Effect of Dimensional Differences on Tensile Strength in Tensile Test Specimens
Year 2024,
Volume: 10 Issue: 3, 619 - 631, 31.12.2024
Emre Kanlı
,
Furkan Parmaksız
,
Oğuz Koçar
,
Faruk Mert
,
Nergizhan Anaç
Abstract
Tensile testing is one of the most common mechanical tests performed to understand the properties of materials. Tensile testing is performed to determine elastic and plastic material properties under static load. This method provides helpful information for designers and manufacturers to develop new materials. In tensile tests used for various conditions, there are tensile test specimens of different sizes and shapes. However, in recent years, there has been an increased interest in miniaturized tensile specimens and micro-tensile testing applications instead of standard tensile testing and standard tensile specimens used to determine the mechanical properties of materials. Due to the reduction of test specimen sizes, it is possible to reduce the amount of material and the time taken for specimen preparation. In this study, miniature and standard tensile test specimens were produced using additive manufacturing methods (Fused Deposition Modeling and Stereolithography). A mini tensile mold was designed and fabricated for mini tensile tests. The results showed that mini tensile test specimens can be used instead of standard tensile test specimens.
References
- [1] B. N. Jaya and M. Z. Alam, "Small-scale mechanical testing of materials," Current Science, vol. 105, no. 8, pp. 1073-1099, Oct. 2013.
- [2] Y. Kaya, "An Investıgatıon on Joınabılıty of The AISI 304 And AISI 430 Stainless Steel by Tig, Mig and Shielded Metal Arc Weldıng Methods," Gazi University Faculty of Engineering and Architecture Journal, vol. 25, no. 3, Feb. 2010.
- [3] J. Džugan, M. Rund, A. Prantl, and P. Konopík, "Mini-tensile specimen application for sheets characterization," in IOP Conference Series: Materials Science and Engineering, vol. 179, 2017. doi: 10.1088/1757-899X/179/1/012020
- [4] J. Džugan, P. Konopik, M. Rund, and R. Prochazka, "Determination of local tensile and fatigue properties with the use of sub-sized specimens," in Pressure Vessels and Piping Conference, 2015, vol. 56925: American Society of Mechanical Engineers, p. V01AT01A066. doi: 10.1115/PVP2015-45958.
- [5] A. V. Kolhatkar, V. Karthik, R. Divakar, A. Kumar, and J. Joseph, "Development of Ultra Sub-size Tensile Specimen for Evaluation of Tensile Properties of Irradiated Materials," International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Yekaterinburg, Russian Federation, June 26–29, 2017. doi:10.1520/stp164420210121
- [6] M. N. Gussev, R. H. Howard, K. A. Terrani, and K. G. Field, "Sub-size tensile specimen design for in-reactor irradiation and post-irradiation testing," Nuclear Engineering and Design, vol. 320, pp. 298-308, Aug. 2017. doi: 10.1016/j.nucengdes.2017.06.008
- [7] B. S. Institution, “British Standard Method for a Tensile Testing of Metals (including aerospace materials),” knowledge.bsigroup.com, 1987. [Online]. Available: https://knowledge.bsigroup.com/products/method-for-tensile-testing-of-metals-including-aerospace-materials?version=standard. [Accessed: Sept. 10, 2024].
- [8] Y. Kohno, A. Kohyama, M. L. Hamilton, T. Hirose, Y. Katoh, and F. A. Garner, "Specimen size effects on the tensile properties of JPCA and JFMS," Journal of nuclear materials, vol. 283, pp. 1014-1017, Dec. 2000. doi: 10.1016/S0022-3115(00)00245-2
- [9] K. Kumar et al., "Use of miniature tensile specimen for measurement of mechanical properties," Procedia engineering, vol. 86, pp. 899-909, 2014. doi: 10.1016/j.proeng.2014.11.112
- [10] Y. Kihara, T. Nagoshi, T.-F. M. Chang, H. Hosoda, S. Tatsuo, and M. Sone, "Tensile behavior of micro-sized specimen made of single crystalline nickel," Materials Letters, vol. 153, pp. 36-39, Aug. 2015. doi : 10.1016/j.matlet.2015.03.119
- [11] P. Konopik, P. Farahnak, M. Rund, J. Džugan, and S. Rzepa, "Applicability of miniature tensile test in the automotive sector," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 461, no. 1: IOP Publishing, p. 012043. doi: 10.1088/1757-899X/461/1/012043
- [12] M. Rund, R. Procházka, P. Konopík, J. Džugan, and H. Folgar, "Investigation of sample-size influence on tensile test results at different strain rates," Procedia Engineering, vol. 114, pp. 410-415, Sep. 2015. doi: 10.1016/j.proeng.2015.08.086
- [13] L. Zhang, W. Harrison, M. A. Yar, S. G. Brown, and N. P. Lavery, "The development of miniature tensile specimens with non-standard aspect and slimness ratios for rapid alloy prototyping processes," Journal of materials research and technology, vol. 15, pp. 1830-1843, Nov. 2021. doi: 10.1016/j.jmrt.2021.09.029
- [14] Y. Zhang, S. Karnati, T. Pan, and F. Liou, "Determination of constitutive relation from miniature tensile test with digital image correlation," The Journal of Strain Analysis for Engineering Design, vol. 55, no. 3-4, pp. 99-108, March 2020. doi: 10.1177/0309324719892732
- [15] S. Dongare, T. E. Sparks, J. Newkirk, and F. Liou, "A mechanical testing methodology for metal additive manufacturing processes," International Solid Freeform Fabrication Symposium, 2014. doi.org/10.26153/tsw/15679
- [16] H. Kyutoku, N. Maeda, H. Sakamoto, H. Nishimura, and K. Yamada, "Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites," Carbohydrate polymers, vol. 203, pp. 95-102, Jan. 2019. doi: 10.1016/j.carbpol.2018.09.033
- [17] Polymersolutions, "3 Types of Plastic Used in 3D Printing." polymersolutions.com, May 31, 2016. [Online]. Available: https://www.polymersolutions.com/plastic-in-3d-printing/ [Accessed: Jun. 10, 2024].
