Research Article
BibTex RIS Cite

Drying of mango by intermittent and continuous infrared drying method

Year 2025, Volume: 42 Issue: 2, 95 - 108, 30.08.2025
https://doi.org/10.55507/gopzfd.1652503

Abstract

This study examined the infrared drying process of mango slices at three power levels (300, 400, and 500 W) and three distinct intermittency ratios (PR=1, PR=1.5, and PR=2). The influence of these drying parameters on drying time, shrinkage, color stability, energy efficiency, rehydration capacity, and surface temperature was systematically assessed. Additionally, ten widely recognized mathematical thin-layer drying models were applied to the experimental data obtained under these conditions. The findings demonstrated that increasing infrared power while decreasing the intermittency ratio resulted in reduced drying times. Among the assessed models, the Midilli et al. model exhibited the highest accuracy in describing the infrared drying behavior of mango slices across different power levels and intermittency ratios. Furthermore, higher infrared power led to a decrease in L* values, indicating a darkening effect on the dried samples. Variations in infrared power did not significantly influence the shrinkage values of products dried at the same intermittency ratio (p>0.5). The surface temperature of mango products increased with decreasing the intermittency ratio and increasing the infrared power. Increasing the infrared power in PR=1 applications reduced energy consumption.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

References

  • Abraham, T. F., Marcel, E., & Alexis, K. (2020). Intermittent drying of mango slices (Mangifera indica L.)" Amelie": A new model. American Journal of Food Science and Technology, 8(3), 81-86. https://doi.org/10.12691/ajfst-8-3-1
  • Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55, 2173-2184. https://doi.org/10.1007/s00231-019-02570-9.
  • Amiri Chayjan, R., & Shadidi, B. (2014). Modeling high‐moisture Faba bean drying in fixed and semi‐fluidized bed conditions. Journal of Food Processing and Preservation, 38(1), 200-211. https://doi.org/10.1111/j.1745-4549.2012.00766.x.
  • Aral, S., & Beşe, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food chemistry, 210, 577-584. https://doi.org/10.1016/j.foodchem.2016.04.128.
  • Aradwad, P. P., Thirumani Venkatesh, A. K., & Mani, I. (2023). Infrared drying of apple (Malus domestica) slices: Effect on drying and color kinetics, texture, rehydration, and microstructure. Journal of Food Process Engineering, 46(2), e14218. https://doi.org/10.1111/jfpe.14218.
  • Askari, G. R., Emam-Djomeh, Z., & Mousavi, S. M. (2006). Effects of combined coating and microwave assisted hot-air drying on the texture, microstructure and rehydration characteristics of apple slices. Food Science and Technology International, 12(1), 39-46. https://doi.org/10.1177/1082013206062480. Aydogdu, A., Sumnu, G., & Sahin, S. (2015). Effects of microwave-infrared combination drying on quality of eggplants. Food and Bioprocess Technology, 8, 1198-1210. https://doi.org/10.1007/s11947-015-1484-1.
  • Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2011). Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46(4), 827-833. https://doi.org/10.1111/j.1365-2621.2011.02553.x.
  • Balbay, A., & Şahin, Ö. (2012). Microwave drying kinetics of a thin-layer liquorice root. Drying Technology, 30(8), 859-864. https://doi.org/10.1080/07373937.2012.670682.
  • Barbosa de Lima, A.G., Delgado, J.M.P.Q., Neto, S.R.F., Franco, C.M.R. (2016). Intermittent Drying: Fundamentals, Modeling and Applications. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_2.
  • Baysal, T., Ozbalta, N., Gokbulut, S., Capar, B., Tastan, O., & Gurlek, G. (2015). Investigation of effects of various drying methods on the quality characteristics of apple slices and energy efficiency. Isı Bilimi ve Tekniği Dergisi, 35(1), 135-144.
  • Belghith, A., Azzouz, S., & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato. Heat and Mass Transfer, 52, 407-419. https://doi.org/10.1007/s00231-015-1560-0.
  • Bhattacharjee, S., Mohanty, P., Sahu, J. K., & Sahu, J. N. (2024). A critical review on drying of food materials: recent progress and key challenges. International Communications in Heat and Mass Transfer, 158, 107863. https://doi.org/10.1016/j.icheatmasstransfer.2024.107863.
