The effect of green synthesized nanoparticles on organic acids in strawberry and sweet cherry during storage
Year 2025,
Volume: 42 Issue: 2, 142 - 151, 30.08.2025
Emircan Dinçer
,
Onur Saraçoğlu
,
Nesrin Korkmaz
Abstract
This study investigated the effects of boron-, copper-, and chitosan-based nanoparticles (synthesized by the green synthesis method) on organic acid contents of strawberries and sweet cherries during storage. The fruits were dipped in nanoparticle solutions for 2 minutes and stored under cold conditions (0 ± 0.5 °C for sweet cherries, 1 ± 0.5 °C for strawberries) at 90 ± 5% relative humidity. Malic, citric, and oxalic acid levels were evaluated. In strawberries, the Boron1 treatment (500 ppm boron nanoparticle) was the most effective in preserving organic acids, particularly citric acid, which remained at 2431.5 mg kg⁻¹ fw by the end of storage compared to 1702.5 mg kg⁻¹ fw in the control group. In sweet cherries, Chitosan (1% nanochitosan solution) treatment preserved the highest level of malic acid (2256.7 mg kg⁻¹ fw), while Boron1 contributed to the retention of citric acid (20.75 mg kg⁻¹ fw), exceeding even the initial harvest value. Oxalic acid degradation was slowed in the treated groups compared to the control in both fruits. The results suggest that nanoparticle-assisted edible coatings may offer a promising strategy for extending shelf life and partially preserving phytochemical content. Moreover, it was observed that the dominant organic acid varied by fruit species, i.e., citric acid in strawberries and malic acid in sweet cherries. These findings support the view that nanoparticle applications should be tailored to fruit type and may contribute to the development of more sustainable postharvest preservation approaches.
Ethical Statement
There is no need to obtain permission from the ethics committee for this study.
Supporting Institution
This research was financially supported by the TÜBİTAK 1003 - Primary Subjects R&D Funding Program (222O604). Additionally, it is based on a doctoral thesis conducted as part of the YÖK 100/2000 PhD Project 'Sustainable Agriculture' program, supported by the Higher Education Council.
Thanks
This research was financially supported by the TÜBİTAK 1003 - Primary Subjects R&D Funding Program (222O604). Additionally, it is based on a doctoral thesis conducted as part of the YÖK 100/2000 PhD Project 'Sustainable Agriculture' program, supported by the Higher Education Council.
References
-
Ali, Q., Kurubas, M. S., Ustun, H., Balkhi, M., & Erkan, M. (2022). Evaluation of foliar organic fertilizer, biofertilizer and biological fungicide on the antioxidant compounds and postharvest quality attributes of strawberry fruit. Erwerbs-obstbau, 64(3), 365-376.
https://doi.org/10.1007/s10341-022-00659-w
-
Ali, L. M., Ahmed, A. E. A. R., Hasan, H. E. S., Suliman, A. E. E., & Saleh, S. S. (2022). Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chemical and Biological Technologies in Agriculture, 9(1), 80.
https://doi.org/10.1186/s40538-022-00343-x
-
Alnıak, N. Y., Caner, C., & Yüceer, M. (2025). The ındividual and combined effects of electrolyzed water and chitosan coating applications on the storage stability of fresh strawberries. Food and Bioprocess Technology, 1-17.
https://doi.org/10.1007/s11947-025-03791-z
-
Ananda, A. P., Manukumar, H. M., Umesha, S., Soumya, G., Priyanka, D., Mohan Kumar, A. S., & Savitha, K. R. (2017). A relook at food packaging for cost effective by incorporation of novel technologies. Journal of Packaging Technology and Research, 1, 67-85.
https://doi.org/10.1007/s41783-017-0011-4
-
Bahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2022). Evaluation of proline-coated chitosan nanoparticles on decay control and quality preservation of strawberry fruit (cv. Camarosa) during cold storage. Horticulturae, 8(7), 648.
https://doi.org/10.3390/horticulturae8070648
Bahmani, R., Razavi, F., Mortazavi, S., Juárez-Maldonado, A., & Gohari, G. (2024a). Chitosan–putrescine nanoparticle coating attenuates postharvest decay and maintains ROS scavenging system activity during cold storage. Folia Horticulturae, 36(1), 149–160.