- [18] eSUN, "Technical Data Sheet of PLA+.” esun3d.com, November, 2021 [Online]. Available: https://www.esun3d.com/uploads/ eSUN_PLA+-Filament_TDS_V4.0.pdf [Accessed: Jun. 8, 2024].
- [19] Anycubic. "User Guide for Standard Resin." store.anycubic.com, [Online]. Available: https://cdn.shopify.com/ s/files/1/0245/5519/2380/files/Anycubic_Standard_Resin_User_Manual_V1.0-EN_1.pdf?v=16 63574587&ref=loox-pr [Accessed: Jun. 8, 2024].
- [20] U. Mahir, Yusuf Eren, Erdoğdu, "Investigation of the Effect of Using Unreinforced and Reinforced PLA in Production by Fused Deposition Modeling on Mechanical Properties," Journal of the Institute of Science and Technology, vol. 10, no. 4, pp. 2800-2808, Dec. 2020. doi: 10.21597/jist.799230
- [21] İ. Aktitiz, K. Aydin, and A. Topcu, " The Effect of Post-Curing Time on Mechanical Properties in 3D Polymer Materials Printed by Stereolithography (SLA) Method ," Çukurova University Journal of the Faculty of Engineering and Architecture, vol. 35, no. 4, pp. 949-958, Dec. 2020. doi: 10.21605/cukurovaummfd.868895
- [22] İleri3D. "Anycubic UV Reçine Ürün Özellikleri," ileri3d.com, [Online]. Available: https://www.ileri3d.com/urun/anycubic-uv-recine-1-kg-sla-dlp-gri pr [Accessed: Jun. 9, 2024].
- [23] M. Sharma, V. Sharma, and P. Kala, "Optimization of process variables to improve the mechanical properties of FDM structures," in Journal of Physics: Conference Series, 2019, vol. 1240, no. 1: IOP Publishing, p. 012061. doi: 10.1088/1742-6596/1240/1/012061
- [24] A. El Magri, K. El Mabrouk, and S. Vaudreuil, "Preparation and characterization of poly (ether ether ketone)/poly (ether imide) [PEEK/PEI] blends for fused filament fabrication," Journal of Materials Science, vol. 56, no. 25, pp. 14348-14367, May. 2021. doi: 10.1007/s10853-021-06172-x
- [25] M. Moradi, R. Hashemi, and M. Kasaeian-Naeini, "Experimental investigation of parameters in fused filament fabrication 3D printing process of ABS plus using response surface methodology," The International Journal of Advanced Manufacturing Technology, pp. 1-18, May. 2023. doi: 10.1007/s00170-023-11468-0
- [26] R. Muñoz, Á. Hernández, F. Roshardt, J. R. V. Baudrit, and R. Christoph, "Impresion 3d: pruebas de resistencia de materiales de acuerdo a norma ASTM D638-10," Inst. Ciencias, Tecnol. e Innovación, Jun. 2015.
- [27] M. Rund, J. Volák, and M. Šindelářová, "Small Size Specimens Methods for Evaluation of Mechanical Properties," Advanced Materials Research, vol. 1127, pp. 1-8, Oct. 2015. doi.org/10.4028/www.scientific.net/AMR.1127.1
- [28] M. Costa, G. Viana, C. Canto, LFM da Silva, M.D. Banea, F. Chaves, R.D.S.G. Campilho and A.A. Fernandes, "Effect of the size reduction on the bulk tensile and double cantilever beam specimens used in cohesive zone models," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 230, no. 5, pp. 968-982, Oct. 2016. doi: 10.1177/1464420715610248
- [29] R. Darabi, E. Azinpour, F. K. Fiorentin, M. J. Abarca, J. Cesar de Sa, and J. Dzugan, "Experimental and computational analysis of additively manufactured tensile specimens: assessment of localized-cooling rate and ductile fracture using the Gurson–Tvergaard–Needleman damage model," Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 235, no. 6, pp. 1430-1442, Jan. 2021. doi: 10.1177/1464420721990049
- [30] S. Kumar, S. Venkatachalam, K. Hariharan, D. R. Kumar, H. Murthy, “Influence of Inhomogeneous Deformation on Tensile Behavior of Sheets Processed through Constrained Groove Pressing”, Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 141, no. 4. May. 2019. doi: 10.1115/1.4043492
- [31] S. T. Rosinski, A. S. Kumar, S. C. Canon and M.L. Hamilton, “Application of subsize specimens in nuclear plant life extension”. ASTM STP 1204, United States: pp. 405-416, Oct. 1993.
- [32] D. Dobi, E. Junghans, “Determination of the Tensile Properties of Specimens With Small Dimensions” Kovine Zlitine Tehnologije, vol. 33, no. 6. pp. 451-457, 1999. ISSN: 1318-0010