  • Bhattacharya, M., Srivastav, P. P., & Mishra, H. N. (2015). Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology, 52, 2013-2022. https://doi.org/10.1007/s13197-013-1209-2.
  • Boateng, I. D., & Yang, X. M. (2021). Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption. Journal of Food Science, 86(10), 4577-4593. https://doi.org/10.1111/1750-3841.15916.
  • Bualuang, O., Tirawanichakul, Y., & Tirawanichakul, S. (2013). Comparative study between hot air and infrared drying of parboiled rice: Kinetics and qualities aspects. Journal of Food Processing and Preservation, 37(6), 1119-1132. https://doi.org/10.1111/j.1745-4549.2012.00813.x.
  • Caliskan, G., & Dirim, S. N. (2017). Drying characteristics of pumpkin (Cucurbita moschata) slices in convective and freeze dryer. Heat and Mass Transfer, 53, 2129-2141. https://doi.org/10.1007/s00231-017-1967-x.
  • Cerezal-Mezquita, P., & Bugueño-Muñoz, W. (2022). Drying of carrot strips in indirect solar dehydrator with photovoltaic cell and thermal energy storage. Sustainability, 14(4), 2147. https://doi.org/10.3390/su14042147.
  • Chua, K. J., & Chou, S. K. (2005). A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science & Technology, 40(1), 23-39. https://doi.org/10.1111/j.1365-2621.2004.00903.x.
  • Datta, A. K., & Ni, H. (2002). Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355-364. https://doi.org/10.1016/S0260-8774(01)00079-6.
  • Doymaz, İ. (2014). Mathematical modeling of drying of tomato slices using infrared radiation. Journal of Food Processing and Preservation, 38(1), 389-396. https://doi.org/10.1111/j.1745-4549.2012.00786.x.
  • Doymaz, İ. (2015). Infrared drying kinetics and quality characteristics of carrot slices. Journal of Food Processing and Preservation, 39(6), 2738-2745. https://doi.org/10.1111/jfpp.12524.
  • Doymaz, İ. (2017). Microwave and infrared drying characteristics of mango slices. Celal Bayar University Journal of Science, 13(3), 681-688. https://doi.org/10.18466/cbayarfbe.339337.
  • Doymaz, İ., Karasu, S., & Baslar, M. (2016). Effects of infrared heating on drying kinetics, antioxidant activity, phenolic content, and color of jujube fruit. Journal of Food Measurement and Characterization, 10, 283-291. https://doi.org/10.1007/s11694-016-9305-4.
  • El‐Mesery, H. S., Ashiagbor, K., Hu, Z., & Rostom, M. (2024). Mathematical modeling of thin‐layer drying kinetics and moisture diffusivity study of apple slices using infrared conveyor‐belt dryer. Journal of Food Science, 89(3), 1658-1671. https://doi.org/10.1111/1750-3841.16967.
  • Ergün, K., Çalışkan, G., & Dirim, S. N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat and Mass Transfer, 52(12), 2697-2705. https://doi.org/10.1007/s00231-016-1773-x.
  • FAO. (2025). The food and agriculture organization corporate statistical database. Retrieved from https://www.fao.org/faostat/en/#data/QCL/visualize. (Accessed 14 April 2025).
  • Ghaboos, S. H. H., Ardabili, S. M. S., Kashaninejad, M., Asadi, G., & Aalami, M. (2016). Combined infrared-vacuum drying of pumpkin slices. Journal of Food Science and Technology, 53, 2380-2388. https://doi.org/10.1007/s13197-016-2212-1.
  • Ghenai, C., Rejeb, O., Sinclair, T., Almarzouqi, N., Alhanaee, N., & Rossi, F. (2023). Evaluation and thermal performance of cool pavement under desert weather conditions: Surface albedo enhancement and carbon emissions offset. Case Studies in Construction Materials, 18, e01940. https://doi.org/10.1016/j.cscm.2023.e01940.
  • Izli, N., İzli, G., & Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37(4), 604-612. https://doi.org/10.1590/1678-457X.28316.
  • Kayran, S., & Doymaz, İ. (2017). Infrared drying and effective moisture diffusivity of apricot halves: Influence of pretreatment and infrared power. Journal of Food Processing and Preservation, 41(2), e12827. https://doi.org/10.1111/jfpp.12827.
  • Kumar, C., Karim, M. A., & Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. https://doi.org/10.1016/j.jfoodeng.2013.08.014.
  • Li, D., Dai, T., Chen, M., Liang, R., Liu, W., Liu, C., ... & Deng, L. (2023). Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. Food Bioscience, 52, 102497. https://doi.org/10.1016/j.fbio.2023.102497.