https://doi.org/10.2478/fhort-2024-0009
-
Bahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2024b). Enhancing postharvest quality and shelf life through advanced coating technologies: A comprehensive investigation of chitosan and glycine betaine nanoparticle treatments. Plants, 13(8), 1136.
https://doi.org/10.3390/plants13081136
-
Bevilacqua, A. E., & Califano, A. N. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science, 54(4), 1076-1076.
https://doi.org/10.1111/j.1365-2621.1989.tb07948.x
-
Chiabrando, V., Garavaglia, L., & Giacalone, G. (2019). The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods, 8(8), 335.
https://doi.org/10.3390/foods8080335
-
Çezik, F., Öcalan, O. N., Dinçer, E., Al-salihi, A. A. M., Çiğdem, M. R., İşbilir, M. E., Paşazade, E., Öztürk, B., & Saraçoğlu, O. (2024). Comparison of cold storage abilities of'ayvaniye'and'granny smith'apple cultivars. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(1), 8-16.
https://doi:10.55507/gopzfd.1397096
-
Çolak, A. M., Peral Eyduran, S., Tas, A., Altun, O., Gundogdu, M., & Ozturk, B. (2025). The role of spermidine in postharvest fruit physiology: effects on quality characteristics and metabolite content of sweet cherry fruit during cold storage. ACS omega, 10(10), 10567-10578.
https://doi.org/10.1021/acsomega.4c11222
-
Emadifar, R., Sharifi, G. R., & Mirzaalian-Dastjerdi, A. M. (2025). Effects of chitosan coating on the biochemical properties of sweet pepper (Capsicum annuum L.) in cold storage. International Journal of Horticultural Science and Technology, 12(2), 375-386.
https://doi.org/10.22059/İJHST.2024.368020.727
Eroğul, D., Gundogdu, M., Sen, F., & Tas, A. (2024). Impact of postharvest calcium chloride treatments on decay rate and physicochemical quality properties in strawberry fruit. BMC Plant Biology, 24(1), 1088.
https://doi.org/10.1186/s12870-024-05792-0
-
Food and Agriculture Organization of the United Nations. (2023). Commodities by country.
https://www.fao.org/faostat/en/#rankings/countries_by_commodity
-
Gidado, M. J., Gunny, A. A. N., Gopinath, S. C., Devi, M., Jayavalli, R., & Ilyas, R. A. (2025). Challenges in selecting edible coating materials for fruit postharvest preservation and recent advances in edible coating techniques: a review. Journal of Food Science and Technology, 1-11.
https://doi.org/10.1007/s13197-025-06214-1
-
Hasan, M. U., Singh, Z., Shah, H. M. S., Kaur, J., Woodward, A., Afrifa-Yamoah, E., & Malik, A. U. (2023). Oxalic acid: A blooming organic acid for postharvest quality preservation of fresh fruit and vegetables. Postharvest Biology and Technology, 206, 112574.
https://doi.org/10.1016/j.postharvbio.2023.112574
-
Hayaloglu, A. A., & Demir, N. (2015). Physicochemical characteristics, antioxidant activity, organic acid and sugar contents of 12 sweet cherry (Prunus avium L.) cultivars grown in Turkey. Journal of Food Science, 80(3), C564-C570.
https://doi.org/10.1111/1750-3841.12781
-
Holcroft, D. M., & Kader, A. A. (1999). Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology, 17(1), 19-32.
https://doi.org/10.1016/S0925-5214(99)00023-X
-
Iñiguez-Moreno, M., & González-González, R. B. (2025). Effect of gelatin and salicylic acid incorporated in chitosan coatings on strawberry preservation. International Journal of Biological Macromolecules, 140918.
https://doi.org/10.1016/j.ijbiomac.2025.140918
-
Isvand, A., Karimaei, S., & Amini, M. (2024). Assessment of chitosan coating enriched with Citrus limon essential oil on the quality characteristics and shelf life of beef meat during cold storage. International Journal of Food Microbiology, 423, 110825.
https://doi.org/10.1016/j.ijfoodmicro.2024.110825.
