Review
BibTex RIS Cite

An Overview of the Reflections of Nanotechnology Applications on the Textile Industry and Future Perspectives

Year 2024, Volume: 10 Issue: 3, 657 - 675, 31.12.2024

Abstract

Textiles are a multifaceted part of human life. From clothing to home decoration, from industrial applications to economic impacts, textile products play a significant role in people's daily lives. While garments and accessories reflect forms of personal expression, home textiles beautify living spaces and provide comfort. Additionally, the textile industry creates employment opportunities for millions of people worldwide. The traditional textile sector influences human life culturally, socially, and economically. However, special conditions require special equipment and, consequently, special textiles. In the metal industry, textiles with high heat resistance and flame retardancy, as well as those providing protection against various chemicals in the chemical production sector, require special engineering and manufacturing technologies. Changing living conditions drive people to seek new solutions. In this context, it is inevitable that the textiles used will also change to meet people's evolving needs. Beyond the currently desired features, such as antibacterial properties, resistance to rapid and large temperature fluctuations, and protection against radiation and physical wear, it will be demanded that textiles possess additional features enabled by advancing technology. It is likely that in the future, textiles capable of self-generating the necessary energy while connecting to the Internet of Things (IoT) system and during health monitoring via sensors used to continuously track human health conditions will be utilized. This article examines recent studies on the applications of important nanotechnology in textiles and outlines a roadmap for the future.