  • Li, D., Deng, L., Dai, T., Chen, M., Liang, R., Liu, W., ... & Sun, J. (2022). Ripening induced degradation of pectin and cellulose affects the far infrared drying kinetics of mangoes. Carbohydrate Polymers, 291, 119582. https://doi.org/10.1016/j.carbpol.2022.119582.
  • Mahiuddin, M., Khan, M. I. H., Kumar, C., Rahman, M. M., & Karim, M. A. (2018). Shrinkage of food materials during drying: Current status and challenges. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1113-1126. https://doi.org/10.1111/1541-4337.12375.
  • Midilli, A., Kucuk, H., & Yapar, Z. (2002) A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864.
  • Mongpraneet, S., Abe, T., & Tsurusaki, T. (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55(2), 147-156. https://doi.org/10.1016/S0260-8774(02)00058-4.
  • Nathakaranakule, A., Jaiboon, P., & Soponronnarit, S. (2010). Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 100(4), 662-668. https://doi.org/10.1016/j.jfoodeng.2010.05.016.
  • Palamutoğlu, R. (2020). Antibrowning effect of commercial and acid‐heat coagulated whey on potatoes during refrigerated storage. Journal of Food Science, 85(11), 3858-3865. https://doi.org/10.1111/1750-3841.15468.
  • Perea-Flores, M. J., Garibay-Febles, V., Chanona-Pérez, J. J., Calderón-Domínguez, G., Méndez-Méndez, J. V., Palacios-González, E., & Gutiérrez-López, G. F. (2012). Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 38, 64-71. https://doi.org/10.1016/j.indcrop.2012.01.008.
  • Puente-Díaz, L., Ah-Hen, K., Vega-Gálvez, A., Lemus-Mondaca, R., & Scala, K. D. (2013). Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: Kinetic modeling and quality assessment. Drying Technology, 31(3), 329-338. https://doi.org/10.1080/07373937.2012.736113.
  • Rekik, C., Besombes, C., Hajji, W., Gliguem, H., Bellagha, S., Mujumdar, A. S., & Allaf, K. (2021). Study of interval infrared Airflow Drying: A case study of butternut (Cucurbita moschata). Lwt, 147, 111486. https://doi.org/10.1016/j.lwt.2021.111486.
  • Sacilik, K., & Unal, G. (2005). Dehydration characteristics of Kastamonu garlic slices. Biosystems Engineering, 92(2), 207-215. https://doi.org/10.1016/j.biosystemseng.2005.06.006.
  • Salehi, F., & Kashaninejad, M. (2018). Mass transfer and color changes kinetics of infrared-vacuum drying of grapefruit slices. International Journal of Fruit Science, 18(4), 394-409. https://doi.org/10.1080/15538362.2018.1458266.
  • Sehrawat, R., Nema, P. K., & Kaur, B. P. (2018). Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. Lwt, 92, 548-555. https://doi.org/10.1016/j.lwt.2018.03.012.
  • Sharifian, F., Modarres-Motlagh, A., Komarizade, M. H., & Nikbakht, A. M. (2013). Colour change analysis of fig fruit during microwave drying. International Journal of Food Engineering, 9(1), 107-114. https://doi.org/10.1515/ijfe-2012-0211.
  • Sogi, D. S., Siddiq, M., & Dolan, K. D. (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT-Food Science and Technology, 62(1), 564-568. https://doi.org/10.1016/j.lwt.2014.04.015.
  • Supmoon, N., & Noomhorm, A. (2013). Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technology, 31(1), 24-31. https://doi.org/10.1080/07373937.2012.711792.
  • Taşkın, O., İzli, G., & İzli, N. (2018) Convective drying kinetics and quality parameters of european cranberrybush. Journal of Agricultural Science, 24(3), 349-358. https://doi.org/10.15832/ankutbd.456654.
  • Wang, Y., Zhang, M., Mujumdar, A. S., & Chen, H. (2014). Drying and quality characteristics of shredded squid in an infrared-assisted convective dryer. Drying Technology, 32(15), 1828-1839. https://doi.org/10.1080/07373937.2014.952379.
  • Xiao, H. W., Law, C. L., Sun, D. W., & Gao, Z. J. (2014). Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying. Drying Technology, 32(4), 418-427. https://doi.org/10.1080/07373937.2013.834928.
  • Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84(3), 430-440. https://doi.org/10.1016/j.jfoodeng.2007.06.004.
  • Yao, L., Fan, L., & Duan, Z. (2020). Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry, 305, 125477. https://doi.org/10.1016/j.foodchem.2019.125477.
  • Zhu, Y., & Pan, Z. (2009). Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. Journal of Food Engineering, 90(4), 441-452. https://doi.org/10.1016/j.jfoodeng.2008.07.015.