-
Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. Lwt, 73, 28-36.
https://doi.org/10.1016/j.lwt.2016.05.038
-
Karaat, F. E., Gündüz, K., Saraçoğlu, O., & Yıldırım, H. (2019). Pomological and phytochemical evaluation of different cherry species: mahaleb (Prunus mahaleb L.), wild sweet cherry (Prunus avium L.) and wild sour cherry (Prunus cerasus L.), sweet and sourcherry cultivars. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4), 181-191.
https://doi.org/10.24326/asphc.2019.4.17
Korkmaz, N., Saraçoğlu, O., Kaçan, F. N., & Dinçer, E. (2025, January). Green synthesis and characterization of copper, boron and chitosan. In J. R. Hernandez-Carrion (Ed.), Proceedings of the 7th International Mediterranean Congress (pp. 169–170). Liberty Academic Publishers.
-
Korkmaz, N. (2020). Bioreduction: the biological activity, characterization, and synthesis of silver nanoparticles. Turkish Journal of Chemistry, 44(2), 325-334.
https://doi.org/10.3906/kim-1910-8
-
Korkmaz, N., Kısa, D., Ceylan, Y., Güçlü, E., & Şen, F. (2024). Biogenic synthesis of silica nanoparticles from industrial hemp waste for sustainable applications: Characterization and potential environmental benefits. Inorganic Chemistry Communications, 167, 112750.
https://doi.org/10.1016/j.inoche.2024.112750
Kumar, N., Ojha, A., Upadhyay, A., Singh, R., & Kumar, S. (2021). Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT, 138, 110435.
https://doi.org/10.1016/j.lwt.2020.110435
-
Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., Elhakem, A., Almatrafi, M., Benajba, N., & Helal, M. (2021). Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific reports, 11(1), 55.
https://doi.org/10.1038/s41598-020-80056-z
-
Liu, Z., Mao, Z., Li, M., Cai, C., Wang, Y., Liu, J. H., & Li, C. (2023). Vacuole: A repository to control fruit flavor quality. Fruit Research, 3, Article 12.
https://doi.org/10.48130/FruRes-2023-0012
-
Ma, Y., Fu, L., Hussain, Z., Huang, D., & Zhu, S. (2019). Enhancement of storability and antioxidant systems of sweet cherry fruit by nitric oxide-releasing chitosan nanoparticles (GSNO-CS NPs). Food Chemistry, 285, 10–21.
https://doi.org/10.1016/j.foodchem.2019.01.156
-
Michailidis, M., Bazakos, C., Kollaros, M., Adamakis, I. D. S., Ganopoulos, I., Molassiotis, A., & Tanou, G. (2023). Boron stimulates fruit formation and reprograms developmental metabolism in sweet cherry. Physiologia Plantarum, 175(3), e13946.
https://doi.org/10.1111/ppl.13946
Ocalan, O. N., Yildiz, K., & Saracoglu, O. (2023). Usage possibilities of edible coating and films for storage of fruits. Erwerbs-Obstbau, 65(3), 597-605.
https://doi.org/10.1007/s10341-023-00837-4
-
Ozturk, A., Yildiz, K., Ozturk, B., Karakaya, O., Gun, S., Uzun, S., & Gundogdu, M. (2019). Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modified atmosphere packaging and methyl jasmonate. Lwt, 111, 117-124.
https://doi.org/10.1016/j.lwt.2019.05.033
-
Ozturk, B., Aglar, E., Saracoglu, O., Karakaya, O., & Gun, S. (2022). Effects of GA3, CaCl2 and modified atmosphere packaging (MAP) applications on fruit quality of sweet cherry at cold storage. International Journal of Fruit Science, 22(1), 696-710.
https://doi.org/10.1080/15538362.2022.2113597
-
Parvin, N., Rahman, A., Roy, J., Rashid, M. H., Paul, N. C., Mahamud, M. A., Imran, S., sakil, M. A., Uddin, F. M., Molla, M. E., Khan, M. A., Kabir, M. H., & Kader, M. A. (2023). Chitosan coating improves postharvest shelf-life of mango (Mangifera indica L.). Horticulturae, 9(1), 64.
https://doi.org/10.3390/horticulturae9010064
-
Pelayo, C., Ebeler, S. E., & Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5 C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171-183.
https://doi.org/10.1016/S0925-5214(02)00059-5
-
Pereira, G. L., Nascimento, V. L., Omena-Garcia, R. P., Souza, B. C. O., de Carvalho Gonçalves, J. F., Ribeiro, D. M. R. A. Nunes-Nesi, & Araújo, W. L. (2023). Physiological and metabolic changes in response to Boron levels are mediated by ethylene affecting tomato fruit yield. Plant Physiology and Biochemistry, 202, 107994.