References

  • [1] T. Jeevani, “Nanotextiles- A broader perspective,” Journal of Nanomedicine & Nanotechnology, vol. 2, no. 7, pp. 1–5, 2011. doi:10.4172/2157-7439.1000124
  • [2] K. P. Chowdhury, M. A. B. H. Susan, and S. Ahmed, “Nanomaterials for multifunctional textiles,” in Emerging Applications of Nanomaterials, Materials Research Foundations, pp. 169–217, 2023. doi:10.21741/9781644902288-8
  • [3] M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” Journal of Advanced Research, vol. 38, pp. 55–75, 2022. doi:10.1016/j.jare.2022.01.008
  • [4] A. K. M. A. Hosne Asif and M. Z. Hasan, “Application of nanotechnology in modern textiles: A review,” International Journal of Current Engineering and Technology, vol. 8, no. 2, pp. 227–231, Jan. 2018. doi:10.14741/ijcet/v.8.2.5
  • [5] A. A. El-Kheir and L. K. El-Gabry, “Potential applications of nanotechnology in functionalization of synthetic fibres (A review),” Egyptian Journal of Chemistry, vol. 65, no. 9, pp. 67–85, 2022. doi:10.21608/EJCHEM.2022.106369.4891
  • [6] A. Salman, F. A. Metwally, M. K. El-Bisi, and G. A. M. Emara, “Effect of geometrical yarn parameters: Conventional and compact ring spinning on certain functional properties of tio2nps treated woven cotton fabrics,” Egyptian Journal of Chemistry, vol. 63, no. 5, pp. 1757–1766, 2020. doi:10.21608/ejchem.2019.18226.2113
  • [7] Y. Wang, S. Lu, J. Zheng, and L. Liang, “Advances in latest application status, challenges, and future development direction of electrospinning technology in the biomedical,” Journal of Nanomaterials, vol. 2022. pp. 1–18, Sep. 2022. doi:10.1155/2022/3791908
  • [8] C. I. Idumah, “Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19,” Journal of the Textile Institute, vol. 112, no. 12, pp. 2056–2076, 2021. doi:10.1080/00405000.2020.1858600
  • [9] R. Mahmud and F. Nabi, “Application of nanotechnology in the field of textile,” IOSR Journal of Polymer and Textile Engineering, vol. 04, no. 01, pp. 01–06, Jan. 2017. doi:10.9790/019X-0401010106
  • [10] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” Journal of Advanced Research, vol. 7, no. 1, pp. 17–28, 2016. doi:10.1016/j.jare.2015.02.007
  • [11] S. Shaarawy, “A review on the development of innovative capabilities in the textile finishing of natural fibers,” Egyptian Journal of Chemistry, vol. 62, no. Part 2, pp. 857–879, 2019. doi:10.21608/EJCHEM.2019.19009.2169
  • [12] L. Hu et al., “Stretchable, porous, and conductive energy textiles,” Nano Letters, vol. 10, no. 2, pp. 708–714, Feb. 2010. doi:10.1021/nl903949m
  • [13] W. Kim, T. Han, Y. Gwon, S. Park, H. Kim, and J. Kim, “Biodegradable and flexible nanoporous films for design and fabrication of active food packaging systems,” Nano Letters, vol. 22, no. 8, pp. 3480–3487, Apr. 2022. doi:10.1021/acs.nanolett.2c00246
  • [14] H. Saleem and S. J. Zaidi, “Sustainable use of nanomaterials in textiles and their environmental impact,” Materials (Basel)., vol. 13, no. 22, pp. 1–28, 2020. doi:10.3390/ma13225134
  • [15] M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi, Eds., “Chapter 1 - Basic Properties and Measuring Methods of Nanoparticles,” in Nanoparticle Technology Handbook (Third Edition), Elsevier, 2018. pp. 3–47. doi:10.1016/B978-0-444-64110-6.00001-9
  • [16] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 2 - Structural Control of Nanoparticles,” Elsevier, 2018. pp. 49–107. doi:10.1016/B978-0-444-64110-6.00002-0
  • [17] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 4 - Control of Nanostructure of Materials,” Elsevier, 2018. pp. 169–253. doi:10.1016/B978-0-444-64110-6.00004-4
  • [18] R. Mishra et al., “The production, characterization and applications of nanoparticles in the textile industry,” Textile Progress, vol. 46, no. 2, pp. 133–226, 2014. doi:10.1080/00405167.2014.964474
  • [19] S. Riaz et al., “Functional finishing and coloration of textiles with nanomaterials,” Coloration Technology, vol. 134, no. 5, pp. 327–346, 2018. doi:10.1111/cote.12344
  • [20] N. Vigneshwaran, “Application of Functional Nanoparticle Finishes on Cotton Textiles,” Trends in Textile Engineering & Fashion Technology, vol. 3, no. 4, pp. 358–362, 2018. doi:10.31031/tteft.2018.03.000568
  • [21] I. S. Tania, M. Ali, and M. Akter, “Fabrication, characterization, and utilization of ZnO nanoparticles for stain release, bacterial resistance, and UV protection on cotton fabric,” Journal of Engineered Fibers and Fabrics, vol. 17, 2022. doi:10.1177/15589250221136378
  • [22] W. Raslan, A. El-Halwagy, and H. Elsayad, “Recent Advances in Plasma/Nanoparticles Treatments of Textile Fibers,” Journal of Textiles, Coloration and Polymer Science, vol. 17, no. 2, pp. 87–105, 2020. doi:10.21608/jtcps.2020.33748.1042
  • [23] I. Safarik et al., “Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application,” ACS Applied Materials & Interfaces, vol. 13, no. 20, pp. 23627–23637, May 2021. doi:10.1021/acsami.1c02154
  • [24] C. K. Kundu, M. T. Hossen, and R. Saha, “Coloration with nanoparticles: Scope for developing simultaneous colouring and functional properties onto textile surfaces—a short review,” Coloration Technology, vol. 138, no. 5, pp. 443–455, 2022. doi:10.1111/cote.12621
  • [25] S. Currie et al., “Rechargeable Potent Anti-Viral Cotton Grafted with a New Quaternized N-Chloramine,” Advanced Materials Interfaces, vol. 9, no. 35, pp. 1–13, 2022. doi:10.1002/admi.202201338
  • [26] D. Lee, J. S. Sang, P. J. Yoo, T. J. Shin, K. W. Oh, and J. Park, “Machine-washable smart textiles with photothermal and antibacterial activities from nanocomposite fibers of conjugated polymer nanoparticles and polyacrylonitrile,” Polymers (Basel)., vol. 11, no. 1, 2019. doi:10.3390/polym11010016
  • [27] A. Yadav et al., “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bulletin of Materials Science, vol. 29, no. 6, pp. 641–645, 2006. doi:10.1007/s12034-006-0017-y
  • [28] S. Fateixa, M. Wilhelm, H. I. S. Nogueira, and T. Trindade, “SERS and Raman imaging as a new tool to monitor dyeing on textile fibres,” Journal of Raman Spectroscopy, vol. 47, no. 10, pp. 1239–1246, 2016. doi:10.1002/jrs.4947
  • [29] N. Vrinceanu, S. Bucur, C. M. Rimbu, S. Neculai-Valeanu, S. Ferrandiz Bou, and M. P. Suchea, “Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a minireview),” Textile Research Journal, vol. 92, no. 19–20, pp. 3889–3902, 2022. doi:10.1177/00405175211070613
  • [30] V. Bhandari, S. Jose, P. Badanayak, A. Sankaran, and V. Anandan, “Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review,” Industrial & Engineering Chemistry Research, vol. 61, no. 1, pp. 86–101, Jan. 2022. doi:10.1021/acs.iecr.1c04203
  • [31] M. Yazıcı, Ö. Önal, and O. Konuş, “Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu / Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği ile Elde Edilmesi ve Karakterizasyonu”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 21, no. 3, pp. 184–194, 2018.
  • [32] M. Afshari, “1 - Introduction,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 1–8. doi:10.1016/B978-0-08-100907-9.00001-5
  • [33] X. Qin and S. Subianto, “17 - Electrospun nanofibers for filtration applications,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 449–466. doi:10.1016/B978-0-08-100907-9.00017-9
  • [34] T. R. Hayes and B. Su, “15 - Wound dressings,” in Woodhead Publishing Series in Biomaterials, L. A. Bosworth and S. B. T.-E. for T. R. Downes, Eds. Woodhead Publishing, 2011. pp. 317–339. doi:10.1533/9780857092915.2.317
  • [35] R. Bagherzadeh, M. Gorji, M. S. Sorayani Bafgi, and N. Saveh-Shemshaki, “18 - Electrospun conductive nanofibers for electronics,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 467–519. doi:10.1016/B978-0-08-100907-9.00018-0
  • [36] S. Siengchin, “A review on lightweight materials for defence applications: Present and future developments,” Defence Technology, vol. 24, pp. 1–17, 2023. doi:10.1016/j.dt.2023.02.025
  • [37] C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, “Electrospinning versus fibre production methods: from specifics to technological convergence,” Chemical Society Reviews, vol. 41, no. 13, pp. 4708–4735, 2012. doi:10.1039/C2CS35083A
  • [38] P. A. Mouthuy, N. Zargar, O. Hakimi, E. Lostis, and A. Carr, “Fabrication of continuous electrospun filaments with potential for use as medical fibres,” Biofabrication, vol. 7, no. 2, 2015. doi:10.1088/1758-5090/7/2/025006
  • [39] A. Sattar, A. Khatri, S. Ali, and F. Ahmed, “Digital ink-jet printing of regenerated cellulose nanofibrous mats with reactive inks,” Coloration Technology, vol. 140, no. 2, pp. 279–286, 2024. doi:1111/cote.12713
  • [40] R. E. Neisiany, S. N. Khorasani, M. Naeimirad, J. K. Y. Lee, and S. Ramakrishna, “Improving Mechanical Properties of Carbon/Epoxy Composite by Incorporating Functionalized Electrospun Polyacrylonitrile Nanofibers,” Macromolecular Materials and Engineering, vol. 302, no. 5, pp. 1–11, 2017. doi:10.1002/mame.201600551
  • [41] K. Abe and H. Yano, “Cellulose nanofiber-based hydrogels with high mechanical strength,” Cellulose, vol. 19, no. 6, pp. 1907–1912, 2012. doi:10.1007/s10570-012-9784-3
  • [42] V. Beachley and X. Wen, “Fabrication of nanofiber reinforced protein structures for tissue engineering,” Materials Science and Engineering C, vol. 29, no. 8, pp. 2448–2453, 2009. doi:10.1016/j.msec.2009.07.008
  • [43] X. Li et al., “Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration,” BioMed Research International, vol. 2014. 2014. doi:10.1155/2014/542958
  • [44] V. M. Merkle, L. Zeng, M. J. Slepian, and X. Wu, “Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol,” Biopolymers, vol. 101, no. 4, pp. 336–346, 2014. doi:10.1002/bip.22367
  • [45] K. Abe, S. Ifuku, M. Kawata, and H. Yano, “Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment,” Cellulose, vol. 21, no. 1, pp. 535–540, 2014. doi:10.1007/s10570-013-0095-0
  • [46] Z. Kaya, E. Balcioglu, and H. Gün, “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi,” Politeknik Dergisi, vol. 25, no. 2, pp. 843–853, 2022. doi:10.2339/politeknik.707130
  • [47] B. Ergene, “Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 37, no. 1, pp. 469–484, 2022. doi:10.17341/GAZIMMFD.934143
  • [48] A. Çosgun and G. Yilmaz, “Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17, no. 1, pp. 44–54, 2022. doi:10.29233/sdufeffd.992932
  • [49] H. İ. Yavuz and R. Yamanoglu, “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri,” Politeknik Dergisi, vol. 26, no. 4, pp. 1601–1620, 2023. doi:10.2339/politeknik.987216