Kesikli ve sürekli kızılötesi kurutma yöntemiyle mangonun kurutulması

Year 2025, Volume: 42 Issue: 2, 95 - 108, 30.08.2025
https://doi.org/10.55507/gopzfd.1652503

Abstract

Bu çalışmada mango dilimlerinin kızılötesi kurutma işlemi üç güç seviyesinde (300, 400 ve 500 W) ve üç farklı aralıklılık oranında (PR = 1, PR = 1,5 ve PR = 2) incelenmiştir. Bu kurutma parametrelerinin kurutma süresi, büzülme, renk stabilitesi, enerji verimliliği, rehidrasyon kapasitesi ve yüzey sıcaklığı üzerindeki etkisi sistematik olarak değerlendirilmiştir. Ek olarak, bu koşullar altında elde edilen deneysel verilere on adet yaygın olarak kabul görmüş matematiksel ince tabaka kurutma modeli uygulanmıştır. Bulgular, kesiklilik oranını azaltırken kızılötesi gücün artırılmasının kurutma sürelerinin kısalmasıyla sonuçlandığını göstermiştir. Değerlendirilen modeller arasında Midilli ve ark. modeli, mango dilimlerinin kızılötesi kurutma davranışını farklı güç seviyeleri ve kesinti oranlarında tanımlamada en yüksek doğruluğu sergilemiştir. Ayrıca, daha yüksek kızılötesi güç L* değerlerinde düşüşe yol açarak kurutulan örneklerde koyulaşma etkisi olduğunu göstermiştir. Kızılötesi güçteki değişimler, aynı aralıklılık oranında kurutulan ürünlerin büzülme değerlerini önemli ölçüde etkilememiştir (p>0,5). Mango ürünlerinin yüzey sıcaklığı, aralık oranının azalması ve kızılötesi gücünün artmasıyla artmıştır. PR=1 uygulamalarında infrared gücünün artırılması enerji tüketimini azaltmıştır.