-
Sami, R., Almatrafi, M., Elhakem, A., Alharbi, M., Benajiba, N., & Helal, M. (2021). Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes, 11(2), 140.
https://doi.org/10.3390/membranes11020140
-
Sani, A., Hassan, D., Ehsan, M., Sánchez-Rodríguez, E. P., & Melo-Máximo, D. V. (2025). Improving strawberry shelf life using chitosan and zinc oxide nanoparticles from ginger-garlic extracts. Applied Food Research, 5(1), 100439.
https://doi.org/10.1016/j.afres.2025.100765
-
Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856.
https://doi.org/10.3390/ijms19071856
-
Şen, K., & Güner, K. G. (2023). Nanoteknolojinin yenilebilir filmlere uygulanması. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 411-425.
https://doi.org/10.21923/jesd.1123446
-
Taha, I. M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I. H., Mersal, G. A. M., Ibrahim, M. M., & Fahmy, A. (2022). Impact of starch coating embedded with silver nanoparticles on storage time. Polymers, 14(7), 1439.
https://doi.org/10.3390/polym14071439
-
Tayel, A., Otian, A. M., Ebaid, A. M., Mahrous, H., Salem, M. F., Ghobashy, M. O., Alzamel, M. N., & Mazroa, K. E. (2025). Powerful antıfungal nanocomposıte from amla-synthesızed selenıum nanopartıcles and nanochıtosan to protect strawberry from Gray Mold. Journal of Microbiology, Biotechnology and Food Sciences, e11934-e11934.
https://orcid.org/0000-0001-5535-2896
Vera-Maldonado, P., Aquea, F., Reyes-Díaz, M., Cárcamo-Fincheira, P., Soto-Cerda, B., Nunes-Nesi, A., & Inostroza-Blancheteau, C. (2024). Role of boron and its interaction with other elements in plants. Frontiers in Plant Science, 15, 1332459.
https://doi.org/10.3389/fpls.2024.1332459
Yıldız, E., Hancı, F., Yaman, M., Popescu, G. C., Popescu, M., & Sümbül, A. (2025). Edible micro-sized composite coating applications on post-harvest quality of sweet cherry fruits. Horticulturae, 11(3), 303.
https://doi.org/10.3390/horticulturae11030303
-
Wang, L., Zhang, H., Jin, P., Guo, X., Li, Y., Fan, C., Wang, J., & Zheng, Y. (2016). Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biology and Technology, 118, 71-78.
https://doi.org/10.1016/j.postharvbio.2016.03.023
-
Xiao, J., Gu, C., Zhu, D., Huang, Y., Luo, Y., & Zhou, Q. (2021). Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. Lwt, 140, 110809.
https://doi.org/10.1016/j.lwt.2020.110809
-
Xing, W., Liu, W., Li, H., Zeng, X., Fan, X., Xing, S., & Gong, H. (2025). Development of predictive models for shelf-life of sweet cherry under different storage temperatures. LWT, 217, 117442.
https://doi.org/10.1016/j.lwt.2025.117442
-
Zhang, W., Jiang, Y., & Zhang, Z. (2023). The role of different natural organic acids in postharvest fruit quality management and its mechanism. Food Frontiers, 4(3), 1127-1143.
https://doi.org/10.1002/fft2.245
-
Zhang, L., Sun, C., Tian, H., Xu, J., & Wu, X. (2024). Foliar spraying of boron prolongs preservation period of strawberry fruits by altering boron form and boron distribution in cell. Frontiers in Plant Science, 15, 1457694.