  • [50] G. Sadullahoğlu, “Production and Characterization of B2O3 Added M-Type Barium Hexaferrite Composite Magnet,” Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 13, no. 2 pp. 382-389, 2021. doi:10.29137/umagd.737894
  • [51] N. Taş and F. Egilmez, “İmplant Destekli Hibrit Protezlerin Yapımında Kullanılan Materyaller ve Üretim Yöntemleri,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, pp. 1–1, 2021. doi:10.17567/ataunidfd.757321
  • [52] Y. C. Toklu, A. E. Çercevik, and M. Şahinöz, “Otomatik Yapı Üretim Teknolojisinde Kullanılabilecek Malzemelerin Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, p. 51, 2016. doi:10.19113/sdufbed.73967
  • [53] Ş. Kılıncarslan and Y. Şimsek Türker, “Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi,” Teknik Bilimler Dergisi, vol. 10, no. 1, pp. 23–30, 2020. doi:10.35354/tbed.615101
  • [54] K. Al and E. Bayrakdar Ates, “Sustainable Hydrogen Production Technologies: Biomass Based Approaches,” Bartın University International Journal of Natural and Applied Sciences, vol. 5, no. 1, pp. 18–37, 2022. doi:10.55930/jonas.1101384
  • [55] B. Karagüzel Kayaoǧlu, I. Göcek, H. Kizil, and L. Trabzon, “Functional nano and micro-scale thin film deposition on textiles: Emerging technologies and applications,” Journal of Textile Engineering, vol. 19, no. 88, pp. 39–47, 2012. doi:10.7216/130075992012198805
  • [56] K. Müller et al., “Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields,” Nanomaterials, vol. 7, no. 4, 2017. doi:10.3390/nano7040074
  • [57] Ngakan Putu Gede Satria Kesumayasa, Suriati, and Rudianta, “Physicochemical Properties of Porang Nanocoating with the Addition of Essential Oils,” Sustainable Environment Agricultural Science, vol. 7, no. 2, pp. 130–138, 2023. doi:10.22225/seas.7.2.6842.130-138
  • [58] K. Willems, P. Lauweryns, G. Verleye, and J. Van Goethem, “Randomized controlled trial of posterior lumbar interbody fusion with Ti- And cap-nanocoated polyetheretherketone cages: Comparative study of the 1-year radiological and clinical outcome,” International Journal of Spine Surgery, vol. 13, no. 6, pp. 575–587, 2019. doi:10.14444/6080
  • [59] I. Dominguez, I. Del Villar, O. Fuentes, J. M. Corres, and I. R. Matias, “Interdigital concept in photonic sensors based on an array of lossy mode resonances,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021. doi:10.1038/s41598-021-92765-0
  • [60] T. Phan, J. E. Jones, M. Chen, D. K. Bowles, W. P. Fay, and Q. Yu, “A Biocompatibility Study of Plasma Nanocoatings onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications,” Materials (Basel)., vol. 15, no. 17, 2022. doi:10.3390/ma15175968
  • [61] M. I. Abdulraheem, A. Y. Moshood, Y. Chen, H. Chen, H. Zhang, and J. Hu, “Advancements in Designing Smart and Intelligent Nanocoatings,” in Sustainable Approach to Protective Nanocoatings, 2024. pp. 57–87doi:10.4018/979-8-3693-3136-1.ch003
  • [62] A. Thakur and A. Kumar, “Chapter 19 - Self-healing nanocoatings for automotive application,” in Micro and Nano Technologies, H. Song, T. A. Nguyen, G. Yasin, N. B. Singh, and R. K. B. T.-N. in the A. I. Gupta, Eds. Elsevier, 2022. pp. 403–427. doi:10.1016/B978-0-323-90524-4.00019-0
  • [63] E. Pakdel, J. Fang, J. Fang, L. Sun, X. Wang, and X. Wang, “Nanocoatings for Smart Textiles,” in Smart Textiles, 2018. pp. 247–300. doi:10.1002/9781119460367.ch8.
  • [64] T. I. Shaheen, “Nanotechnology for modern textiles: highlights on smart applications,” Journal of the Textile Institute, vol. 113, no. 10, pp. 2274–2284, 2021. doi:10.1080/00405000.2021.1962625
  • [65] M. Zayed, M. Bakr, and H. Ghazal, “Recent developments in the utilization of polymer nanocomposites in textile applications,” Journal of Textiles, Coloration and Polymer Science, vol. 0, no. 0, pp. 0–0, 2023. doi:10.21608/jtcps.2023.193744.1172
  • [66] S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. Pedro Souto, and M. Fátima Esteves, “Polymer Nanocomposites for Multifunctional Finishing of Textiles - a Review,” Textile Research Journal, vol. 80, no. 13, pp. 1290–1306, Mar. 2010. doi:10.1177/0040517509357652
  • [67] S. Gowri, M. A. Khan, and A. K. Srivastava, “Textile finishing using polymer nanocomposites for radiation shielding, flame retardancy and mechanical strength,” Textile & Leather Review, vol. 4, no. 3, pp. 160–180, 2021. doi:10.31881/TLR.2021.07
  • [68] J. Bouchard, A. Cayla, V. Lutz, C. Campagne, and E. Devaux, “Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning,” Textile Research Journal, vol. 82, no. 20, pp. 2106–2115, 2012. doi:10.1177/0040517512450760
  • [69] S. Yao, P. Swetha, and Y. Zhu, “Nanomaterial-Enabled Wearable Sensors for Healthcare,” Advanced Healthcare Materials, vol. 7, no. 1, pp. 1–27, 2018. doi:10.1002/adhm.201700889
  • [70] S. Parham et al., “Textile/Al2O3–TiO2 nanocomposite as an antimicrobial and radical scavenger wound dressing,” RSC Advances, vol. 6, no. 10, pp. 8188–8197, 2016. doi:10.1039/C5RA20361A
  • [71] L. Noureen et al., “Multifunctional Ag3PO4-rGO-Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection,” ACS Applied Materials & Interfaces, vol. 12, no. 5, pp. 6343–6350, Feb. 2020. doi:10.121/acsami.9b16043
  • [72] V. T. Novi, A. Gonzalez, J. Brockgreitens, and A. Abbas, “Highly efficient and durable antimicrobial nanocomposite textiles,” Scientific Reports, vol. 12, no. 1, pp. 1–9, 2022. doi:10.1038/s41598-022-22370-2
  • [73] D. C. Çelikel, “Smart E-Textile Materials,” in Advanced Functional Materials, N. Tasaltin, P. S. Nnamchi, and S. Saud, Eds. Rijeka: IntechOpen, 2020. doi:10.5772/intechopen.92439
  • [74] N. K. Persson, J. G. Martinez, Y. Zhong, A. Maziz, and E. W. H. Jager, “Actuating Textiles: Next Generation of Smart Textiles,” Advanced Materials Technologies, vol. 3, no. 10, pp. 1–12, 2018. doi:10.1002/admt.201700397
  • [75] N. Y. Abu-Thabit, “Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles,” Journal of Chemical Education, vol. 93, no. 9, pp. 1606–1611, Sep. 2016. doi:10.1021/acs.jchemed.6b00060
  • [76] A. M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F. M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications, Journal of Industrial Textiles, vol. 48, no. 3. 2018. doi:10.1177/1528083717699368
  • [77] K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, and G. Tröster, “Woven electronic fibers with sensing and display functions for smart textiles,” Advanced Materials, vol. 22, no. 45, pp. 5178–5182, 2010. doi:10.1002/adma.201002159
  • [78] B. Younes, “Smart E-textiles: A review of their aspects and applications,” Journal of Industrial Textiles, vol. 53, pp. 1–23, 2023. doi:10.1177/15280837231215493
  • [79] A. Salman, F. A. Metwally, M. Elbisi, and G. A. M. Emara, “Applications of nanotechnology and advancements in smart wearable textiles: An overview,” Egyptian Journal of Chemistry, vol. 63, no. 6, pp. 2177–2184, 2020. doi:10.21608/ejchem.2019.18223.2112
  • [80] S. H. W. Ossevoort, “14 - Improving the sustainability of smart textiles,” in Multidisciplinary Know-How for Smart-Textiles Developers, T. Kirstein, Ed. Woodhead Publishing, 2013. pp. 399–419. doi:10.1533/9780857093530.3.399
  • [81] K. Cherenack and L. van Pieterson, “Smart textiles: Challenges and opportunities,” Journal of Applied Physics, vol. 112, no. 9, p. 91301, 2012. doi:10.1063/1.4742728
  • [82] E. Özdoğan, A. Demir, and N. Seventekin, “Nanoteknoloji ve tekstil uygulamaları,” Tekstil ve Konfeksiyon, vol. 3, pp. 159–168, 2006.
  • [83] L.-P. Yu, C.-Y. Xing, S.-T. Fan, F. Liu, B.-J. Li, and S. Zhang, “β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance,” Industrial & Engineering Chemistry Research, vol. 60, no. 28, pp. 10217–10224, Jul. 2021. doi:10.1021/acs.iecr.1c01744
  • [84] H. J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, and S. Lee, “Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019. doi:10.1038/s41598-019-42495-1
  • [85] S. Jose, N. Shanmugam, S. Das, A. Kumar, and P. Pandit, “Coating of lightweight wool fabric with nano clay for fire retardancy,” Journal of the Textile Institute, vol. 110, no. 5, pp. 764–770, 2019. doi:10.1080/00405000.2018.1516529
  • [86] J. Chen et al., “Preparation of biocl/bi2wo6 photocatalyst for efficient fixation on cotton fabric: Applications in uv shielding and self-cleaning performances,” Materials (Basel)., vol. 14, no. 22, 2021. doi:10.3390/ma14227002
  • [87] K. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. Tang, and W. P. Cheung, “Self-cleaning cotton,” Journal of Materials Chemistry, vol. 16, no. 47, pp. 4567–4574, 2006. doi:10.1039/B610861J
  • [88] M. A. Tănase et al., “Facile in situ synthesis of zno flower-like hierarchical nanostructures by the microwave irradiation method for multifunctional textile coatings,” Nanomaterials, vol. 11, no. 10, 2021. doi:10.3390/nano11102574
  • [89] R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties,” Colloids Surfaces B Biointerfaces, vol. 79, no. 1, pp. 5–18, 2010. doi:10.1016/j.colsurfb.2010.03.029
  • [90] H. F. Moafi, A. F. Shojaie, and M. A. Zanjanchi, “Semiconductor-Assisted Self-Cleaning Polymeric Fibers Based on Zinc Oxide Nanoparticles,” Journal of Applied Polymer Science, vol. 121, no. 6, pp. 3111–3732, 2011. doi: 10.1002/app.34179
  • [91] H. Wang, Y. Hu, L. Zhang, and C. Li, “Self-Cleaning Films with High Transparency Based on TiO2 Nanoparticles Synthesized via Flame Combustion,” Industrial & Engineering Chemistry Research, vol. 49, no. 8, pp. 3654–3662, Apr. 2010. doi:10.1021/ie901782w
  • [92] B. K. Tudu, A. Kumar, and B. Bhushan, “Fabrication of superoleophobic cotton fabric for multi-purpose applications,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 377, no. 2150, pp. 1–13, 2019. doi:10.1098/rsta.2019.0129
  • [93] Z. Geng et al., “High-performance TiO2 nanotubes/poly(aryl ether sulfone) hybrid self-cleaning anti-fouling ultrafiltration membranes,” Polymers (Basel)., vol. 11, no. 3, 2019. doi:10.3390/polym11030555
  • [94] G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Gu, and C. Zang, “Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics,” Materials (Basel)., vol. 12, no. 12, 2019. doi:10.3390/ma12122010
  • [95] M. J. Uddin et al., “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 199, no. 1, pp. 64–72, 2008, doi:10.1016/j.jphotochem.2008.05.004
  • [96] S. Naderizadeh et al., “Superhydrophobic Coatings from Beeswax-in-Water Emulsions with Latent Heat Storage Capability,” Advanced Materials Interfaces, vol. 6, no. 5, pp. 1–11, 2019. doi:10.1002/admi.201801782
  • [97] M. Yu, G. Gu, W. D. Meng, and F. L. Qing, “Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent,” Applied Surface Science, vol. 253, no. 7, pp. 3669–3673, 2007. doi:10.1016/j.apsusc.2006.07.086