References

  • Abraham, T. F., Marcel, E., & Alexis, K. (2020). Intermittent drying of mango slices (Mangifera indica L.)" Amelie": A new model. American Journal of Food Science and Technology, 8(3), 81-86. https://doi.org/10.12691/ajfst-8-3-1
  • Altay, K., Hayaloglu, A. A., & Dirim, S. N. (2019). Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer, 55, 2173-2184. https://doi.org/10.1007/s00231-019-02570-9.
  • Amiri Chayjan, R., & Shadidi, B. (2014). Modeling high‐moisture Faba bean drying in fixed and semi‐fluidized bed conditions. Journal of Food Processing and Preservation, 38(1), 200-211. https://doi.org/10.1111/j.1745-4549.2012.00766.x.
  • Aral, S., & Beşe, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food chemistry, 210, 577-584. https://doi.org/10.1016/j.foodchem.2016.04.128.
  • Aradwad, P. P., Thirumani Venkatesh, A. K., & Mani, I. (2023). Infrared drying of apple (Malus domestica) slices: Effect on drying and color kinetics, texture, rehydration, and microstructure. Journal of Food Process Engineering, 46(2), e14218. https://doi.org/10.1111/jfpe.14218.
  • Askari, G. R., Emam-Djomeh, Z., & Mousavi, S. M. (2006). Effects of combined coating and microwave assisted hot-air drying on the texture, microstructure and rehydration characteristics of apple slices. Food Science and Technology International, 12(1), 39-46. https://doi.org/10.1177/1082013206062480. Aydogdu, A., Sumnu, G., & Sahin, S. (2015). Effects of microwave-infrared combination drying on quality of eggplants. Food and Bioprocess Technology, 8, 1198-1210. https://doi.org/10.1007/s11947-015-1484-1.
  • Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2011). Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal of Food Science & Technology, 46(4), 827-833. https://doi.org/10.1111/j.1365-2621.2011.02553.x.
  • Balbay, A., & Şahin, Ö. (2012). Microwave drying kinetics of a thin-layer liquorice root. Drying Technology, 30(8), 859-864. https://doi.org/10.1080/07373937.2012.670682.
  • Barbosa de Lima, A.G., Delgado, J.M.P.Q., Neto, S.R.F., Franco, C.M.R. (2016). Intermittent Drying: Fundamentals, Modeling and Applications. In: Delgado, J., Barbosa de Lima, A. (eds) Drying and Energy Technologies. Advanced Structured Materials, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-19767-8_2.
  • Baysal, T., Ozbalta, N., Gokbulut, S., Capar, B., Tastan, O., & Gurlek, G. (2015). Investigation of effects of various drying methods on the quality characteristics of apple slices and energy efficiency. Isı Bilimi ve Tekniği Dergisi, 35(1), 135-144.
  • Belghith, A., Azzouz, S., & ElCafsi, A. (2016). Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato. Heat and Mass Transfer, 52, 407-419. https://doi.org/10.1007/s00231-015-1560-0.
  • Bhattacharjee, S., Mohanty, P., Sahu, J. K., & Sahu, J. N. (2024). A critical review on drying of food materials: recent progress and key challenges. International Communications in Heat and Mass Transfer, 158, 107863. https://doi.org/10.1016/j.icheatmasstransfer.2024.107863.
  • Bhattacharya, M., Srivastav, P. P., & Mishra, H. N. (2015). Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology, 52, 2013-2022. https://doi.org/10.1007/s13197-013-1209-2.
  • Boateng, I. D., & Yang, X. M. (2021). Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption. Journal of Food Science, 86(10), 4577-4593. https://doi.org/10.1111/1750-3841.15916.
  • Bualuang, O., Tirawanichakul, Y., & Tirawanichakul, S. (2013). Comparative study between hot air and infrared drying of parboiled rice: Kinetics and qualities aspects. Journal of Food Processing and Preservation, 37(6), 1119-1132. https://doi.org/10.1111/j.1745-4549.2012.00813.x.
  • Caliskan, G., & Dirim, S. N. (2017). Drying characteristics of pumpkin (Cucurbita moschata) slices in convective and freeze dryer. Heat and Mass Transfer, 53, 2129-2141. https://doi.org/10.1007/s00231-017-1967-x.
  • Cerezal-Mezquita, P., & Bugueño-Muñoz, W. (2022). Drying of carrot strips in indirect solar dehydrator with photovoltaic cell and thermal energy storage. Sustainability, 14(4), 2147. https://doi.org/10.3390/su14042147.