https://doi.org/10.3389/fpls.2024.1457694
Yeşil sentez yöntemiyle elde edilen nanopartiküllerin çilek ve kirazda depolama süresince organik asitler üzerine etkisi
Year 2025,
Volume: 42 Issue: 2, 142 - 151, 30.08.2025
Emircan Dinçer
,
Onur Saraçoğlu
,
Nesrin Korkmaz
Abstract
Bu çalışma, yeşil sentez yöntemiyle elde edilen bor, bakır ve kitosan temelli nanopartiküllerin, çilek ve kiraz meyvelerinin depolama süresince organik asit içerikleri üzerindeki etkilerini araştırmaktadır. Meyveler, 2 dakika boyunca nanopartikül çözeltilerine daldırılmış ve soğuk koşullarda (kirazlar için 0 ± 0.5 °C, çilekler için 1 ± 0.5 °C) %90 ± 5 bağıl nem ortamında muhafaza edilmiştir. Çalışma kapsamında malik, sitrik ve okzalik asit düzeyleri değerlendirilmiştir. Çilekte, Boron1 uygulaması (500 ppm bor nanopartikülü) organik asitlerin korunmasında en etkili yöntem olmuş; özellikle sitrik asit, depolama sonunda 2431.5 mg kg⁻¹ t.a. düzeyinde korunarak kontrol grubundaki 1702.5 mg kg⁻¹ t.a. seviyesinin üzerinde kalmıştır. Kirazda ise, Kitosan uygulaması (%1 nanochitosan çözeltisi) malik asidin en yüksek düzeyde korunmasını sağlamış (2256.7 mg kg⁻¹ t.a.), Boron1 uygulaması ise sitrik asidin korunmasına katkı sağlamış ve bu bileşik, hasat değerini aşarak 20.75 mg kg⁻¹ t.a. düzeyine ulaşmıştır. Her iki meyvede de, okzalik asit bozunumu uygulama gruplarında kontrol grubuna göre daha yavaş gerçekleşmiştir. Elde edilen sonuçlar, nanopartikül destekli yenilebilir kaplama uygulamalarının raf ömrünü uzatmada ve fitokimyasal içeriği kısmen korumada umut verici bir yaklaşım olabileceğini göstermektedir. Ayrıca, baskın organik asit içeriğinin meyve türüne göre değiştiği; çilekte sitrik asidin, kirazda ise malik asidin öne çıktığı belirlenmiştir. Bu bulgular, nanopartikül uygulamalarının meyve türüne özel olarak planlanması gerektiğini ve sürdürülebilir hasat sonrası koruma tekniklerinin geliştirilmesine katkı sağlayabileceğini ortaya koymaktadır.
References
-
Ali, Q., Kurubas, M. S., Ustun, H., Balkhi, M., & Erkan, M. (2022). Evaluation of foliar organic fertilizer, biofertilizer and biological fungicide on the antioxidant compounds and postharvest quality attributes of strawberry fruit. Erwerbs-obstbau, 64(3), 365-376.
https://doi.org/10.1007/s10341-022-00659-w
-
Ali, L. M., Ahmed, A. E. A. R., Hasan, H. E. S., Suliman, A. E. E., & Saleh, S. S. (2022). Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chemical and Biological Technologies in Agriculture, 9(1), 80.
https://doi.org/10.1186/s40538-022-00343-x
-
Alnıak, N. Y., Caner, C., & Yüceer, M. (2025). The ındividual and combined effects of electrolyzed water and chitosan coating applications on the storage stability of fresh strawberries. Food and Bioprocess Technology, 1-17.
https://doi.org/10.1007/s11947-025-03791-z
-
Ananda, A. P., Manukumar, H. M., Umesha, S., Soumya, G., Priyanka, D., Mohan Kumar, A. S., & Savitha, K. R. (2017). A relook at food packaging for cost effective by incorporation of novel technologies. Journal of Packaging Technology and Research, 1, 67-85.
https://doi.org/10.1007/s41783-017-0011-4
-
Bahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2022). Evaluation of proline-coated chitosan nanoparticles on decay control and quality preservation of strawberry fruit (cv. Camarosa) during cold storage. Horticulturae, 8(7), 648.
https://doi.org/10.3390/horticulturae8070648
Bahmani, R., Razavi, F., Mortazavi, S., Juárez-Maldonado, A., & Gohari, G. (2024a). Chitosan–putrescine nanoparticle coating attenuates postharvest decay and maintains ROS scavenging system activity during cold storage. Folia Horticulturae, 36(1), 149–160.
https://doi.org/10.2478/fhort-2024-0009
-
Bahmani, R., Razavi, F., Mortazavi, S. N., Gohari, G., & Juárez-Maldonado, A. (2024b). Enhancing postharvest quality and shelf life through advanced coating technologies: A comprehensive investigation of chitosan and glycine betaine nanoparticle treatments. Plants, 13(8), 1136.
https://doi.org/10.3390/plants13081136
-
Bevilacqua, A. E., & Califano, A. N. (1989). Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science, 54(4), 1076-1076.