  • [98] A. Synytska, R. Khanum, L. Ionov, C. Cherif, and C. Bellmann, “Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles,” ACS Applied Materials & Interfaces, vol. 3, no. 4, pp. 1216–1220, Apr. 2011. doi:10.1021/am200033u
  • [99] F. Shams-Ghahfarokhi, A. Khoddami, Z. Mazrouei-Sebdani, J. Rahmatinejad, and H. Mohammadi, “A new technique to prepare a hydrophobic and thermal insulating polyester woven fabric using electro-spraying of nano-porous silica powder,” Surface and Coatings Technology, vol. 366, no. October 2018. pp. 97–105, 2019. doi:10.1016/j.surfcoat.2019.03.025
  • [100] Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li, and T. Zhai, “Artificial Wooden Nacre: A High Specific Strength Engineering Material,” ACS Nano, vol. 14, no. 2, pp. 2036–2043, Feb. 2020. doi:10.1021/acsnano.9b08647
  • [101] H. P. Aravind, S. A. Jadhav, V. B. More, K. D. Sonawane, and P. S. Patil, “Novel One Step Sonosynthesis and Deposition Technique to Prepare Silver Nanoparticles Coated Cotton Textile with Antibacterial Properties,” Colloid Journal, vol. 81, no. 6, pp. 720–727, 2019. doi:10.1134/S1061933X19070019
  • [102] S. Wirunchit, N. Wonganan, and W. Koetniyom, “Multi Self-cleaning Properties of Zinc Oxide Nanoparticles/ Polydimethylsiloxane (ZnO/PDMS) Composite on Polyester Textile,” Current Applied Science and Technology, vol. 23, no. 5, pp. 1–12, 2023. doi:10.55003/cast.2023.05.23.015
  • [103] M. Salat, P. Petkova, J. Hoyo, I. Perelshtein, A. Gedanken, and T. Tzanov, “Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive,” Carbohydrate Polymers, vol. 189, no. February, pp. 198–203, 2018. doi:10.1016/j.carbpol.2018.02.033
  • [104] S. Mondal, “Nanomaterials for UV protective textiles,” Journal of Industrial Textiles, vol. 51, no. 4, pp. 5592S-5621S, 2022. doi:10.1177/1528083721988949.
  • [105] D. Mihailović et al., “Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles,” Polymer Composites, vol. 32, no. 3, pp. 390–397, 2011. doi: 10.1002/pc.21053
  • [106] Z. Wang, M. Xue, K. Huang, and Z. Liu, “Textile Dyeing Wastewater Treatment,” Advances in Treating Textile Effluent, 2011. doi:10.5772/22670
  • [107] J. Yu et al., “Cotton fabric finished by PANI/TiO 2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity,” Applied Surface Science, vol. 470, no. July 2018. pp. 84–90, 2019. doi:10.1016/j.apsusc.2018.11.112
  • [108] N. R. Dhineshbabu and S. Bose, “UV resistant and fire retardant properties in fabrics coated with polymer based nanocomposites derived from sustainable and natural resources for protective clothing application,” Composites Part B: Engineering, vol. 172, no. February, pp. 555–563, 2019. doi:10.1016/j.compositesb.2019.05.013
  • [109] S. Xi, L. Wang, H. Xie, and W. Yu, “Superhydrophilic Modified Elastomeric RGO Aerogel Based Hydrated Salt Phase Change Materials for Effective Solar Thermal Conversion and Storage,” ACS Nano, vol. 16, no. 3, pp. 3843–3851, 2022. doi:10.1021/acsnano.1c08581
  • [110] J. Wu et al., “A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management,” ACS Nano, vol. 16, no. 8, pp. 12801–12812, Aug. 2022. doi:10.1021/acsnano.2c04971
  • [111] J. Cui et al., “Ultra-Stable Phase Change Coatings by Self-Cross-Linkable Reactive Poly(ethylene glycol) and MWCNTs,” Advanced Functional Materials, vol. 32, no. 10, pp. 1–10, 2022. doi:10.1002/adfm.202108000
  • [112] M. A. Ali, A. G. Hassabo, K. M. Seddik, S. Y. M. Gad, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 13, pp. 21–37, 2022. doi:10.21608/EJCHEM.2022.143640.6270
  • [113] C. Cherif, N. H. A. Tran, M. Kirsten, H. Brünig, and R. Vogel, “Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity,” Express Polymer Letters, vol. 12, no. 3, pp. 203–214, 2018. doi:10.3144/expresspolymlett.2018.19
  • [114] V. Skurkyte-Papieviene, A. Abraitiene, A. Sankauskaite, V. Rubeziene, and J. Baltusnikaite-Guzaitiene, “Enhancement of the thermal performance of the paraffin-based microcapsules intended for textile applications,” Polymers (Basel)., vol. 13, no. 7, pp. 1–16, 2021. doi:10.3390/polym13071120
  • [115] M. A. Ali, A. G. Hassabo, K. M. Seddik, sarah yahia, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 131, pp. 21–37, 2022. doi:10.21608/ejchem.2022.143640.6270
  • [116] T. Textor and B. Mahltig, “A sol-gel based surface treatment for preparation of water repellent antistatic textiles,” Applied Surface Science, vol. 256, no. 6, pp. 1668–1674, 2010. doi:10.1016/j.apsusc.2009.09.091
  • [117] E. Samuel, B. Joshi, M. W. Kim, Y. Il Kim, M. T. Swihart, and S. S. Yoon, “Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors,” Chemical Engineering Journal, vol. 371, no. February, pp. 657–665, 2019. doi:10.1016/j.cej.2019.04.065
  • [118] N. Nan et al., “A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics,” Advanced Materials Technologies, vol. 4, no. 3, pp. 1–11, 2019. doi:10.1002/admt.201800338
  • [119] Y. Huang et al., “From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles,” ACS Nano, vol. 9, no. 5, pp. 4766–4775, May 2015. doi:10.1021/acsnano.5b00860
  • [120] Y. Huang et al., “Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor,” ACS Nano, vol. 9, no. 6, pp. 6242–6251, Jun. 2015. doi:10.1021/acsnano.5b01602
  • [121] H. Qu, O. Semenikhin, and M. Skorobogatiy, “Flexible fiber batteries for applications in smart textiles,” Smart Materials and Structures, vol. 24, no. 2, p. 25012, 2014. doi:10.1088/0964-1726/24/2/025012
  • [122] Y. Liu, S. Gorgutsa, C. Santato, and M. Skorobogatiy, “ Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO 4 Cathode and Li 4 Ti 5 O 12 Anode for Applications in Smart Textiles ,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. A349–A356, 2012. doi:10.1149/2.020204jes
  • [123] W. Kim et al., “Soft fabric-based flexible organic light-emitting diodes,” Organic Electronics, vol. 14, no. 11, pp. 3007–3013, 2013. doi:10.1016/j.orgel.2013.09.001
  • [124] S. Choi et al., “Multi-directionally wrinkle-able textile OLEDs for clothing-type displays,” npj Flexible Electronics, vol. 4, no. 1, p. 33, Nov. 2020. doi:10.1038/s41528-020-00096-3
  • [125] Q. Zhao, A. K. Yetisen, A. Sabouri, S. H. Yun, and H. Butt, “Printable Nanophotonic Devices via Holographic Laser Ablation,” ACS Nano, vol. 9, no. 9, pp. 9062–9069, Sep. 2015. doi:10.1021/acsnano.5b03165
  • [126] M. Liao et al., “Multicolor, Fluorescent Supercapacitor Fiber,” Small, vol. 14, no. 43, pp. 1–6, 2018. doi:10.1002/smll.201702052
  • [127] I. Sayed, J. Berzowska, and M. Skorobogatiy, “Jacquard-Woven Photonic Bandgap Fiber Displays,” Research Journal of Textile and Apparel, vol. 14, no. 4, pp. 97–105, 2010. doi:10.1108/RJTA-14-04-2010-B011
  • [128] M. Wasim, M. R. Khan, M. Mushtaq, and A. Naeem, “Surface Modification of Bacterial Cellulose by Copper and Zinc Oxide Sputter Coating for UV-Resistance/Antistatic/Antibacterial Characteristics,” Coatings, vol. 10, no. 4, pp. 364, 2020. doi:10.3390/coatings10040364
  • [129] S. W. Chen et al., “An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing,” Advanced Energy Materials, vol. 7, no. 1, 2017. doi:10.1002/aenm.201601255
  • [130] M. Xu et al., “A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing,” Advanced Energy Materials, vol. 8, no. 9, pp. 1–9, 2018. doi:10.1002/aenm.201702432
  • [131] Y. Zhang et al., “Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System,” Advanced Functional Materials, vol. 29, no. 42, pp. 1–12, 2019. doi:10.1002/adfm.201904259
  • [132] J. H. Lee et al., “Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors,” Advanced Functional Materials, vol. 25, no. 21, pp. 3203–3209, 2015. doi:10.1002/adfm.201500856
  • [133] C. H. Kwon et al., “High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns,” Nature Communications, vol. 5, pp. 1–7, 2014. doi:10.1038/ncomms4928
  • [134] C. Kwon et al., “High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers,” Nature Communications, vol. 9, no. 1, p. 4479, Oct. 2018. doi:10.1038/s41467-018-06994-5
  • [135] S. Ortelli, G. Malucelli, M. Blosi, I. Zanoni, and A. L. Costa, “NanoTiO 2 @DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles,” Journal of Colloid and Interface Science, vol. 546, pp. 174–183, 2019. doi:10.1016/j.jcis.2019.03.055
  • [136] B. Mirani et al., “Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features,” ACS Applied Materials & Interfaces, vol. 12, no. 8, pp. 9080–9089, Feb. 2020. doi:10.1021/acsami.9b23063
  • [137] V. Kumar, P. Pallavi, S. K. Sen, and S. Raut, “Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review,” Water Environment Research, vol. 96, no. 1, pp. 1–23, 2024. doi:10.1002/wer.10959
  • [138] Y. Song, Y. Meng, K. Huo, Z.-Q. Wang, Y. Li, M. Yu, B. Zhang, J. Li “Greenly and Efficiently Dyeing Cotton Fabric with Custom-Tailored Reactive Dyes via Electron Beam Irradiation,” ACS Sustainable Chemistry & Engineering, vol. 12, no. 8, pp. 3121–3129, 2024. doi:10.1021/acssuschemeng.3c07075
  • [139] G. Varadarajan and P. Venkatachalam, “Sustainable textile dyeing processes,” Environmental Chemistry Letters, vol. 14, no. 1, pp. 113–122, 2016. doi:10.1007/s10311-015-0533-3
  • [140] H. Mamane, S. Altshuler, E. Sterenzon, and V. K. Vadivel, “Decolorization of dyes from textile wastewater using biochar: A review,” Acta Innovations, no. 37, pp. 36–46, 2020. doi:10.32933/ActaInnovations.37.3
  • [141] S. Yadav, S. Punia, H. R. Sharma, and A. Gupta, “Nano-remediation for the decolourisation of textile effluents: A review,” Nanofabrication, vol. 7, no. 217, pp. 217–243, 2022. doi:10.37819/nanofab.007.226
  • [142] M. Jiang, K. Ye, J. Deng, J. Lin, W. Ye, S. Zhao, and B. Van der Bruggen “Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment,” Environmental Science & Technology, vol. 52, no. 18, pp. 10698–10708, Sep. 2018. doi:10.1021/acs.est.8b02984
  • [143] G. Weber, H. L. Chen, E. Hinsch, S. Freitas, and S. Robinson, “Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes,” Coloration Technology, vol. 130, no. 6, pp. 445–452, 2014. doi:10.1111/cote.12110
  • [144] D. Tatman and G. Karakan Günaydin, “Natural Dyeing of Buldan Handwoven Fabrics With Plant Shell Extracts: a Step Towards Sustainable Textile,” Muğla Journal of Science and Technology, vol. 7, no. 1, pp. 127–136, 2021. doi:10.22531/muglajsci.886688
  • [145] H. M. Ahmed, M. M. Abdellatif, S. Ibrahim, and F. H. H. Abdellatif, “Mini-emulsified Copolymer/Silica nanocomposite as effective binder and self-cleaning for textiles coating,” Progress in Organic Coatings, vol. 129, no. October 2018. pp. 52–58, 2019. doi:10.1016/j.porgcoat.2019.01.002

Nanoteknoloji Uygulamalarının Tekstil Endüstrisine Yansımaları ve Gelecek Perspektifi Üzerine Genel Bir Bakış

Year 2024, Volume: 10 Issue: 3, 657 - 675, 31.12.2024

Abstract

Tekstil, insan hayatının çok yönlü bir parçasıdır. Giyimden ev dekorasyonuna, endüstriyel uygulamalardan ekonomik etkilere kadar, tekstil ürünleri insanların günlük yaşamlarında önemli bir rol oynar. Giysi ve aksesuarlar kişisel ifade biçimlerini yansıtırken, ev tekstilleri yaşam alanlarını güzelleştirir ve konfor sağlar. Ayrıca, tekstil endüstrisi dünya çapında milyonlarca insan için iş imkanı oluşturur. Geleneksel tekstil sektörü, insan hayatını kültürel, sosyal ve ekonomik açılardan etkilemektedir. Bununla birlikte özel şartlar özel ekipman ve dolayısıyla özel tekstiller gerektirmektedir. Metal endüstrisinde ısı dayanımı yüksek ve geç tutuşan, kimyasal üretim sektöründe çeşitli kimyasallara karşı koruma sağlayan tekstiller için özel mühendislik ve üretim teknolojileri devreye girmektedir. Değişen yaşam şartları insanları yeni arayışlara itmektedir. Bu bağlamda kullanılan tekstillerin de insanların değişen yaşam koşullarıyla arayışlarına cevap niteliğinde değişmesi kaçınılmazdır. Tekstillerin sadece antibakteriyel, hızlı ve büyük sıcaklık değişimlerine dayanıklı, radyasyon ve fiziksel aşınmaya karşı koruma sağlama gibi hali hazırda arzu edilen özellikler dışında gelişen teknoloji ile başka özelliklere de sahip olması talep edilecektir. Özellikle insanların sağlık durumlarının sürekli olarak takip edilmesi için kullanılacak sensörler ile sağlık izleme sırasında ve nesnelerin interneti (IoT) sistemine bağlanırken gerekli enerjiyi kendiliğinden üretebilecek tekstillerin gelecekte kullanılması olasıdır. Bu makalede son yıllardaki önemli nanoteknolojinin tekstil uygulamaları hakkındaki çalışmalar incelenmekte ve ileriye yönelik yol haritası oluşturulmaktadır.

References

  • [1] T. Jeevani, “Nanotextiles- A broader perspective,” Journal of Nanomedicine & Nanotechnology, vol. 2, no. 7, pp. 1–5, 2011. doi:10.4172/2157-7439.1000124
  • [2] K. P. Chowdhury, M. A. B. H. Susan, and S. Ahmed, “Nanomaterials for multifunctional textiles,” in Emerging Applications of Nanomaterials, Materials Research Foundations, pp. 169–217, 2023. doi:10.21741/9781644902288-8
  • [3] M. A. Shah, B. M. Pirzada, G. Price, A. L. Shibiru, and A. Qurashi, “Applications of nanotechnology in smart textile industry: A critical review,” Journal of Advanced Research, vol. 38, pp. 55–75, 2022. doi:10.1016/j.jare.2022.01.008
  • [4] A. K. M. A. Hosne Asif and M. Z. Hasan, “Application of nanotechnology in modern textiles: A review,” International Journal of Current Engineering and Technology, vol. 8, no. 2, pp. 227–231, Jan. 2018. doi:10.14741/ijcet/v.8.2.5
  • [5] A. A. El-Kheir and L. K. El-Gabry, “Potential applications of nanotechnology in functionalization of synthetic fibres (A review),” Egyptian Journal of Chemistry, vol. 65, no. 9, pp. 67–85, 2022. doi:10.21608/EJCHEM.2022.106369.4891
  • [6] A. Salman, F. A. Metwally, M. K. El-Bisi, and G. A. M. Emara, “Effect of geometrical yarn parameters: Conventional and compact ring spinning on certain functional properties of tio2nps treated woven cotton fabrics,” Egyptian Journal of Chemistry, vol. 63, no. 5, pp. 1757–1766, 2020. doi:10.21608/ejchem.2019.18226.2113
  • [7] Y. Wang, S. Lu, J. Zheng, and L. Liang, “Advances in latest application status, challenges, and future development direction of electrospinning technology in the biomedical,” Journal of Nanomaterials, vol. 2022. pp. 1–18, Sep. 2022. doi:10.1155/2022/3791908
  • [8] C. I. Idumah, “Influence of nanotechnology in polymeric textiles, applications, and fight against COVID-19,” Journal of the Textile Institute, vol. 112, no. 12, pp. 2056–2076, 2021. doi:10.1080/00405000.2020.1858600
  • [9] R. Mahmud and F. Nabi, “Application of nanotechnology in the field of textile,” IOSR Journal of Polymer and Textile Engineering, vol. 04, no. 01, pp. 01–06, Jan. 2017. doi:10.9790/019X-0401010106
  • [10] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, “A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise,” Journal of Advanced Research, vol. 7, no. 1, pp. 17–28, 2016. doi:10.1016/j.jare.2015.02.007
  • [11] S. Shaarawy, “A review on the development of innovative capabilities in the textile finishing of natural fibers,” Egyptian Journal of Chemistry, vol. 62, no. Part 2, pp. 857–879, 2019. doi:10.21608/EJCHEM.2019.19009.2169
  • [12] L. Hu et al., “Stretchable, porous, and conductive energy textiles,” Nano Letters, vol. 10, no. 2, pp. 708–714, Feb. 2010. doi:10.1021/nl903949m
  • [13] W. Kim, T. Han, Y. Gwon, S. Park, H. Kim, and J. Kim, “Biodegradable and flexible nanoporous films for design and fabrication of active food packaging systems,” Nano Letters, vol. 22, no. 8, pp. 3480–3487, Apr. 2022. doi:10.1021/acs.nanolett.2c00246
  • [14] H. Saleem and S. J. Zaidi, “Sustainable use of nanomaterials in textiles and their environmental impact,” Materials (Basel)., vol. 13, no. 22, pp. 1–28, 2020. doi:10.3390/ma13225134
  • [15] M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi, Eds., “Chapter 1 - Basic Properties and Measuring Methods of Nanoparticles,” in Nanoparticle Technology Handbook (Third Edition), Elsevier, 2018. pp. 3–47. doi:10.1016/B978-0-444-64110-6.00001-9
  • [16] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 2 - Structural Control of Nanoparticles,” Elsevier, 2018. pp. 49–107. doi:10.1016/B978-0-444-64110-6.00002-0
  • [17] M. Naito, T. Yokoyama, K. Hosokawa, and K. B. T.-N. T. H. (Third E. Nogi, Eds., “Chapter 4 - Control of Nanostructure of Materials,” Elsevier, 2018. pp. 169–253. doi:10.1016/B978-0-444-64110-6.00004-4
  • [18] R. Mishra et al., “The production, characterization and applications of nanoparticles in the textile industry,” Textile Progress, vol. 46, no. 2, pp. 133–226, 2014. doi:10.1080/00405167.2014.964474
  • [19] S. Riaz et al., “Functional finishing and coloration of textiles with nanomaterials,” Coloration Technology, vol. 134, no. 5, pp. 327–346, 2018. doi:10.1111/cote.12344
  • [20] N. Vigneshwaran, “Application of Functional Nanoparticle Finishes on Cotton Textiles,” Trends in Textile Engineering & Fashion Technology, vol. 3, no. 4, pp. 358–362, 2018. doi:10.31031/tteft.2018.03.000568
  • [21] I. S. Tania, M. Ali, and M. Akter, “Fabrication, characterization, and utilization of ZnO nanoparticles for stain release, bacterial resistance, and UV protection on cotton fabric,” Journal of Engineered Fibers and Fabrics, vol. 17, 2022. doi:10.1177/15589250221136378
  • [22] W. Raslan, A. El-Halwagy, and H. Elsayad, “Recent Advances in Plasma/Nanoparticles Treatments of Textile Fibers,” Journal of Textiles, Coloration and Polymer Science, vol. 17, no. 2, pp. 87–105, 2020. doi:10.21608/jtcps.2020.33748.1042
  • [23] I. Safarik et al., “Cotton Textile/Iron Oxide Nanozyme Composites with Peroxidase-like Activity: Preparation, Characterization, and Application,” ACS Applied Materials & Interfaces, vol. 13, no. 20, pp. 23627–23637, May 2021. doi:10.1021/acsami.1c02154
  • [24] C. K. Kundu, M. T. Hossen, and R. Saha, “Coloration with nanoparticles: Scope for developing simultaneous colouring and functional properties onto textile surfaces—a short review,” Coloration Technology, vol. 138, no. 5, pp. 443–455, 2022. doi:10.1111/cote.12621
  • [25] S. Currie et al., “Rechargeable Potent Anti-Viral Cotton Grafted with a New Quaternized N-Chloramine,” Advanced Materials Interfaces, vol. 9, no. 35, pp. 1–13, 2022. doi:10.1002/admi.202201338
  • [26] D. Lee, J. S. Sang, P. J. Yoo, T. J. Shin, K. W. Oh, and J. Park, “Machine-washable smart textiles with photothermal and antibacterial activities from nanocomposite fibers of conjugated polymer nanoparticles and polyacrylonitrile,” Polymers (Basel)., vol. 11, no. 1, 2019. doi:10.3390/polym11010016
  • [27] A. Yadav et al., “Functional finishing in cotton fabrics using zinc oxide nanoparticles,” Bulletin of Materials Science, vol. 29, no. 6, pp. 641–645, 2006. doi:10.1007/s12034-006-0017-y
  • [28] S. Fateixa, M. Wilhelm, H. I. S. Nogueira, and T. Trindade, “SERS and Raman imaging as a new tool to monitor dyeing on textile fibres,” Journal of Raman Spectroscopy, vol. 47, no. 10, pp. 1239–1246, 2016. doi:10.1002/jrs.4947
  • [29] N. Vrinceanu, S. Bucur, C. M. Rimbu, S. Neculai-Valeanu, S. Ferrandiz Bou, and M. P. Suchea, “Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a minireview),” Textile Research Journal, vol. 92, no. 19–20, pp. 3889–3902, 2022. doi:10.1177/00405175211070613
  • [30] V. Bhandari, S. Jose, P. Badanayak, A. Sankaran, and V. Anandan, “Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review,” Industrial & Engineering Chemistry Research, vol. 61, no. 1, pp. 86–101, Jan. 2022. doi:10.1021/acs.iecr.1c04203
  • [31] M. Yazıcı, Ö. Önal, and O. Konuş, “Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu / Polyvinyl pyrrolidone (PVP) Nanoyüzeylerin Elektrospinning Tekniği ile Elde Edilmesi ve Karakterizasyonu”, Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, vol. 21, no. 3, pp. 184–194, 2018.
  • [32] M. Afshari, “1 - Introduction,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 1–8. doi:10.1016/B978-0-08-100907-9.00001-5
  • [33] X. Qin and S. Subianto, “17 - Electrospun nanofibers for filtration applications,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 449–466. doi:10.1016/B978-0-08-100907-9.00017-9
  • [34] T. R. Hayes and B. Su, “15 - Wound dressings,” in Woodhead Publishing Series in Biomaterials, L. A. Bosworth and S. B. T.-E. for T. R. Downes, Eds. Woodhead Publishing, 2011. pp. 317–339. doi:10.1533/9780857092915.2.317
  • [35] R. Bagherzadeh, M. Gorji, M. S. Sorayani Bafgi, and N. Saveh-Shemshaki, “18 - Electrospun conductive nanofibers for electronics,” in Woodhead Publishing Series in Textiles, M. B. T.-E. N. Afshari, Ed. Woodhead Publishing, 2017. pp. 467–519. doi:10.1016/B978-0-08-100907-9.00018-0
  • [36] S. Siengchin, “A review on lightweight materials for defence applications: Present and future developments,” Defence Technology, vol. 24, pp. 1–17, 2023. doi:10.1016/j.dt.2023.02.025
  • [37] C. J. Luo, S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe, “Electrospinning versus fibre production methods: from specifics to technological convergence,” Chemical Society Reviews, vol. 41, no. 13, pp. 4708–4735, 2012. doi:10.1039/C2CS35083A
  • [38] P. A. Mouthuy, N. Zargar, O. Hakimi, E. Lostis, and A. Carr, “Fabrication of continuous electrospun filaments with potential for use as medical fibres,” Biofabrication, vol. 7, no. 2, 2015. doi:10.1088/1758-5090/7/2/025006
  • [39] A. Sattar, A. Khatri, S. Ali, and F. Ahmed, “Digital ink-jet printing of regenerated cellulose nanofibrous mats with reactive inks,” Coloration Technology, vol. 140, no. 2, pp. 279–286, 2024. doi:1111/cote.12713
  • [40] R. E. Neisiany, S. N. Khorasani, M. Naeimirad, J. K. Y. Lee, and S. Ramakrishna, “Improving Mechanical Properties of Carbon/Epoxy Composite by Incorporating Functionalized Electrospun Polyacrylonitrile Nanofibers,” Macromolecular Materials and Engineering, vol. 302, no. 5, pp. 1–11, 2017. doi:10.1002/mame.201600551
  • [41] K. Abe and H. Yano, “Cellulose nanofiber-based hydrogels with high mechanical strength,” Cellulose, vol. 19, no. 6, pp. 1907–1912, 2012. doi:10.1007/s10570-012-9784-3
  • [42] V. Beachley and X. Wen, “Fabrication of nanofiber reinforced protein structures for tissue engineering,” Materials Science and Engineering C, vol. 29, no. 8, pp. 2448–2453, 2009. doi:10.1016/j.msec.2009.07.008
  • [43] X. Li et al., “Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration,” BioMed Research International, vol. 2014. 2014. doi:10.1155/2014/542958
  • [44] V. M. Merkle, L. Zeng, M. J. Slepian, and X. Wu, “Core-shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol,” Biopolymers, vol. 101, no. 4, pp. 336–346, 2014. doi:10.1002/bip.22367
  • [45] K. Abe, S. Ifuku, M. Kawata, and H. Yano, “Preparation of tough hydrogels based on β-chitin nanofibers via NaOH treatment,” Cellulose, vol. 21, no. 1, pp. 535–540, 2014. doi:10.1007/s10570-013-0095-0
  • [46] Z. Kaya, E. Balcioglu, and H. Gün, “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi,” Politeknik Dergisi, vol. 25, no. 2, pp. 843–853, 2022. doi:10.2339/politeknik.707130
  • [47] B. Ergene, “Simulation of the production of Inconel 718 and Ti6Al4V biomedical parts with different relative densities by selective laser melting (SLM) method,” Journal of the Faculty of Engineering and Architecture of Gazi University, vol. 37, no. 1, pp. 469–484, 2022. doi:10.17341/GAZIMMFD.934143
  • [48] A. Çosgun and G. Yilmaz, “Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, vol. 17, no. 1, pp. 44–54, 2022. doi:10.29233/sdufeffd.992932
  • [49] H. İ. Yavuz and R. Yamanoglu, “β Tipi Ti Alaşımlarının Özellikleri Üzerine Bir Derleme: Mikroyapı, Mekanik, Korozyon Özellikleri ve Üretim Yöntemleri,” Politeknik Dergisi, vol. 26, no. 4, pp. 1601–1620, 2023. doi:10.2339/politeknik.987216