  • Chua, K. J., & Chou, S. K. (2005). A comparative study between intermittent microwave and infrared drying of bioproducts. International Journal of Food Science & Technology, 40(1), 23-39. https://doi.org/10.1111/j.1365-2621.2004.00903.x.
  • Datta, A. K., & Ni, H. (2002). Infrared and hot-air-assisted microwave heating of foods for control of surface moisture. Journal of Food Engineering, 51(4), 355-364. https://doi.org/10.1016/S0260-8774(01)00079-6.
  • Doymaz, İ. (2014). Mathematical modeling of drying of tomato slices using infrared radiation. Journal of Food Processing and Preservation, 38(1), 389-396. https://doi.org/10.1111/j.1745-4549.2012.00786.x.
  • Doymaz, İ. (2015). Infrared drying kinetics and quality characteristics of carrot slices. Journal of Food Processing and Preservation, 39(6), 2738-2745. https://doi.org/10.1111/jfpp.12524.
  • Doymaz, İ. (2017). Microwave and infrared drying characteristics of mango slices. Celal Bayar University Journal of Science, 13(3), 681-688. https://doi.org/10.18466/cbayarfbe.339337.
  • Doymaz, İ., Karasu, S., & Baslar, M. (2016). Effects of infrared heating on drying kinetics, antioxidant activity, phenolic content, and color of jujube fruit. Journal of Food Measurement and Characterization, 10, 283-291. https://doi.org/10.1007/s11694-016-9305-4.
  • El‐Mesery, H. S., Ashiagbor, K., Hu, Z., & Rostom, M. (2024). Mathematical modeling of thin‐layer drying kinetics and moisture diffusivity study of apple slices using infrared conveyor‐belt dryer. Journal of Food Science, 89(3), 1658-1671. https://doi.org/10.1111/1750-3841.16967.
  • Ergün, K., Çalışkan, G., & Dirim, S. N. (2016). Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat and Mass Transfer, 52(12), 2697-2705. https://doi.org/10.1007/s00231-016-1773-x.
  • FAO. (2025). The food and agriculture organization corporate statistical database. Retrieved from https://www.fao.org/faostat/en/#data/QCL/visualize. (Accessed 14 April 2025).
  • Ghaboos, S. H. H., Ardabili, S. M. S., Kashaninejad, M., Asadi, G., & Aalami, M. (2016). Combined infrared-vacuum drying of pumpkin slices. Journal of Food Science and Technology, 53, 2380-2388. https://doi.org/10.1007/s13197-016-2212-1.
  • Ghenai, C., Rejeb, O., Sinclair, T., Almarzouqi, N., Alhanaee, N., & Rossi, F. (2023). Evaluation and thermal performance of cool pavement under desert weather conditions: Surface albedo enhancement and carbon emissions offset. Case Studies in Construction Materials, 18, e01940. https://doi.org/10.1016/j.cscm.2023.e01940.
  • Izli, N., İzli, G., & Taskin, O. (2017). Influence of different drying techniques on drying parameters of mango. Food Science and Technology, 37(4), 604-612. https://doi.org/10.1590/1678-457X.28316.
  • Kayran, S., & Doymaz, İ. (2017). Infrared drying and effective moisture diffusivity of apricot halves: Influence of pretreatment and infrared power. Journal of Food Processing and Preservation, 41(2), e12827. https://doi.org/10.1111/jfpp.12827.
  • Kumar, C., Karim, M. A., & Joardder, M. U. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48-57. https://doi.org/10.1016/j.jfoodeng.2013.08.014.
  • Li, D., Dai, T., Chen, M., Liang, R., Liu, W., Liu, C., ... & Deng, L. (2023). Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. Food Bioscience, 52, 102497. https://doi.org/10.1016/j.fbio.2023.102497.
  • Li, D., Deng, L., Dai, T., Chen, M., Liang, R., Liu, W., ... & Sun, J. (2022). Ripening induced degradation of pectin and cellulose affects the far infrared drying kinetics of mangoes. Carbohydrate Polymers, 291, 119582. https://doi.org/10.1016/j.carbpol.2022.119582.
  • Mahiuddin, M., Khan, M. I. H., Kumar, C., Rahman, M. M., & Karim, M. A. (2018). Shrinkage of food materials during drying: Current status and challenges. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1113-1126. https://doi.org/10.1111/1541-4337.12375.
  • Midilli, A., Kucuk, H., & Yapar, Z. (2002) A new model for single-layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864.
  • Mongpraneet, S., Abe, T., & Tsurusaki, T. (2002). Accelerated drying of welsh onion by far infrared radiation under vacuum conditions. Journal of Food Engineering, 55(2), 147-156. https://doi.org/10.1016/S0260-8774(02)00058-4.
  • Nathakaranakule, A., Jaiboon, P., & Soponronnarit, S. (2010). Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 100(4), 662-668. https://doi.org/10.1016/j.jfoodeng.2010.05.016.
  • Palamutoğlu, R. (2020). Antibrowning effect of commercial and acid‐heat coagulated whey on potatoes during refrigerated storage. Journal of Food Science, 85(11), 3858-3865. https://doi.org/10.1111/1750-3841.15468.
  • Perea-Flores, M. J., Garibay-Febles, V., Chanona-Pérez, J. J., Calderón-Domínguez, G., Méndez-Méndez, J. V., Palacios-González, E., & Gutiérrez-López, G. F. (2012). Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Industrial Crops and Products, 38, 64-71. https://doi.org/10.1016/j.indcrop.2012.01.008.
  • Puente-Díaz, L., Ah-Hen, K., Vega-Gálvez, A., Lemus-Mondaca, R., & Scala, K. D. (2013). Combined infrared-convective drying of murta (Ugni molinae Turcz) berries: Kinetic modeling and quality assessment. Drying Technology, 31(3), 329-338. https://doi.org/10.1080/07373937.2012.736113.
  • Rekik, C., Besombes, C., Hajji, W., Gliguem, H., Bellagha, S., Mujumdar, A. S., & Allaf, K. (2021). Study of interval infrared Airflow Drying: A case study of butternut (Cucurbita moschata). Lwt, 147, 111486. https://doi.org/10.1016/j.lwt.2021.111486.
  • Sacilik, K., & Unal, G. (2005). Dehydration characteristics of Kastamonu garlic slices. Biosystems Engineering, 92(2), 207-215. https://doi.org/10.1016/j.biosystemseng.2005.06.006.
  • Salehi, F., & Kashaninejad, M. (2018). Mass transfer and color changes kinetics of infrared-vacuum drying of grapefruit slices. International Journal of Fruit Science, 18(4), 394-409. https://doi.org/10.1080/15538362.2018.1458266.
  • Sehrawat, R., Nema, P. K., & Kaur, B. P. (2018). Quality evaluation and drying characteristics of mango cubes dried using low-pressure superheated steam, vacuum and hot air drying methods. Lwt, 92, 548-555. https://doi.org/10.1016/j.lwt.2018.03.012.
  • Sharifian, F., Modarres-Motlagh, A., Komarizade, M. H., & Nikbakht, A. M. (2013). Colour change analysis of fig fruit during microwave drying. International Journal of Food Engineering, 9(1), 107-114. https://doi.org/10.1515/ijfe-2012-0211.
  • Sogi, D. S., Siddiq, M., & Dolan, K. D. (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. LWT-Food Science and Technology, 62(1), 564-568. https://doi.org/10.1016/j.lwt.2014.04.015.
  • Supmoon, N., & Noomhorm, A. (2013). Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technology, 31(1), 24-31. https://doi.org/10.1080/07373937.2012.711792.
  • Taşkın, O., İzli, G., & İzli, N. (2018) Convective drying kinetics and quality parameters of european cranberrybush. Journal of Agricultural Science, 24(3), 349-358. https://doi.org/10.15832/ankutbd.456654.
  • Wang, Y., Zhang, M., Mujumdar, A. S., & Chen, H. (2014). Drying and quality characteristics of shredded squid in an infrared-assisted convective dryer. Drying Technology, 32(15), 1828-1839. https://doi.org/10.1080/07373937.2014.952379.
  • Xiao, H. W., Law, C. L., Sun, D. W., & Gao, Z. J. (2014). Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying. Drying Technology, 32(4), 418-427. https://doi.org/10.1080/07373937.2013.834928.
  • Yan, Z., Sousa-Gallagher, M. J., & Oliveira, F. A. (2008). Shrinkage and porosity of banana, pineapple and mango slices during air-drying. Journal of Food Engineering, 84(3), 430-440. https://doi.org/10.1016/j.jfoodeng.2007.06.004.
  • Yao, L., Fan, L., & Duan, Z. (2020). Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry, 305, 125477. https://doi.org/10.1016/j.foodchem.2019.125477.
  • Zhu, Y., & Pan, Z. (2009). Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating. Journal of Food Engineering, 90(4), 441-452. https://doi.org/10.1016/j.jfoodeng.2008.07.015.
There are 53 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Research Articles
Authors

Ahmet Polat 0000-0003-1673-7165

Publication Date August 30, 2025
Submission Date March 6, 2025
Acceptance Date April 20, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Polat, A. (2025). Drying of mango by intermittent and continuous infrared drying method. Journal of Agricultural Faculty of Gaziosmanpaşa University, 42(2), 95-108. https://doi.org/10.55507/gopzfd.1652503