https://doi.org/10.1111/j.1365-2621.1989.tb07948.x
-
Chiabrando, V., Garavaglia, L., & Giacalone, G. (2019). The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods, 8(8), 335.
https://doi.org/10.3390/foods8080335
-
Çezik, F., Öcalan, O. N., Dinçer, E., Al-salihi, A. A. M., Çiğdem, M. R., İşbilir, M. E., Paşazade, E., Öztürk, B., & Saraçoğlu, O. (2024). Comparison of cold storage abilities of'ayvaniye'and'granny smith'apple cultivars. Journal of Agricultural Faculty of Gaziosmanpaşa University (JAFAG), 41(1), 8-16.
https://doi:10.55507/gopzfd.1397096
-
Çolak, A. M., Peral Eyduran, S., Tas, A., Altun, O., Gundogdu, M., & Ozturk, B. (2025). The role of spermidine in postharvest fruit physiology: effects on quality characteristics and metabolite content of sweet cherry fruit during cold storage. ACS omega, 10(10), 10567-10578.
https://doi.org/10.1021/acsomega.4c11222
-
Emadifar, R., Sharifi, G. R., & Mirzaalian-Dastjerdi, A. M. (2025). Effects of chitosan coating on the biochemical properties of sweet pepper (Capsicum annuum L.) in cold storage. International Journal of Horticultural Science and Technology, 12(2), 375-386.
https://doi.org/10.22059/İJHST.2024.368020.727
Eroğul, D., Gundogdu, M., Sen, F., & Tas, A. (2024). Impact of postharvest calcium chloride treatments on decay rate and physicochemical quality properties in strawberry fruit. BMC Plant Biology, 24(1), 1088.
https://doi.org/10.1186/s12870-024-05792-0
-
Food and Agriculture Organization of the United Nations. (2023). Commodities by country.
https://www.fao.org/faostat/en/#rankings/countries_by_commodity
-
Gidado, M. J., Gunny, A. A. N., Gopinath, S. C., Devi, M., Jayavalli, R., & Ilyas, R. A. (2025). Challenges in selecting edible coating materials for fruit postharvest preservation and recent advances in edible coating techniques: a review. Journal of Food Science and Technology, 1-11.
https://doi.org/10.1007/s13197-025-06214-1
-
Hasan, M. U., Singh, Z., Shah, H. M. S., Kaur, J., Woodward, A., Afrifa-Yamoah, E., & Malik, A. U. (2023). Oxalic acid: A blooming organic acid for postharvest quality preservation of fresh fruit and vegetables. Postharvest Biology and Technology, 206, 112574.
https://doi.org/10.1016/j.postharvbio.2023.112574
-
Hayaloglu, A. A., & Demir, N. (2015). Physicochemical characteristics, antioxidant activity, organic acid and sugar contents of 12 sweet cherry (Prunus avium L.) cultivars grown in Turkey. Journal of Food Science, 80(3), C564-C570.
https://doi.org/10.1111/1750-3841.12781
-
Holcroft, D. M., & Kader, A. A. (1999). Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biology and Technology, 17(1), 19-32.
https://doi.org/10.1016/S0925-5214(99)00023-X
-
Iñiguez-Moreno, M., & González-González, R. B. (2025). Effect of gelatin and salicylic acid incorporated in chitosan coatings on strawberry preservation. International Journal of Biological Macromolecules, 140918.
https://doi.org/10.1016/j.ijbiomac.2025.140918
-
Isvand, A., Karimaei, S., & Amini, M. (2024). Assessment of chitosan coating enriched with Citrus limon essential oil on the quality characteristics and shelf life of beef meat during cold storage. International Journal of Food Microbiology, 423, 110825.
https://doi.org/10.1016/j.ijfoodmicro.2024.110825.
-
Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. Lwt, 73, 28-36.
https://doi.org/10.1016/j.lwt.2016.05.038
-
Karaat, F. E., Gündüz, K., Saraçoğlu, O., & Yıldırım, H. (2019). Pomological and phytochemical evaluation of different cherry species: mahaleb (Prunus mahaleb L.), wild sweet cherry (Prunus avium L.) and wild sour cherry (Prunus cerasus L.), sweet and sourcherry cultivars. Acta Scientiarum Polonorum. Hortorum Cultus, 18(4), 181-191.
https://doi.org/10.24326/asphc.2019.4.17
Korkmaz, N., Saraçoğlu, O., Kaçan, F. N., & Dinçer, E. (2025, January). Green synthesis and characterization of copper, boron and chitosan. In J. R. Hernandez-Carrion (Ed.), Proceedings of the 7th International Mediterranean Congress (pp. 169–170). Liberty Academic Publishers.
-
Korkmaz, N. (2020). Bioreduction: the biological activity, characterization, and synthesis of silver nanoparticles. Turkish Journal of Chemistry, 44(2), 325-334.
https://doi.org/10.3906/kim-1910-8
-
Korkmaz, N., Kısa, D., Ceylan, Y., Güçlü, E., & Şen, F. (2024). Biogenic synthesis of silica nanoparticles from industrial hemp waste for sustainable applications: Characterization and potential environmental benefits. Inorganic Chemistry Communications, 167, 112750.
https://doi.org/10.1016/j.inoche.2024.112750
Kumar, N., Ojha, A., Upadhyay, A., Singh, R., & Kumar, S. (2021). Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT, 138, 110435.
https://doi.org/10.1016/j.lwt.2020.110435
-
Li, Y., Rokayya, S., Jia, F., Nie, X., Xu, J., Elhakem, A., Almatrafi, M., Benajba, N., & Helal, M. (2021). Shelf-life, quality, safety evaluations of blueberry fruits coated with chitosan nano-material films. Scientific reports, 11(1), 55.
https://doi.org/10.1038/s41598-020-80056-z
-
Liu, Z., Mao, Z., Li, M., Cai, C., Wang, Y., Liu, J. H., & Li, C. (2023). Vacuole: A repository to control fruit flavor quality. Fruit Research, 3, Article 12.
https://doi.org/10.48130/FruRes-2023-0012
-
Ma, Y., Fu, L., Hussain, Z., Huang, D., & Zhu, S. (2019). Enhancement of storability and antioxidant systems of sweet cherry fruit by nitric oxide-releasing chitosan nanoparticles (GSNO-CS NPs). Food Chemistry, 285, 10–21.
https://doi.org/10.1016/j.foodchem.2019.01.156
-
Michailidis, M., Bazakos, C., Kollaros, M., Adamakis, I. D. S., Ganopoulos, I., Molassiotis, A., & Tanou, G. (2023). Boron stimulates fruit formation and reprograms developmental metabolism in sweet cherry. Physiologia Plantarum, 175(3), e13946.
https://doi.org/10.1111/ppl.13946
Ocalan, O. N., Yildiz, K., & Saracoglu, O. (2023). Usage possibilities of edible coating and films for storage of fruits. Erwerbs-Obstbau, 65(3), 597-605.
https://doi.org/10.1007/s10341-023-00837-4
-
Ozturk, A., Yildiz, K., Ozturk, B., Karakaya, O., Gun, S., Uzun, S., & Gundogdu, M. (2019). Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modified atmosphere packaging and methyl jasmonate. Lwt, 111, 117-124.
https://doi.org/10.1016/j.lwt.2019.05.033
-
Ozturk, B., Aglar, E., Saracoglu, O., Karakaya, O., & Gun, S. (2022). Effects of GA3, CaCl2 and modified atmosphere packaging (MAP) applications on fruit quality of sweet cherry at cold storage. International Journal of Fruit Science, 22(1), 696-710.
https://doi.org/10.1080/15538362.2022.2113597
-
Parvin, N., Rahman, A., Roy, J., Rashid, M. H., Paul, N. C., Mahamud, M. A., Imran, S., sakil, M. A., Uddin, F. M., Molla, M. E., Khan, M. A., Kabir, M. H., & Kader, M. A. (2023). Chitosan coating improves postharvest shelf-life of mango (Mangifera indica L.). Horticulturae, 9(1), 64.
https://doi.org/10.3390/horticulturae9010064
-
Pelayo, C., Ebeler, S. E., & Kader, A. A. (2003). Postharvest life and flavor quality of three strawberry cultivars kept at 5 C in air or air+ 20 kPa CO2. Postharvest Biology and Technology, 27(2), 171-183.
https://doi.org/10.1016/S0925-5214(02)00059-5
-
Pereira, G. L., Nascimento, V. L., Omena-Garcia, R. P., Souza, B. C. O., de Carvalho Gonçalves, J. F., Ribeiro, D. M. R. A. Nunes-Nesi, & Araújo, W. L. (2023). Physiological and metabolic changes in response to Boron levels are mediated by ethylene affecting tomato fruit yield. Plant Physiology and Biochemistry, 202, 107994.
-
Sami, R., Almatrafi, M., Elhakem, A., Alharbi, M., Benajiba, N., & Helal, M. (2021). Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes, 11(2), 140.
https://doi.org/10.3390/membranes11020140
-
Sani, A., Hassan, D., Ehsan, M., Sánchez-Rodríguez, E. P., & Melo-Máximo, D. V. (2025). Improving strawberry shelf life using chitosan and zinc oxide nanoparticles from ginger-garlic extracts. Applied Food Research, 5(1), 100439.
https://doi.org/10.1016/j.afres.2025.100765
-
Shireen, F., Nawaz, M. A., Chen, C., Zhang, Q., Zheng, Z., Sohail, H., Sun, J., Cao, H., Huang, Y., & Bie, Z. (2018). Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences, 19(7), 1856.
https://doi.org/10.3390/ijms19071856
-
Şen, K., & Güner, K. G. (2023). Nanoteknolojinin yenilebilir filmlere uygulanması. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(1), 411-425.
https://doi.org/10.21923/jesd.1123446
-
Taha, I. M., Zaghlool, A., Nasr, A., Nagib, A., El Azab, I. H., Mersal, G. A. M., Ibrahim, M. M., & Fahmy, A. (2022). Impact of starch coating embedded with silver nanoparticles on storage time. Polymers, 14(7), 1439.
https://doi.org/10.3390/polym14071439
-
Tayel, A., Otian, A. M., Ebaid, A. M., Mahrous, H., Salem, M. F., Ghobashy, M. O., Alzamel, M. N., & Mazroa, K. E. (2025). Powerful antıfungal nanocomposıte from amla-synthesızed selenıum nanopartıcles and nanochıtosan to protect strawberry from Gray Mold. Journal of Microbiology, Biotechnology and Food Sciences, e11934-e11934.
https://orcid.org/0000-0001-5535-2896
Vera-Maldonado, P., Aquea, F., Reyes-Díaz, M., Cárcamo-Fincheira, P., Soto-Cerda, B., Nunes-Nesi, A., & Inostroza-Blancheteau, C. (2024). Role of boron and its interaction with other elements in plants. Frontiers in Plant Science, 15, 1332459.
https://doi.org/10.3389/fpls.2024.1332459
Yıldız, E., Hancı, F., Yaman, M., Popescu, G. C., Popescu, M., & Sümbül, A. (2025). Edible micro-sized composite coating applications on post-harvest quality of sweet cherry fruits. Horticulturae, 11(3), 303.
https://doi.org/10.3390/horticulturae11030303
-
Wang, L., Zhang, H., Jin, P., Guo, X., Li, Y., Fan, C., Wang, J., & Zheng, Y. (2016). Enhancement of storage quality and antioxidant capacity of harvested sweet cherry fruit by immersion with β-aminobutyric acid. Postharvest Biology and Technology, 118, 71-78.
https://doi.org/10.1016/j.postharvbio.2016.03.023
-
Xiao, J., Gu, C., Zhu, D., Huang, Y., Luo, Y., & Zhou, Q. (2021). Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. Lwt, 140, 110809.
https://doi.org/10.1016/j.lwt.2020.110809
-
Xing, W., Liu, W., Li, H., Zeng, X., Fan, X., Xing, S., & Gong, H. (2025). Development of predictive models for shelf-life of sweet cherry under different storage temperatures. LWT, 217, 117442.
https://doi.org/10.1016/j.lwt.2025.117442
-
Zhang, W., Jiang, Y., & Zhang, Z. (2023). The role of different natural organic acids in postharvest fruit quality management and its mechanism. Food Frontiers, 4(3), 1127-1143.
https://doi.org/10.1002/fft2.245
-
Zhang, L., Sun, C., Tian, H., Xu, J., & Wu, X. (2024). Foliar spraying of boron prolongs preservation period of strawberry fruits by altering boron form and boron distribution in cell. Frontiers in Plant Science, 15, 1457694.
https://doi.org/10.3389/fpls.2024.1457694