  • [50] G. Sadullahoğlu, “Production and Characterization of B2O3 Added M-Type Barium Hexaferrite Composite Magnet,” Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, vol. 13, no. 2 pp. 382-389, 2021. doi:10.29137/umagd.737894
  • [51] N. Taş and F. Egilmez, “İmplant Destekli Hibrit Protezlerin Yapımında Kullanılan Materyaller ve Üretim Yöntemleri,” Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, pp. 1–1, 2021. doi:10.17567/ataunidfd.757321
  • [52] Y. C. Toklu, A. E. Çercevik, and M. Şahinöz, “Otomatik Yapı Üretim Teknolojisinde Kullanılabilecek Malzemelerin Belirlenmesi,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 21, no. 1, p. 51, 2016. doi:10.19113/sdufbed.73967
  • [53] Ş. Kılıncarslan and Y. Şimsek Türker, “Ahşap Malzemelerin FRP ile Güçlendirilmesinin Sürdürülebilirlik Açısından Değerlendirilmesi,” Teknik Bilimler Dergisi, vol. 10, no. 1, pp. 23–30, 2020. doi:10.35354/tbed.615101
  • [54] K. Al and E. Bayrakdar Ates, “Sustainable Hydrogen Production Technologies: Biomass Based Approaches,” Bartın University International Journal of Natural and Applied Sciences, vol. 5, no. 1, pp. 18–37, 2022. doi:10.55930/jonas.1101384
  • [55] B. Karagüzel Kayaoǧlu, I. Göcek, H. Kizil, and L. Trabzon, “Functional nano and micro-scale thin film deposition on textiles: Emerging technologies and applications,” Journal of Textile Engineering, vol. 19, no. 88, pp. 39–47, 2012. doi:10.7216/130075992012198805
  • [56] K. Müller et al., “Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields,” Nanomaterials, vol. 7, no. 4, 2017. doi:10.3390/nano7040074
  • [57] Ngakan Putu Gede Satria Kesumayasa, Suriati, and Rudianta, “Physicochemical Properties of Porang Nanocoating with the Addition of Essential Oils,” Sustainable Environment Agricultural Science, vol. 7, no. 2, pp. 130–138, 2023. doi:10.22225/seas.7.2.6842.130-138
  • [58] K. Willems, P. Lauweryns, G. Verleye, and J. Van Goethem, “Randomized controlled trial of posterior lumbar interbody fusion with Ti- And cap-nanocoated polyetheretherketone cages: Comparative study of the 1-year radiological and clinical outcome,” International Journal of Spine Surgery, vol. 13, no. 6, pp. 575–587, 2019. doi:10.14444/6080
  • [59] I. Dominguez, I. Del Villar, O. Fuentes, J. M. Corres, and I. R. Matias, “Interdigital concept in photonic sensors based on an array of lossy mode resonances,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021. doi:10.1038/s41598-021-92765-0
  • [60] T. Phan, J. E. Jones, M. Chen, D. K. Bowles, W. P. Fay, and Q. Yu, “A Biocompatibility Study of Plasma Nanocoatings onto Cobalt Chromium L605 Alloy for Cardiovascular Stent Applications,” Materials (Basel)., vol. 15, no. 17, 2022. doi:10.3390/ma15175968
  • [61] M. I. Abdulraheem, A. Y. Moshood, Y. Chen, H. Chen, H. Zhang, and J. Hu, “Advancements in Designing Smart and Intelligent Nanocoatings,” in Sustainable Approach to Protective Nanocoatings, 2024. pp. 57–87doi:10.4018/979-8-3693-3136-1.ch003
  • [62] A. Thakur and A. Kumar, “Chapter 19 - Self-healing nanocoatings for automotive application,” in Micro and Nano Technologies, H. Song, T. A. Nguyen, G. Yasin, N. B. Singh, and R. K. B. T.-N. in the A. I. Gupta, Eds. Elsevier, 2022. pp. 403–427. doi:10.1016/B978-0-323-90524-4.00019-0
  • [63] E. Pakdel, J. Fang, J. Fang, L. Sun, X. Wang, and X. Wang, “Nanocoatings for Smart Textiles,” in Smart Textiles, 2018. pp. 247–300. doi:10.1002/9781119460367.ch8.
  • [64] T. I. Shaheen, “Nanotechnology for modern textiles: highlights on smart applications,” Journal of the Textile Institute, vol. 113, no. 10, pp. 2274–2284, 2021. doi:10.1080/00405000.2021.1962625
  • [65] M. Zayed, M. Bakr, and H. Ghazal, “Recent developments in the utilization of polymer nanocomposites in textile applications,” Journal of Textiles, Coloration and Polymer Science, vol. 0, no. 0, pp. 0–0, 2023. doi:10.21608/jtcps.2023.193744.1172
  • [66] S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. Pedro Souto, and M. Fátima Esteves, “Polymer Nanocomposites for Multifunctional Finishing of Textiles - a Review,” Textile Research Journal, vol. 80, no. 13, pp. 1290–1306, Mar. 2010. doi:10.1177/0040517509357652
  • [67] S. Gowri, M. A. Khan, and A. K. Srivastava, “Textile finishing using polymer nanocomposites for radiation shielding, flame retardancy and mechanical strength,” Textile & Leather Review, vol. 4, no. 3, pp. 160–180, 2021. doi:10.31881/TLR.2021.07
  • [68] J. Bouchard, A. Cayla, V. Lutz, C. Campagne, and E. Devaux, “Electrical and mechanical properties of phenoxy/multiwalled carbon nanotubes multifilament yarn processed by melt spinning,” Textile Research Journal, vol. 82, no. 20, pp. 2106–2115, 2012. doi:10.1177/0040517512450760
  • [69] S. Yao, P. Swetha, and Y. Zhu, “Nanomaterial-Enabled Wearable Sensors for Healthcare,” Advanced Healthcare Materials, vol. 7, no. 1, pp. 1–27, 2018. doi:10.1002/adhm.201700889
  • [70] S. Parham et al., “Textile/Al2O3–TiO2 nanocomposite as an antimicrobial and radical scavenger wound dressing,” RSC Advances, vol. 6, no. 10, pp. 8188–8197, 2016. doi:10.1039/C5RA20361A
  • [71] L. Noureen et al., “Multifunctional Ag3PO4-rGO-Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection,” ACS Applied Materials & Interfaces, vol. 12, no. 5, pp. 6343–6350, Feb. 2020. doi:10.121/acsami.9b16043
  • [72] V. T. Novi, A. Gonzalez, J. Brockgreitens, and A. Abbas, “Highly efficient and durable antimicrobial nanocomposite textiles,” Scientific Reports, vol. 12, no. 1, pp. 1–9, 2022. doi:10.1038/s41598-022-22370-2
  • [73] D. C. Çelikel, “Smart E-Textile Materials,” in Advanced Functional Materials, N. Tasaltin, P. S. Nnamchi, and S. Saud, Eds. Rijeka: IntechOpen, 2020. doi:10.5772/intechopen.92439
  • [74] N. K. Persson, J. G. Martinez, Y. Zhong, A. Maziz, and E. W. H. Jager, “Actuating Textiles: Next Generation of Smart Textiles,” Advanced Materials Technologies, vol. 3, no. 10, pp. 1–12, 2018. doi:10.1002/admt.201700397
  • [75] N. Y. Abu-Thabit, “Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles,” Journal of Chemical Education, vol. 93, no. 9, pp. 1606–1611, Sep. 2016. doi:10.1021/acs.jchemed.6b00060
  • [76] A. M. Grancarić, I. Jerković, V. Koncar, C. Cochrane, F. M. Kelly, D. Soulat, X. Legrand, Conductive polymers for smart textile applications, Journal of Industrial Textiles, vol. 48, no. 3. 2018. doi:10.1177/1528083717699368
  • [77] K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, and G. Tröster, “Woven electronic fibers with sensing and display functions for smart textiles,” Advanced Materials, vol. 22, no. 45, pp. 5178–5182, 2010. doi:10.1002/adma.201002159
  • [78] B. Younes, “Smart E-textiles: A review of their aspects and applications,” Journal of Industrial Textiles, vol. 53, pp. 1–23, 2023. doi:10.1177/15280837231215493
  • [79] A. Salman, F. A. Metwally, M. Elbisi, and G. A. M. Emara, “Applications of nanotechnology and advancements in smart wearable textiles: An overview,” Egyptian Journal of Chemistry, vol. 63, no. 6, pp. 2177–2184, 2020. doi:10.21608/ejchem.2019.18223.2112
  • [80] S. H. W. Ossevoort, “14 - Improving the sustainability of smart textiles,” in Multidisciplinary Know-How for Smart-Textiles Developers, T. Kirstein, Ed. Woodhead Publishing, 2013. pp. 399–419. doi:10.1533/9780857093530.3.399
  • [81] K. Cherenack and L. van Pieterson, “Smart textiles: Challenges and opportunities,” Journal of Applied Physics, vol. 112, no. 9, p. 91301, 2012. doi:10.1063/1.4742728
  • [82] E. Özdoğan, A. Demir, and N. Seventekin, “Nanoteknoloji ve tekstil uygulamaları,” Tekstil ve Konfeksiyon, vol. 3, pp. 159–168, 2006.
  • [83] L.-P. Yu, C.-Y. Xing, S.-T. Fan, F. Liu, B.-J. Li, and S. Zhang, “β-Cyclodextrin-Modified Polyacrylonitrile Nanofibrous Scaffolds with Breathability, Moisture-Wicking, and Antistatic Performance,” Industrial & Engineering Chemistry Research, vol. 60, no. 28, pp. 10217–10224, Jul. 2021. doi:10.1021/acs.iecr.1c01744
  • [84] H. J. Choi, M. S. Kim, D. Ahn, S. Y. Yeo, and S. Lee, “Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019. doi:10.1038/s41598-019-42495-1
  • [85] S. Jose, N. Shanmugam, S. Das, A. Kumar, and P. Pandit, “Coating of lightweight wool fabric with nano clay for fire retardancy,” Journal of the Textile Institute, vol. 110, no. 5, pp. 764–770, 2019. doi:10.1080/00405000.2018.1516529
  • [86] J. Chen et al., “Preparation of biocl/bi2wo6 photocatalyst for efficient fixation on cotton fabric: Applications in uv shielding and self-cleaning performances,” Materials (Basel)., vol. 14, no. 22, 2021. doi:10.3390/ma14227002
  • [87] K. Qi, W. A. Daoud, J. H. Xin, C. L. Mak, W. Tang, and W. P. Cheung, “Self-cleaning cotton,” Journal of Materials Chemistry, vol. 16, no. 47, pp. 4567–4574, 2006. doi:10.1039/B610861J
  • [88] M. A. Tănase et al., “Facile in situ synthesis of zno flower-like hierarchical nanostructures by the microwave irradiation method for multifunctional textile coatings,” Nanomaterials, vol. 11, no. 10, 2021. doi:10.3390/nano11102574
  • [89] R. Dastjerdi and M. Montazer, “A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties,” Colloids Surfaces B Biointerfaces, vol. 79, no. 1, pp. 5–18, 2010. doi:10.1016/j.colsurfb.2010.03.029
  • [90] H. F. Moafi, A. F. Shojaie, and M. A. Zanjanchi, “Semiconductor-Assisted Self-Cleaning Polymeric Fibers Based on Zinc Oxide Nanoparticles,” Journal of Applied Polymer Science, vol. 121, no. 6, pp. 3111–3732, 2011. doi: 10.1002/app.34179
  • [91] H. Wang, Y. Hu, L. Zhang, and C. Li, “Self-Cleaning Films with High Transparency Based on TiO2 Nanoparticles Synthesized via Flame Combustion,” Industrial & Engineering Chemistry Research, vol. 49, no. 8, pp. 3654–3662, Apr. 2010. doi:10.1021/ie901782w
  • [92] B. K. Tudu, A. Kumar, and B. Bhushan, “Fabrication of superoleophobic cotton fabric for multi-purpose applications,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 377, no. 2150, pp. 1–13, 2019. doi:10.1098/rsta.2019.0129
  • [93] Z. Geng et al., “High-performance TiO2 nanotubes/poly(aryl ether sulfone) hybrid self-cleaning anti-fouling ultrafiltration membranes,” Polymers (Basel)., vol. 11, no. 3, 2019. doi:10.3390/polym11030555
  • [94] G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Gu, and C. Zang, “Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics,” Materials (Basel)., vol. 12, no. 12, 2019. doi:10.3390/ma12122010
  • [95] M. J. Uddin et al., “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 199, no. 1, pp. 64–72, 2008, doi:10.1016/j.jphotochem.2008.05.004
  • [96] S. Naderizadeh et al., “Superhydrophobic Coatings from Beeswax-in-Water Emulsions with Latent Heat Storage Capability,” Advanced Materials Interfaces, vol. 6, no. 5, pp. 1–11, 2019. doi:10.1002/admi.201801782
  • [97] M. Yu, G. Gu, W. D. Meng, and F. L. Qing, “Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent,” Applied Surface Science, vol. 253, no. 7, pp. 3669–3673, 2007. doi:10.1016/j.apsusc.2006.07.086
  • [98] A. Synytska, R. Khanum, L. Ionov, C. Cherif, and C. Bellmann, “Water-Repellent Textile via Decorating Fibers with Amphiphilic Janus Particles,” ACS Applied Materials & Interfaces, vol. 3, no. 4, pp. 1216–1220, Apr. 2011. doi:10.1021/am200033u
  • [99] F. Shams-Ghahfarokhi, A. Khoddami, Z. Mazrouei-Sebdani, J. Rahmatinejad, and H. Mohammadi, “A new technique to prepare a hydrophobic and thermal insulating polyester woven fabric using electro-spraying of nano-porous silica powder,” Surface and Coatings Technology, vol. 366, no. October 2018. pp. 97–105, 2019. doi:10.1016/j.surfcoat.2019.03.025
  • [100] Y. Chen, J. Fu, B. Dang, Q. Sun, H. Li, and T. Zhai, “Artificial Wooden Nacre: A High Specific Strength Engineering Material,” ACS Nano, vol. 14, no. 2, pp. 2036–2043, Feb. 2020. doi:10.1021/acsnano.9b08647
  • [101] H. P. Aravind, S. A. Jadhav, V. B. More, K. D. Sonawane, and P. S. Patil, “Novel One Step Sonosynthesis and Deposition Technique to Prepare Silver Nanoparticles Coated Cotton Textile with Antibacterial Properties,” Colloid Journal, vol. 81, no. 6, pp. 720–727, 2019. doi:10.1134/S1061933X19070019
  • [102] S. Wirunchit, N. Wonganan, and W. Koetniyom, “Multi Self-cleaning Properties of Zinc Oxide Nanoparticles/ Polydimethylsiloxane (ZnO/PDMS) Composite on Polyester Textile,” Current Applied Science and Technology, vol. 23, no. 5, pp. 1–12, 2023. doi:10.55003/cast.2023.05.23.015
  • [103] M. Salat, P. Petkova, J. Hoyo, I. Perelshtein, A. Gedanken, and T. Tzanov, “Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive,” Carbohydrate Polymers, vol. 189, no. February, pp. 198–203, 2018. doi:10.1016/j.carbpol.2018.02.033
  • [104] S. Mondal, “Nanomaterials for UV protective textiles,” Journal of Industrial Textiles, vol. 51, no. 4, pp. 5592S-5621S, 2022. doi:10.1177/1528083721988949.
  • [105] D. Mihailović et al., “Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles,” Polymer Composites, vol. 32, no. 3, pp. 390–397, 2011. doi: 10.1002/pc.21053
  • [106] Z. Wang, M. Xue, K. Huang, and Z. Liu, “Textile Dyeing Wastewater Treatment,” Advances in Treating Textile Effluent, 2011. doi:10.5772/22670
  • [107] J. Yu et al., “Cotton fabric finished by PANI/TiO 2 with multifunctions of conductivity, anti-ultraviolet and photocatalysis activity,” Applied Surface Science, vol. 470, no. July 2018. pp. 84–90, 2019. doi:10.1016/j.apsusc.2018.11.112
  • [108] N. R. Dhineshbabu and S. Bose, “UV resistant and fire retardant properties in fabrics coated with polymer based nanocomposites derived from sustainable and natural resources for protective clothing application,” Composites Part B: Engineering, vol. 172, no. February, pp. 555–563, 2019. doi:10.1016/j.compositesb.2019.05.013
  • [109] S. Xi, L. Wang, H. Xie, and W. Yu, “Superhydrophilic Modified Elastomeric RGO Aerogel Based Hydrated Salt Phase Change Materials for Effective Solar Thermal Conversion and Storage,” ACS Nano, vol. 16, no. 3, pp. 3843–3851, 2022. doi:10.1021/acsnano.1c08581
  • [110] J. Wu et al., “A Trimode Thermoregulatory Flexible Fibrous Membrane Designed with Hierarchical Core–Sheath Fiber Structure for Wearable Personal Thermal Management,” ACS Nano, vol. 16, no. 8, pp. 12801–12812, Aug. 2022. doi:10.1021/acsnano.2c04971
  • [111] J. Cui et al., “Ultra-Stable Phase Change Coatings by Self-Cross-Linkable Reactive Poly(ethylene glycol) and MWCNTs,” Advanced Functional Materials, vol. 32, no. 10, pp. 1–10, 2022. doi:10.1002/adfm.202108000
  • [112] M. A. Ali, A. G. Hassabo, K. M. Seddik, S. Y. M. Gad, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 13, pp. 21–37, 2022. doi:10.21608/EJCHEM.2022.143640.6270
  • [113] C. Cherif, N. H. A. Tran, M. Kirsten, H. Brünig, and R. Vogel, “Environmentally friendly and highly productive bi-component melt spinning of thermoregulated smart polymer fibres with high latent heat capacity,” Express Polymer Letters, vol. 12, no. 3, pp. 203–214, 2018. doi:10.3144/expresspolymlett.2018.19
  • [114] V. Skurkyte-Papieviene, A. Abraitiene, A. Sankauskaite, V. Rubeziene, and J. Baltusnikaite-Guzaitiene, “Enhancement of the thermal performance of the paraffin-based microcapsules intended for textile applications,” Polymers (Basel)., vol. 13, no. 7, pp. 1–16, 2021. doi:10.3390/polym13071120
  • [115] M. A. Ali, A. G. Hassabo, K. M. Seddik, sarah yahia, and N. M. Aly, “Characterization of the Thermal and Physico-Mechanical Properties of Cotton and Polyester Yarns Treated with Phase Change Materials Composites,” Egyptian Journal of Chemistry, vol. 65, no. 131, pp. 21–37, 2022. doi:10.21608/ejchem.2022.143640.6270
  • [116] T. Textor and B. Mahltig, “A sol-gel based surface treatment for preparation of water repellent antistatic textiles,” Applied Surface Science, vol. 256, no. 6, pp. 1668–1674, 2010. doi:10.1016/j.apsusc.2009.09.091
  • [117] E. Samuel, B. Joshi, M. W. Kim, Y. Il Kim, M. T. Swihart, and S. S. Yoon, “Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors,” Chemical Engineering Journal, vol. 371, no. February, pp. 657–665, 2019. doi:10.1016/j.cej.2019.04.065
  • [118] N. Nan et al., “A Stretchable, Highly Sensitive, and Multimodal Mechanical Fabric Sensor Based on Electrospun Conductive Nanofiber Yarn for Wearable Electronics,” Advanced Materials Technologies, vol. 4, no. 3, pp. 1–11, 2019. doi:10.1002/admt.201800338
  • [119] Y. Huang et al., “From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles,” ACS Nano, vol. 9, no. 5, pp. 4766–4775, May 2015. doi:10.1021/acsnano.5b00860
  • [120] Y. Huang et al., “Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor,” ACS Nano, vol. 9, no. 6, pp. 6242–6251, Jun. 2015. doi:10.1021/acsnano.5b01602
  • [121] H. Qu, O. Semenikhin, and M. Skorobogatiy, “Flexible fiber batteries for applications in smart textiles,” Smart Materials and Structures, vol. 24, no. 2, p. 25012, 2014. doi:10.1088/0964-1726/24/2/025012
  • [122] Y. Liu, S. Gorgutsa, C. Santato, and M. Skorobogatiy, “ Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO 4 Cathode and Li 4 Ti 5 O 12 Anode for Applications in Smart Textiles ,” Journal of The Electrochemical Society, vol. 159, no. 4, pp. A349–A356, 2012. doi:10.1149/2.020204jes
  • [123] W. Kim et al., “Soft fabric-based flexible organic light-emitting diodes,” Organic Electronics, vol. 14, no. 11, pp. 3007–3013, 2013. doi:10.1016/j.orgel.2013.09.001
  • [124] S. Choi et al., “Multi-directionally wrinkle-able textile OLEDs for clothing-type displays,” npj Flexible Electronics, vol. 4, no. 1, p. 33, Nov. 2020. doi:10.1038/s41528-020-00096-3
  • [125] Q. Zhao, A. K. Yetisen, A. Sabouri, S. H. Yun, and H. Butt, “Printable Nanophotonic Devices via Holographic Laser Ablation,” ACS Nano, vol. 9, no. 9, pp. 9062–9069, Sep. 2015. doi:10.1021/acsnano.5b03165
  • [126] M. Liao et al., “Multicolor, Fluorescent Supercapacitor Fiber,” Small, vol. 14, no. 43, pp. 1–6, 2018. doi:10.1002/smll.201702052
  • [127] I. Sayed, J. Berzowska, and M. Skorobogatiy, “Jacquard-Woven Photonic Bandgap Fiber Displays,” Research Journal of Textile and Apparel, vol. 14, no. 4, pp. 97–105, 2010. doi:10.1108/RJTA-14-04-2010-B011
  • [128] M. Wasim, M. R. Khan, M. Mushtaq, and A. Naeem, “Surface Modification of Bacterial Cellulose by Copper and Zinc Oxide Sputter Coating for UV-Resistance/Antistatic/Antibacterial Characteristics,” Coatings, vol. 10, no. 4, pp. 364, 2020. doi:10.3390/coatings10040364
  • [129] S. W. Chen et al., “An Ultrathin Flexible Single-Electrode Triboelectric-Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing,” Advanced Energy Materials, vol. 7, no. 1, 2017. doi:10.1002/aenm.201601255
  • [130] M. Xu et al., “A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self-Powered Vibration Sensing,” Advanced Energy Materials, vol. 8, no. 9, pp. 1–9, 2018. doi:10.1002/aenm.201702432
  • [131] Y. Zhang et al., “Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self-Powered Mechanosensational System,” Advanced Functional Materials, vol. 29, no. 42, pp. 1–12, 2019. doi:10.1002/adfm.201904259
  • [132] J. H. Lee et al., “Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors,” Advanced Functional Materials, vol. 25, no. 21, pp. 3203–3209, 2015. doi:10.1002/adfm.201500856
  • [133] C. H. Kwon et al., “High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns,” Nature Communications, vol. 5, pp. 1–7, 2014. doi:10.1038/ncomms4928
  • [134] C. Kwon et al., “High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers,” Nature Communications, vol. 9, no. 1, p. 4479, Oct. 2018. doi:10.1038/s41467-018-06994-5
  • [135] S. Ortelli, G. Malucelli, M. Blosi, I. Zanoni, and A. L. Costa, “NanoTiO 2 @DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles,” Journal of Colloid and Interface Science, vol. 546, pp. 174–183, 2019. doi:10.1016/j.jcis.2019.03.055
  • [136] B. Mirani et al., “Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features,” ACS Applied Materials & Interfaces, vol. 12, no. 8, pp. 9080–9089, Feb. 2020. doi:10.1021/acsami.9b23063
  • [137] V. Kumar, P. Pallavi, S. K. Sen, and S. Raut, “Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review,” Water Environment Research, vol. 96, no. 1, pp. 1–23, 2024. doi:10.1002/wer.10959
  • [138] Y. Song, Y. Meng, K. Huo, Z.-Q. Wang, Y. Li, M. Yu, B. Zhang, J. Li “Greenly and Efficiently Dyeing Cotton Fabric with Custom-Tailored Reactive Dyes via Electron Beam Irradiation,” ACS Sustainable Chemistry & Engineering, vol. 12, no. 8, pp. 3121–3129, 2024. doi:10.1021/acssuschemeng.3c07075
  • [139] G. Varadarajan and P. Venkatachalam, “Sustainable textile dyeing processes,” Environmental Chemistry Letters, vol. 14, no. 1, pp. 113–122, 2016. doi:10.1007/s10311-015-0533-3
  • [140] H. Mamane, S. Altshuler, E. Sterenzon, and V. K. Vadivel, “Decolorization of dyes from textile wastewater using biochar: A review,” Acta Innovations, no. 37, pp. 36–46, 2020. doi:10.32933/ActaInnovations.37.3
  • [141] S. Yadav, S. Punia, H. R. Sharma, and A. Gupta, “Nano-remediation for the decolourisation of textile effluents: A review,” Nanofabrication, vol. 7, no. 217, pp. 217–243, 2022. doi:10.37819/nanofab.007.226
  • [142] M. Jiang, K. Ye, J. Deng, J. Lin, W. Ye, S. Zhao, and B. Van der Bruggen “Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment,” Environmental Science & Technology, vol. 52, no. 18, pp. 10698–10708, Sep. 2018. doi:10.1021/acs.est.8b02984
  • [143] G. Weber, H. L. Chen, E. Hinsch, S. Freitas, and S. Robinson, “Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes,” Coloration Technology, vol. 130, no. 6, pp. 445–452, 2014. doi:10.1111/cote.12110
  • [144] D. Tatman and G. Karakan Günaydin, “Natural Dyeing of Buldan Handwoven Fabrics With Plant Shell Extracts: a Step Towards Sustainable Textile,” Muğla Journal of Science and Technology, vol. 7, no. 1, pp. 127–136, 2021. doi:10.22531/muglajsci.886688
  • [145] H. M. Ahmed, M. M. Abdellatif, S. Ibrahim, and F. H. H. Abdellatif, “Mini-emulsified Copolymer/Silica nanocomposite as effective binder and self-cleaning for textiles coating,” Progress in Organic Coatings, vol. 129, no. October 2018. pp. 52–58, 2019. doi:10.1016/j.porgcoat.2019.01.002
There are 145 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies, Materials Engineering (Other)
Journal Section Review
Authors

Semahat Doruk 0000-0001-8476-2544

Burcu Ulutaş 0009-0002-9176-2790

Muhammed Bora Akın 0000-0003-3841-1633

Publication Date December 31, 2024
Submission Date August 15, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

IEEE S. Doruk, B. Ulutaş, and M. B. Akın, “Nanoteknoloji Uygulamalarının Tekstil Endüstrisine Yansımaları ve Gelecek Perspektifi Üzerine Genel Bir Bakış”, GJES, vol. 10, no. 3, pp. 657–675, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg