi:10.1016/j.conbuildmat.2014.08.078
  • [5] E. Namsone, G. Šahmenko and A. Korjakins, "Durability properties of high performance foamed concrete," Procedia Engineering, vol.172 pp. 760-767, 2017. doi:10.1016/j.proeng.2017.02.120
  • [6] P. Li, H. Wu, Y. Liu, J. Yang, Z. Fang and B. Lin, "Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete," Construction and Building Materials, vol. 205, pp. 529-542, 2019. doi:10.1016/j.conbuildmat.2019.01.212
  • [7] Z.M. Yaseen, R.C. Deo, A. Hilal, A.M. Abd, L.C. Bueno, S. Salcedo-Sanz and M.L. Nehdi, "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model," Advances in Engineering Software, vol. 115, pp. 112-125, 2018. doi:10.1016/j.advengsoft.2017.09.004
  • [8] S.Y. Chung, C. Lehmann, M. Abd Elrahman and D. Stephan, "Microstructural characterization of foamed concrete with different densities using microscopic techniques," Cement Wapno Beton, vol. 23, no. 3 pp. 216-225, 2018.
  • [9] E.P. Kearsley and P.J. Wainwright, "The effect of porosity on the strength of foamed concrete," Cement and Concrete Research, vol. 32, no. 2, pp. 233-239, (2002). doi:10.1016/S0008-8846(01)00665-2
  • [10] D. Falliano, D. De Domenico, G. Ricciardi and E. Gugliandolo, "Key factors affecting the compressive strength of foamed concrete," In IOP Conference Series: Materials Science and Engineering, vol. 431, no. 6, pp. 1-8, 2018. doi:10.1088/1757-899X/431/6/062009
  • [11] E.P. Kearsley and P.J. Wainwright, "The effect of high fly ash content on the compressive strength of foamed concrete," Cement and Concrete Research, vol. 31, no. 1, pp. 105-112, 2001. doi:10.1016/S0008-8846(00)00430-0
  • [12] T. Li, F. Huang, J. Zhu, J. Tang and J. Liu, "Effect of foaming gas and cement type on the thermal conductivity of foamed concrete," Construction and Building Materials, vol. 231 2020. doi:10.1016/j.conbuildmat.2019.117197 [13] M.S. Goual, A. Bali and M. Queneudec, "Effective thermal conductivity of clayey aerated concrete in the dry state: experimental results and modelling," Journal of Physics D: Applied Physics, vol. 32, no. 23, 1999. doi:10.1088/0022-3727/32/23/310
  • [14] N. Narayanan and K. Ramamurthy, "Structure and properties of aerated concrete: a review," Cement and Concrete Composites, vol. 22 no. 5, pp. 321-329, 2000. doi:10.1016/S0958-9465(00)00016-0
  • [15] A. Öchsner, G.E. Murch and M.J. de Lemos (Eds.). "Cellular and porous materials: thermal properties simulation and prediction," John Wiley & Sons; 2008.
  • [16] N.C. Balaji, M. Mani and B.V. Reddy, "Discerning heat transfer in building materials," Energy Procedia, vol. 54, pp. 654-668, 2014. doi:10.1016/j.egypro.2014.07.307
  • [17] F. Batool, M.M Rafi and V. Bindiganavile, "Microstructure and thermal conductivity of cement-based foam: A review," Journal of Building Engineering, vol. 20, pp. 696-704, 2018. doi:10.1016/j.jobe.2018.09.008
  • [18] S.Y. Chung, C. Lehmann, M. Abd Elrahman and D. Stephan, "Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches," Applied Sciences, vol. 7, no. 6, pp. 550, 2017. doi:10.3390/app7060550
  • [19] M. Gökçe, "Determining the physical properties of polymer in different admixtures used for self-compacting cement paste by ESEM," Micron, vol. 139, 2020. doi:10.1016/j.micron.2020.102953
  • [20] K. Wang, V.R. Schaefer, J.T. Kevern and M.T. Suleiman, "Development of mix proportion for functional and durable pervious concrete," in NRMCA concrete technology forum: focus on pervious concrete (pp. 1-12). Nashville; 2006.
  • [21] F. Giustozzi, "Polymer-modified pervious concrete for durable and sustainable transportation infrastructures," Construction and Building Materials, vol. 111, pp. 502-512, 2016. doi:10.1016/j.conbuildmat.2016.02.136
  • [22] J.P. Won, J.H. Kim, S.W. Lee and C.G. Park, "Durability of low-heat, ultra rapid-hardening, latex-modified polymer concrete" Progress in Rubber, Plastics and Recycling Technology, vol. 25, no. 2, pp. 91-102, 2009. doi:10.1177/147776060902500201
  • [23] Z. Bahranifard, F.F. Tabrizi and A.R. Vosoughi, "An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete," Construction and Building Materials, vol. 205, pp. 175-185, 2019. doi:10.1016/j.conbuildmat.2019.01.175
  • [24] V.N. Tarasenko, "Impact of foamed matrix components on foamed concrete properties" in IOP Conference Series Materials Science and Engineering, vol. 327, no. 3, 2018. doi:10.1088/1757-899X/327/3/032054
  • [25] TS EN 12390-3. Testing hardened concrete - Part 3: Compressive strength of test specimens. Turkish Standard, Ankara; 2019.
  • [26] ASTM C518-21’’Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. ASTM, 2021.
  • [27] TS EN 1097-6. Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption. Turkish Standard, Ankara; 2013.
  • [28] P. Azarsa and R. Gupta, "Specimen preparation for nano-scale investigation of cementitious repair material," Micron, vol. 107, pp. 43-54, 2018. doi:10.1016/j.micron.2018.01.007
  • [29] C 107/2-2005. Normativ privind calculul termotehnic al elementelor de construcţie ale clădirilor. Partea a 2-a: Normativ privind calculul coeficienţilor globali de izolare termică la clădirile cu altă destinaţie decât cea de locuire; 2005.
  • [30] O. Dénes, I. Florea and D.L. Manea, "Utilization of sheep wool as a building material," Procedia Manufacturing, vol. 32, pp. 236-241, 2019. doi:10.1016/j.promfg.2019.02.208
There are 29 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Research Articles
Authors

Murat Gökçe 0000-0002-8117-0866

Kenan Toklu 0000-0003-1288-845X

Early Pub Date June 6, 2024
Publication Date August 31, 2024
Submission Date April 1, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE M. Gökçe and K. Toklu, “Investigation of the Properties of Foam Concrete Produced Using Liquid Latex”, GJES, vol. 10, no. 2, pp. 281–292, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg